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Abstract
Visual Question Answering (VQA) has been a popular task that combines vision and language, with
numerous relevant implementations in literature. Even though there are some attempts that approach
explainability and robustness issues in VQA models, very few of them employ counterfactuals as a means
of probing such challenges in a model-agnostic way. In this work, we propose a systematic method
for explaining the behavior and investigating the robustness of VQA models through counterfactual
perturbations. For this reason, we exploit structured knowledge bases to perform deterministic, optimal
and controllable word-level replacements targeting the linguistic modality, and we then evaluate the
model’s response against such counterfactual inputs. Finally, we qualitatively extract local and global
explanations based on counterfactual responses, which are ultimately proven insightful towards in-
terpreting VQA model behaviors. By performing a variety of perturbation types, targeting different
parts of speech of the input question, we gain insights to the reasoning of the model, through the
comparison of its responses in different adversarial circumstances. Overall, we reveal possible biases in
the decision-making process of the model, as well as expected and unexpected patterns, which impact its
performance quantitatively and qualitatively, as indicated by our analysis.
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1. Introduction

The indisputable rise in popularity of visiolinguistic (VL) learning [1, 2, 3] has offered a variety
of impressive model implementations to the community in a short time [4, 5, 6, 7, 8, 9]. Visual
Question Answering (VQA) is a VL task that has obtained a fundamental role in the evolution
of various interactive VL AI systems, such as Visual Dialogue [10], Text-Image Retrieval [11]
and Visual Commonsense Reasoning [12]. To this end, there is an extensive range of real-world
applications that benefit significantly from the new advances around the VQA task, such as
aiding systems for visually impaired individuals [13, 14] and self-driving cars [15].

VQA involves a textual question q from a pre-defined question set 𝑄 accompanied by an
image I, the interaction of which yields a textual answer a. The race for continuously advancing
VQA model performance unavoidably results in leaving open issues, especially attributed to the
black-box nature of state-of-the-art implementations [16, 17, 18, 19, 20]. This limited access to
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the reasoning that such models follow to make decisions emphasizes the risk of an arbitrary
behavior on their behalf. This peril lies mainly in the possibility of bias integration, decisions
that lack the proper focus, as well as the absence of explainability and fairness of results.
Especially when pivotal decisions are made based on this type of systems, their opacity renders
them impractical, and at times hazardous, for most applications. This uncertainty indicates the
need for new robustness evaluation methods, that prioritize the transparency of VQA models.

Different approaches to debiasing and explainability of VQA models focus on diverse aspects
of the issue. For example, [21] examines VQA robustness and explainability by addressing
transformations on the visual modality, as they attribute the problem mostly to the visual bias
as occurring from unwanted correlations between image concepts. In general, existing works
primarily focus on the effect of visual bias rather than the impact of linguistic bias, as a reason
behind the lack of robustness in VQA models. Other works follow attention-based strategies that
require extensive knowledge on the model architecture, thus they cannot handle efficiently the
black-box nature of these systems. To this end, various model-specific approaches are proven to
be fruitful in their strict framework, but lack the capability to be generalized to the evaluation
of any other model, thus limiting their efficiency scope to just one specific case.

We argue that resolving explainability challenges in VQA models calls for a counterfactual
approach, implemented as word-level perturbations on the questions q; thus, we diverge from
the well-sought exploration of the visual modality, examining the role of the language on
possible biases and spurious correlations hidden in VQA models, while tracing and interpreting
their opaque decision-making process. Our proposed counterfactual perturbations are framed
as: "What is the response of the VQA model if we substitute word X with word Y in question
q?" Specifically, by viewing words as concepts, we perform the minimum possible feasible
transformation to stimulate a change in the model’s response; then, insightful comparisons are
made by recording the model’s behavior to various such transformations. The counterfactual
perturbations that we perform are fully guided by the deterministic assurance of hierarchical
knowledge structures. By deploying these knowledge sources, we provide transformations that
are not only optimally targeted to each specific linguistic concept, but are also fully explainable
in terms of the strategy followed for their implementation.

Starting with the observation of local model responses in different linguistic perturbations for
a single data sample, we further identify global patterns that refer to the overall behavior of
the model when faced with a specific set of perturbed concepts. Following this, we propose
global rules that characterize the response of a model and can underline its weaknesses, by
indicating what concepts could harm its robustness and certainty. This process reveals possible
biases that a model has integrated, and hence attributes explanations as to why a particular
answer is generated in place of another one; thus, we are able to obtain insights to the reasoning
process of a model, without the need of access to the model’s inner architecture. Our method is
generalizable to any VQA model and corresponding suitable dataset, as it approaches the issue
in a totally model-agnostic strategy. To sum up, we contribute to the following:

1. We design counterfactual inputs applying a variety of structured word-level replacements
on the questions 𝑞 ∈ 𝑄, as instructed by hierarchical knowledge sources. Our approach
is model-agnostic, as we treat any VQA model as a black box.

2. We obtain local explanations derived from unexpected model responses to counterfactual



q inputs.
3. By summarizing local model behaviors for all 𝑞 ∈ 𝑄, we extract some global explanations

that reveal the overall model response to each of the designed counterfactual inputs.

2. Visual Question Answering (VQA)

Visual Question Answering (VQA), first introduced in [22], lies in the category of multimodal
learning tasks, as it receives both visual and linguistic modalities as input. Specifically, a VQA
model 𝑀 receives images 𝑖 from a set I and relevant questions 𝑞 belonging to a predefined
question set 𝑄, and is expected to accurately answer those 𝑞 by providing a natural language
answer 𝑎. The aforementioned answers can be either open-ended (generated by 𝑀 ) or belong
to a set of pre-defined candidates 𝐴. In general, questions 𝑞 have an arbitrary nature and
they enclose different computer vision sub-problems, such as object recognition and detection,
attribute and scene classification, as well as counting [23]. Furthermore, more intricate questions
concern more complex processes, such as spatial relationships among objects and commonsense
reasoning. According to each specific case, visual questions 𝑞 selectively target different areas
of an image 𝐼 , including background details and underlying context. In accordance, the focus
regarding the linguistic input lies in different word concepts depending on each image-question
pair. An example of the VQA task, including an image 𝐼 and related questions 𝑞, as well as the
answers 𝑎 that a VQA model 𝑀 returns to these questions, is demonstrated in Fig. 1.

Figure 1: Example of image and free-form questions retrieved from the Visual Genome dataset [24],
targeted to the VQA task. The displayed answers were given as response by the ViLT model [5].

Our counterfactual approach regarding linguistic substitutions revolves around the following
fundamental question: "What is the response of 𝑀 if we substitute word X with word Y in question
q?". The implemented counterfactual 𝑋 → 𝑌 substitution should be semantically minimal and



linguistically feasible. Minimality refers to substitutions that maintain a meaning close to the
meaning of the original word X. For example, synonym words preserve this minimality con-
straint. In order to ensure semantic minimality of substitutions, we leverage lexical knowledge
sources (such as WordNet [25]), which can provide the minimum possible 𝑋 → 𝑌 transitions
by selecting the closest concept 𝑌 to concept 𝑋 that respects certain constrains. Linguistic
feasibility instructs meaningful substitutions which always involve the same part of speech
(POS); for example, nouns can only be substituted by nouns but not by verbs. In total, such
𝑋 → 𝑌 substitutions are applied on the whole 𝑄 set, targeting one POS at a time.

Such counterfactual questions are able to trigger alternative model responses. Therefore, a
𝑋 → 𝑌 concept substitution in the input may result in an alternative 𝑋 ′ → 𝑌 ′ response in
the output, or not. Probing potential output changes is highly informative with respect to the
reasoning process followed by the model 𝑀 , highlighting concepts or concept families that
are more or less influential to the decision-making process of 𝑀 . Hence, the counterfactual
substitutions implemented on 𝑞 provide useful explanations for the model’s observed behavior
and enhance its interpretability extent, while also handling it as a black-box structure.

3. Related work

VQAmodels Since the introductory work on VQA [22], several endeavors have extended this
paradigm, either by suggesting advanced model architectures or by proposing more challenging
datasets. State-of-the-art models addressing the VQA task are mainly based on VL transformer
backbones; thus, models such as ViLBERT [6], VisualBERT [4], FLAVA [8], ALBEF [9], ViLT [5]
and others have dominated the recent VQA literature demonstrating rapid improvements on
relevant benchmark datasets. Regarding datasets, improvements on the original VQA (VQA-
v2) suggest adding similar image pairs corresponding to the same question 𝑞, but leading to
diverging answers [20]. Visual Genome (VG) is another large scale dataset including numerous
scene images, object, attribute and relationship annotations, as well as visual question-answer
pairs [24]. Our approach is tested on both VQA-v2 and VG datasets. Other popular VQA datasets
are Flickr30k-Entities [26], COCO-QA [27], Visual7W [28] and others. For a detailed analysis on
VQA and relevant topics we refer readers to recent specialized survey papers [1, 2, 3, 29, 30, 31].

Explainability in VQA Regarding the research topic of explainability and robustness in
Visual Question Answering [32, 33, 34], multiple efforts have been proposed, including attention
maps [35, 36], and other model-specific approaches [37]. The strategy through counterfactuals
is a rather new one, while already existing attempts focus on visual perturbations [21], masking
[18, 38], introducing counterfactuals in the training stage [39, 38] and relationship-driven
approaches between original and counterfactual samples [40].

Linguistic perturbations There is a variety of prior works that perform word-level linguistic
perturbations, even though they target purely linguistic tasks, mostly text classification [41, 42,
43, 44, 45], but also semantic similarity [46] and machine translation [47]. Our perturbations
regarding synonym replacement and random noun deletion are inspired by [42], guiding
substitutions with the usage of WordNet [25]. Color perturbations are adapted from [46],



upon which we construct an appropriate hierarchy based on color distance. The rest of our
implemented replacements involving noun and verb substitutions are completely novel ideas.

4. Method

The input of our framework consists of a dataset 𝐷 that contains aligned images I, textual
questions forming a set 𝑄 and candidate textual answers A. We will later present results on
Visual Genome (VG) [24] and VQA-v2 [20], which satisfy these requirements.

We select ViLT [5] as a proof-of-concept pre-trained VQA model 𝑀 . Nevertheless, our
proposed method is not restricted to ViLT, as it only considers inputs (questions) and outputs
(answers). ViLT receives a question 𝑞 ∈ 𝑄 and an image 𝑖 ∈ 𝐼 from 𝐷 and then generates an
answer 𝑎, rather than selecting one of the candidates 𝑎 ∈ 𝐴; since this behavior is inherent to
several VQA models, it is important to allow looser definitions of the accuracy metric. To be
more precise, ViLT produces outputs 𝑎 in the form of natural language text, and there are many
different ways of expressing the same answer in English. In this case, heuristically comparing
the generated answer with the ground truth answer from A defines if the prediction of 𝑀 is
accurate or not. By repeating the same prediction process for all Q, I pairs, and by obtaining
successful or unsuccessful answers for them, we finally extract an accuracy score acc𝑄, reflecting
the ratio of correct answers over all generated answers.

Our word substitutions are guided from external knowledge sources, targeting different parts
of speech (nouns, verbs and adjectives) at a time. Specifically, WordNet knowledge graph [25]
provides hierarchical relationships between an abundance of common words widely present in
VG and VQA-v2 vocabularies. Therefore, substitution pairs are created by connecting specific
words with their WordNet matches, respecting hierarchical relationships as described in Section
4.1. Furthermore, we extend the Matplotlib color2 relationships presented in [46], forming a
hierarchy of color relatedness. This color hierarchy is based on color distances according to the
RGB value of each Matplotlib color, with more details provided in Section 4.1.7

We then proceed with applying our designed perturbations on dataset questions 𝑞 ∈ 𝑄,
resulting in counterfactual questions 𝑞* ∈ 𝑄*. For each substitution, we obtain the counterfactual
question accuracy acc*𝑄, as the response of 𝑀 to the counterfactual questions 𝑞* ∈ 𝑄*, and we
compare it to the ground truth accuracy scores acc𝑄. Throughout this process, we evaluate
whether and how the response of 𝑀 changes by measuring the difference between acc𝑄 and
acc*𝑄, as an indicator of its robustness against replacements with semantically related concepts.

Even though useful for benchmarking reasons, standalone accuracy scores are not informative
enough to explain why we observe such differences between original 𝑞 and counterfactual
inputs 𝑞*. To this end, we separately examine samples where the generated 𝑎 changes under
the presence of a perturbation, obtaining local explanation in the form if concept changes in q,
then a -erroneously- changes. The aggregation of such local rules leads to global explanations,
deriving if-then relationships that apply to multiple samples of 𝐷.

We present a visual outline of our approach in Figure 2. Words from 𝑞 ∈ 𝑄 colored in
red denote the concepts to be substituted, while words in blue indicate the knowledge-driven
substitutions that lead to counterfactual questions 𝑞* ∈ 𝑄*.

2Matplotlib colors

https://matplotlib.org/3.3.3/gallery/color/named_colors.html


Figure 2: Overview of our proposed knowledge-based counterfactual VQA framework.

4.1. Perturbations

In our work, we perform a variety of substitutions or deletions in the linguistic representation
of Q. This counterfactual strategy exploits multiple and diverse morphological attributes of Q
and attempts to demonstrate the semantics that most affect the model’s response 𝑎. Our target
is to stimulate an altered response of 𝑀 through these counterfactual perturbations, in order to
identify how the behavior of 𝑀 changes when faced with different concepts. Thus, we can infer
potential biases or points of weak robustness in 𝑀 . The aforementioned substitutions can be
divided into the following categories, based on the knowledge source used and the targeted part
of speech. A summary and representative examples of substitutions are provided in Table 1.

A. Wordnet hierarchy: The knowledge-driven word substitutions involve replacing a noun
word from questions 𝑞 ∈ 𝑄 with a hierarchically related word (hyponym, hypernym, sibling),
or verbs and adjectives with their synonyms. The quality and relevance of our substitutions
are reassured by the use of the deterministic structure of the Wordnet hierarchy, guaranteeing
controllable and optimal word-level substitutions.

• Synonyms: We employ synonym transformations on adjectives and verbs of the original
questions 𝑞 ∈ 𝑄. For example, "talk" and "speak" are synonym verbs according to WordNet,
while "small" and "minuscule" are adjective synonyms.

• Hypernyms - Hyponyms: More general, as well as more specific noun concepts are
provided via WordNet in the form of hypernyms and hyponyms respectively. For example,



a given noun word (e.g. "dog") we can extract its immediate noun hypernyms (e.g.
"canine"), or its immediate hyponyms (e.g. "labrador").

• Siblings: We construct noun sibling substitutions by traversing the Wordnet knowledge
tree one step upwards and then one step downwards. Siblings are defined as noun entities
that share the same immediate parent. For example, "carrot" and "radish" are siblings,
because they both have "plant root" as their parent concept according to WordNet.

B. Color relatedness hierarchy: Colors that are semantically similar, therefore presenting
RGB values close to each other, will be also close within the color relatedness hierarchy. For
example, "violet" and "orchid" Matplotlib colors lie close within the color hierarchy (their in-
between color distance is 6.16), while "violet" and "deepskyblue" are placed far away from each
other (their color distance is 207.88). Colors can be replaced with either distant or else similar
colors from this color relatedness hierarchy, leading to the following Color Maximal and
Color Minimal color substitutions. Both Maximal/Minimal substitutions may either involve
common colors, which already exist in the dataset or else uncommon colors, which belong to
the Matplotlib color list but not in VG/VQA-v2 vocabularies:

• Color Maximal: On questions that mention some specific color we contradict the output
𝑎 of 𝑀 based on the input of the original question 𝑞 ∈ 𝑄 vs the output 𝑎* of the perturbed
question 𝑞* ∈ 𝑄*. In 𝑞* the original color is substituted with one that is greatly distant to
it, such as "violet" → "deepskyblue". In this category, we also challenge the model using
less frequent color instances (i.e. "azure", "turquoise", "salmon"). This substitution diverges
from the initial counterfactual question requesting minimal changes; nevertheless, the
comparison with related minimal changes will highlight the differences that varying
color distances impose on the final 𝑎𝑐𝑐*𝑄.

• Color Minimal: In accordance with the above, we perform color substitutions with the
least distant colors, such as "violet" → "orchid". Again we also challenge the model with
less frequent color substitutions.

C. Deletions: We randomly select a noun in each question 𝑞 ∈ 𝑄 and remove it.

Table 1
Question perturbations examples towards counterfactual queries.

Perturbation Question

Original Do you see the white small dog?
Color Maximal Do you see the black small dog ?
Color Minimal Do you see the beige small dog ?

Synonym Adjectives Do you see the white tiny dog ?
Synonym Verbs Do you watch the white small dog ?
Hypernym Noun Do you see the white small canine ?
Hyponym Noun Do you see the white small labrador ?
Sibling Noun Do you see the white small wolf ?
Deletion Noun Do you see the white small _ ?

Substitutions and deletions are an excellent way to quantify whether a VQA model 𝑀
understands a specific question-image pair, or if its output is greatly dependent on biased



estimations. This way, we can reveal spurious correlations that are mistakenly integrated into
𝑀 . Color substitutions are motivated by the quantity of color-related questions that exist in
our input datasets (VG and VQA-v2). By interrogating 𝑀 with color perturbations that are
greatly distant to the original color (ColorMaximal substitutions experiment), we aim to detect
whether 𝑀 will correctly and reasonably perceive this semantically massive change. We would
expect 𝑀 to change its response 𝑎* in most cases of Color Maximal experiment; the opposite
would indicate an underlying pattern of ignoring color attributes. Similarly, we perform the
ColorMinimal substitution experiment in order to investigate the model’s behavior when faced
with minor alterations in the color concept. We expect the substitutions from this experiment
to have little to no influence on the model’s response 𝑎*. An opposite behavior would reveal
an existing bias regarding specific colors, which would lead to the conclusion that 𝑀 cannot
properly and robustly adapt to minor color changes and generalize accordingly. Of course,
uncommon color substitutions in both Minimal/Maximal cases impose a more difficult problem,
as 𝑀 needs to adaptively respond to out-of-dataset color concepts.

In relation to the Synonym substitutions, we aim to investigate the model’s ability to
efficiently handle mild morphological language alterations that maintain the same meaning.
In this case, failing to properly respond (providing an alternative 𝑎* = 𝑎) would disclose
overfitting to specific semantics, which renders the model lexically inflexible and thus non-
robust to semantically negligible perturbations. The Hypernyms-Hyponyms perturbations
are dedicated to depicting the model’s ability to generalize and specify correspondingly, while
retaining a reliable level of robustness. Hypernym and hyponym relationships are notions
profoundly understood in the real world and consequently embedded in large scale datasets,
which are widely used for VQA models pre-training. Thus, 𝑀 should also be able to properly
comprehend and reason over them. Ideally, we would expect 𝑀 to maintain the same response
for hypernyms substitutions, whereas justifiably respond in specific ways for the hyponyms
replacements, taking into account the specification of meaning. The commensurate amount of
specifying skill is sought to be established through Sibling substitution experiment. Depending
on each particular case, we expect 𝑀 to modify or maintain its response appropriately, to
confirm the level of understanding and distinguishment of different, but still related, meanings.

Finally, we implemented the Deletion experiment expecting ideally the performance of 𝑀
to degrade. The amount of the 𝑎𝑐𝑐*𝑄 decline depends on the importance of the deleted noun for
the meaning of the question. Consequently, an unbiased 𝑀 should be able to determine this
importance and act accordingly, without reaching unwarranted conclusions that are expressed
through an indefensible response.

5. Experiments

We present results using the accuracy metric, which illustrates the extent of similarity of the
model’s predicted answer to the ground truth answer, both for the original 𝑄 of each dataset,
as well as for the counterfactual question set 𝑄*. In our analysis, accuracy is not profound
enough to provide specific situational explanations and insights on the model’s behavior, when
faced with particular concepts. However, accuracy still showcases a high-level approach on
the model’s efficiency fluctuations under the implemented counterfactual perturbations. Since



ViLT model is trained and optimized on the VQA-v2 dataset, it is somehow expected to perform
better on it compared to VG (both datasets contain similar vocabularies). This observation is
indeed validated by our results presented in Tables 2 & 3, which demonstrate a consistently
higher 𝑎𝑐𝑐𝑄 on the former versus the latter dataset, concerning all implemented experiments.
We denote that 𝑎𝑐𝑐𝑄 scores for each experiment contain the corresponding questions only,
e.g. color experiments only contain questions that mention colors. This contributes to the
differences in original 𝑎𝑐𝑐𝑄 scores for each experiment. Nevertheless, in both datasets, we notice
an analogous difference between 𝑎𝑐𝑐𝑄 and 𝑎𝑐𝑐*𝑄 per experiment when 𝑀 is presented with
counterfactual questions 𝑞* ∈ 𝑄*. This could generally indicate the existence of underlying
biases: 𝑀 presents a type of overfitting to the original 𝑞 ∈ 𝑄, which renders it less efficient
when asked to handle minimally perturbed counterfactual questions. In all experiments, the
accuracy reduction from the original 𝑎𝑐𝑐𝑄 to 𝑎𝑐𝑐*𝑄 is approximately 15-20% or more.

An extended depiction of the retrieved accuracies for both datasets is presented in Table
2 (color-based substitutions) and Table 3 (WordNet-based substitutions and noun deletions).
Specifically, for Color Maximal in VQA-v2 we observe a decline of 34.2% for common colors
and a decline of 37.4% for uncommon ones. Even for semantically minimal substitutions, (Color
Minimal experiment), the decline is 31% for both common and uncommon colors. As for VG,
we observe a decline of 38.2% for common colors and a decline of 52.2% for uncommon colors
when Color Maximal substitutions are performed. Correspondingly, a decline of 35% for both
common and uncommon colors is reported for Color Minimal substitutions.

Table 2
Accuracies for color perturbations on VQA-v2 and Visual Genome (VG). Common refers to substitutions
with in-dataset colors, while uncommon refers to substitutions involving any Matplotlib color.

𝑎𝑐𝑐𝑄% 𝑎𝑐𝑐*𝑄% (common) 𝑎𝑐𝑐*𝑄% (uncommon)

Perturbation VQA-v2 VG VQA-v2 VG VQA-v2 VG

Color Maximal 69.6 46.9 45.8 29.0 43.6 22.4
Color Minimal 70.0 47.5 48.3 30.9 48.3 30.9

Table 3
Accuracies for WordNet-based perturbations on VQA-v2 and Visual Genome (VG).

𝑎𝑐𝑐𝑄% 𝑎𝑐𝑐*𝑄% 𝑎𝑐𝑐𝑄 reduction %

Perturbation VQA-v2 VG VQA-v2 VG VQA-v2 VG

Synonym Adjectives 75.1 47.0 56.9 37.4 20.6 20.4
Synonym Verbs 76.8 52.3 64.1 44.4 16.5 15.1
Hypernym Noun 75.2 54.6 60.8 41.5 19.1 24.0
Hyponym Noun 75.1 53.5 56.3 36.1 25.0 32.5
Sibling Noun 76.9 54.0 54.0 33.4 29.8 38.1

Deletion Noun 76.9 53.9 59.1 36.5 23.1 32.3

The discovery of global patterns provides a more profound and targeted view on robustness



of the model 𝑀 . To this end, we note that in all the cases we studied, we are not interested in
the ground truth answer of a question 𝑞, but rather in the differentiation between the answer 𝑎*

to the counterfactual question in relation to the original answer 𝑎 that 𝑀 predicts, either if 𝑎 is
correct or not. We select this approach since we are interested in discovering the model’s change
in decision-making under the presence of counterfactual inputs, which is more informative
than measuring how much 𝑎* semantically deviates from the ground truth response.

Based on the thorough investigation of our experiments’ results and the aggregation of the
following local explanations, as presented in the upcoming Figures, we have deduced some
meaningful global rules that both embody the robustness of 𝑀 to our counterfactual questions
𝑞* ∈ 𝑄*, while providing reliable explanations that reveal the model’s reasoning behind its
decision-making. Furthermore, we analyze underlying existing biases of 𝑀 that logically derive
from these global rules. In the following Figures, we highlight the original 𝑞, 𝑎 with red and the
counterfactual 𝑞*, 𝑎* with blue.

5.1. Color Maximal explanations

In Color Maximal substitutions, we notice that 𝑀 erroneously maintains the same answer
𝑎* = 𝑎 when we replace the colors gray and silver with any other semantically maximal color,
either common or uncommon (underlined). Therefore, we detect a bias in the model related
to these two colors, as it does not make logical decisions after replacing them with others and
does not properly reason over this substitution. A relevant example is presented in Figure 3a.

However, contrary to the above, 𝑀 logically revises its answers when we replace the colors
green and red with any distant colors, either common or uncommon (underlined) as presented
in Figure 3b. Therefore, the model recognizes and qualitatively understands these substitutions
and has not incorporated any problematic attachment regarding these two colors.

(a) q: What is surrounding the silver/black/navy
fire hydrant?
a: posts/posts/posts.

(b) q: How many glasses have
red/gold/darkturquoise wine?
a: 6/0/0.

Figure 3: Local explanations for Color Maximal counterfactual perturbations.

This observation denotes that 𝑀 is more sensitive towards intense and visually distinct colors
and rather bypasses changes involving more neutral ones, focusing on object identities (e.g.
"fire hydrant" and "posts" of Figure 3a). A more uncertain 𝑎* (e.g. the model’s answer 𝑎* could
be "nothing") would be more suitable, if all question semantics were equally taken into account.



5.2. Color Minimal explanations

Based on our experiments on semantically minimal color substitutions, we derive the following
global rule: When we replace the colors gray and purple with any other closely related color,
𝑀 tends to give the same answer 𝑎* = 𝑎. Therefore, 𝑀 does not give due importance to this
change of colors, a fact that highlights a robust behavior related to the two aforementioned
colors. The model maintains this invariant behavior equally when we perform replacements
with common colors or with uncommon ones, as presented in Figure 4a.

In contrast, 𝑀 redefines its answers when we replace the green color with any other, common
or uncommon, semantically similar color. Consequently, it is being confused by such minimal
changes, failing to provide a meaningful answer, as shown in Figure 4b. Even a more uncertain
answer (e.g. "nothing") to counterfactual questions would be more suitable compared to the
semantically divergent ones returned ("bus" and "bag" instead of "light"). Likewise, 𝑀 presents
a similar change in behavior when we replace the pink color with common minimal colors and
the silver color with uncommon ones.

(a) q: What organization’s logo is on the pur-
ple/blue/plum banner?
a: olympics/olympics/olympics.

(b) q: What is being held green/forestgreen/olive?
a: light/bus/bag.

Figure 4: Local explanations for Color Minimal counterfactual perturbations.

5.3. Synonym Adjectives explanations

In general, adjective-noun pairs present in questions contain some joint special conceptual mean-
ing which differs from the independent meaning of adjectives when they exist autonomously
and separately in a sentence. In this case, we notice that the model 𝑀 varies its answer 𝑎*

when we implement a synonym substitution of its question adjectives. This finding suggests
that 𝑀 can qualitatively perceive the meaning of such adjective-noun pairs and differentiate its
response accordingly, as presented in Figure 5a.

Another finding is related to the ability of𝑀 to correctly adjust its answer, when it is presented
with a lexically correct synonym to an adjective, which, however, is not quite appropriate for
the given linguistic environment of the question. Accordingly, we conclude that 𝑀 is capable
of understanding the meaning of an adjective in relation to the context of the sentence ("typical
food" is meaningful, but "distinctive food" is not), as presented in Figure 5b.



In addition, we derive a global rule that concerns the behavior of 𝑀 when we replace an
adjective having multiple meanings with one of its synonyms, which, although it is optimal
with respect to the aforementioned meanings, is however not suitable to the semantic context
of the substituted adjectives (such as "delicious" vs "delightful"). We note that in this case, 𝑀
demonstrates a stable behavior against such substitutions, which proves that it is able to reason
over adjectives in a contextualized manner, without being fooled by synonyms not suitable to
the exact context of the question 𝑞. An example of this observation is provided in Figure 5c.

Size-related adjective substitutions are demonstrated in Figure 5d. We observe that 𝑀 is
particularly robust to such substitutions, therefore correctly capturing the underlying meaning
without being biased towards specific words. This global rule demonstrates the flexibility of 𝑀
towards appropriately handling semantically and contextually equivalent adjective substitutions.

Finally, 𝑀 is proven to be unstable when it has to handle rare or difficult synonyms of
adjectives, as the ones shown in Figure 5e. Consequently, it presents a lexical weakness in
handling such rare adjectives and possibly a bias in specific words that are more familiar to it.

(a) q: Is this a
hot/raging dog?
a: yes/no.

(b) q: Of what meal
is this kind
of food typi-
cal/distinctive?
a: lunch/hot dog.

(c) q: How deli-
cious/delightful
does this look?
a: very/not very.

(d) q: Is this a
small/little town?
a: yes/yes.

(e) q: Does the
man look
happy/felicitous?
a: no/yes.

Figure 5: Local explanations for Synonym Adjectives counterfactual perturbations.

5.4. Synonym Verbs explanations

Regarding substitutions involving verb synonyms, 𝑀 is not particularly stable when dealing
with substitutions of verbs that present multiple meanings, as presented in Figure 6a. This
indicates a difficulty in distinguishing the correct and desired meaning among multiple ones.

An even more specific rule we extract is that 𝑀 falsely changes its original answer 𝑎 when
we replace the verb "see" with a qualitative synonym of it. A relevant example is provided in
Figure 6b. This finding indicates an unwanted attachment of the model to the word "see", which
is interpreted as bias. This is an example of a more general situation, where optimal synonyms
may not be the best choice for a synonym in a specific contextual setting. In these kinds of
instances, the model tends to change its response, as observed in this particular case.

The model 𝑀 presents satisfactory robustness when it has to deal with easy or common
verbs of the English vocabulary, which means that it has acquired a certain degree of versatility
in simple vocabulary challenges, as shown in Figure 6c.

Finally, 𝑀 is rather stable when the replaced verb corresponds to a noun counterpart (e.g.



(a) q: What
says/state
STAPLES?
a: nothing/New
York.

(b) q: Do you
see/understand
any motorcycle
helmets?
a: no/yes.

(c) q: Are the walls
done/made in a
summery color?
a: yes/yes.

(d) q: What kind
of birds are pic-
tured/visualized?
a: par-
rots/parrots.

Figure 6: Local explanations for Synonym Verbs counterfactual perturbations.

picture -verb-, picture -noun-) or even adjective counterpart (e.g. pictured), such as the ones
of Figure 6d. Consequently, 𝑀 is capable of capturing the general sense of such verbs in the
context of the question; equivalent substitution of corresponding nouns (picture→visualization)
or adjectives (pictured→visualized) would mostly yield the same counterfactual response 𝑎*.

5.5. Hypernym Noun explanations

Throughout our Hypernym Noun substitutions, we conclude that 𝑀 is particularly robust
against substitutions involving living creatures, such as animals or humans, which shows that
it can properly reason over hierarchical relationships governing such concepts, as in Figure 7a.

On the contrary, 𝑀 does not clearly distinguish between concepts related to types of clothing,
i.e. it tends to erroneously change its answer when replaced with a broader concept. Conse-
quently, 𝑀 does not generalize well on such entities and a bias towards more specific and clear
types of clothing emerges. A relevant example is presented in Figure 7b.

As an extension of the above, 𝑀 exhibits instability in hypernym substitutions that are very
broad, inclusive, and polysemous. Therefore, when we replace a noun with an optimal hypernym
that presents much greater conceptual generality, 𝑀 is unable to qualitatively perceive the
hierarchical relation that governs them, outputting a wrong answer, as in Figure 7c.

5.6. Hyponyms Noun explanations

Similar to the hypernyms substitution experiment, 𝑀 is able to appropriately respond in cases
where the substitutions of hyponyms refer to living entities. Therefore, the specialization in
more specific living entities concepts is properly perceived, as presented in Figure 8a.

Correspondingly, 𝑀 also shows stability in the substitutions of hyponyms that represent
articles of clothing. Therefore, it specializes skillfully in more specific cloth-related entities
and according to the case, it appropriately changes its response by adapting to the change. A
relevant example is presented in Figure 8b.

On the contrary, the model does not demonstrate robustness to hyponym substitutions
referring to means of transport. Consequently, the model is biased toward such broader concepts
and fails to adequately understand their specialization, as shown in Figure 8c.



(a) q: Where is the cat/feline?
a: bed/bed.

(b) q: Are all the players wear-
ing black shirts/garment?
a: no/yes.

(c) q: Are there multiple vegeta-
bles on the plate/base?
a: yes/no.

Figure 7: Local explanations for Hypernym Noun counterfactual perturbations.

(a) q: Are the animals/acrodont
eating?
a: yes/yes.

(b) q: Are all the players wear-
ing black shirts/camise?
a: no/yes.

(c) q: What are objects behind
the motorcycles/minibike?
a: sign/sign.

Figure 8: Local explanations for Hyponyms Noun counterfactual perturbations.

5.7. Sibling Noun explanations

With reference to Sibling Noun substitutions, we notice as a global pattern that𝑀 has insufficient
separation ability when the sibling nouns refer to rooms of buildings or houses. As an example,
in Figure 9a, 𝑀 cannot properly differentiate between the described interior spaces and can be
easily fooled by substitutions involving places of different functionality. 𝑀 is also confused in
the case of Figure 9d, when sibling means of transport are substituted. Specifically, 𝑀 insists
on its answer even though a concept not existing in the image appears (bike→truck). This
indicates that 𝑀 rather trespasses the linguistic modality context, providing an ’easy’ answer
based on the visual modality, since the only bird appearing in the image is a parrot. In this case,
the relevant position of the bird on the man’s bike/truck is ignored.

An interesting behavior is observed when sibling concepts involving animals are tested, as in
Figure 9e. In this case, 𝑀 seems to circumvent reasoning over the image, providing an answer
based on knowledge it has most possibly acquired during its pre-training phase (zebras are black
and white in color). Nevertheless, 𝑀 is not fooled by the horse→zebra substitution, in which
case it would conclude that the zebra is brown, which is a wrong factual statement. Another
case that 𝑀 is not being fooled is depicted in Figure 9c. In this case, 𝑀 is very consistent in
sibling entities that declare human body parts, which means that it correctly perceives their



differences and does not group them in an arbitrary way. Furthermore, 𝑀 presents a correct
reasoning process by differentiating its answer when the sibling concepts present very different
meanings between them, as the concepts air→water in Figure 9b.

Overall, Siblings Noun substitution provided a rich set of insights, unequally relying on either
𝑞 or 𝐼 to derive an answer in many cases, rather than providing an uncertain outcome (such
as answering "nothing" in the examples of Figures 9d, 9e, similarly to the correct reasoning of
Figure 9c). In total, this indicates an unstable behavior of 𝑀 towards different sibling pairs,
yielding unpredictable outcomes under different substitutions of the same conceptual distance.

(a) q: Is the bath-
room/workroom
organized?
a: yes/yes.

(b) q: Are those
kites in the
air/water?
a: yes/no.

(c) q: What is she
wearing on her
head/throat?
a: hel-
met/nothing.

(d) q: What bird
is on the man’s
bike/truck?
a: parrot/parrot.

(e) q: What color is
the horse/zebra?
a: brown/black
and white.

Figure 9: Local explanations for Sibling Noun counterfactual perturbations.

5.8. Deletion Noun explanations

Regarding the counterfactual questions concerning deletions of nouns, we firstly observe the
following pattern: When the deleted noun has a determining role in another noun already
present in the question, 𝑀 maintains its original answer even after the deletion. Therefore,
we detect a tendency towards attaching to the determined noun, while at the same time not
paying due attention to the determiner noun. Hence, 𝑀 answers such questions arbitrarily,
even though its answer cannot be perceived as wrong; a human could have also answered the
same, especially in yes/no questions. A related example is provided in Figure 10a.

Another pattern that we detect concerns questions that refer to the color of a noun, which
has been deleted. In these cases, 𝑀 tends to respond with the most dominant color in the
image, without taking into account the absence of the noun that this color should define, as in
Figure 10b. Of course, we regard this behavior as justified, since a human would most probably
answer such questions in the same way. Similarly, in questions concerning the location of a
noun, which has been deleted, 𝑀 answers with the most dominant entity present in the given
image. A relevant example is demonstrated in Figure 10c.

Finally, we list some nouns to which we notice that 𝑀 does not pay due attention when
asked to give an answer, as in Figure 10d. Specifically, even after deleting them, 𝑀 tends to
return the initial answer with great frequency. These words are: image, photographs, human,
man, animal, room. In general, these are words that are encountered very often in questions
and usually act in addition to other, more specific, entities. Once again, this behavior is justified.



All in all, we observe that the random deletion of a noun results in a rather expected model
behavior, driven by dominant visual concepts present in the given image.

(a) q: Is the woman’s
hair tied back?
a: no/no.

(b) q: What color is the
bathroom?
a: yellow/white.

(c) q: Where are the
cakes?
a: table/table.

(d) q: How many an-
imals are in this
photo?
a: 2/2.

Figure 10: Local explanations for Deletion Noun counterfactual perturbations.

6. Conclusion and Future Work

Counterfactual perturbations in VQA models can provide novel and useful insights regarding
model robustness and explainability of results. In our work, we propose a knowledge-based
counterfactual framework targeting substitutions on questions. Specifically, our framework
suggests multiple types of word-level linguistic transformations in order to probe selected
VQA models in a black-box fashion, and investigate whether the presence of counterfactual
questions will lead to unexpected model responses. Through this process, underlying linguistic
biases are revealed, while informative explanations regarding the model’s behavior are provided,
by extracting global rules in a qualitative manner, ultimately depicting those existing biases.
Our results on Visual Genome and VQA-v2 datasets, using ViLT model as proof of concept,
illustrate the merits for our approach, highlighting concepts that incite model biases, in a model-
agnostic manner. As an immediate extension of our method, we aim to apply the same linguistic
perturbations on dataset answers, addressing VQA models that reason over multiple choice
answers. As future work, we plan to expand our approach to other related visiolinguistic tasks,
such as Text - Image Retrieval, Visual Entailment, and Visual Commonsense Reasoning, while
another direction involves crafting counterfactual perturbations targeting the visual modality.

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation
(HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number 5537).



References

[1] A. Mogadala, M. Kalimuthu, D. Klakow, Trends in integration of vision and language
research: A survey of tasks, datasets, and methods, Journal of Artificial Intelligence
Research 71 (2021) 1183–1317. URL: http://dx.doi.org/10.1613/jair.1.11688. doi:10.1613/
jair.1.11688.

[2] Y. Du, Z. Liu, J. Li, W. Zhao, A survey of vision-language pre-trained models (2022).
[3] M. Lymperaiou, G. Stamou, A survey on knowledge-enhanced multimodal learning, ArXiv

abs/2211.12328 (2022).
[4] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, K.-W. Chang, Visualbert: A simple and performant

baseline for vision and language, 2019. URL: https://arxiv.org/abs/1908.03557. doi:10.
48550/ARXIV.1908.03557.

[5] W. Kim, B. Son, I. Kim, Vilt: Vision-and-language transformer without convolution or
region supervision, 2021. URL: https://arxiv.org/abs/2102.03334. doi:10.48550/ARXIV.
2102.03334.

[6] J. Lu, D. Batra, D. Parikh, S. Lee, Vilbert: Pretraining task-agnostic visiolinguistic rep-
resentations for vision-and-language tasks, 2019. URL: https://arxiv.org/abs/1908.02265.
doi:10.48550/ARXIV.1908.02265.

[7] V. Kazemi, A. Elqursh, Show, ask, attend, and answer: A strong baseline for visual ques-
tion answering, 2017. URL: https://arxiv.org/abs/1704.03162. doi:10.48550/ARXIV.1704.
03162.

[8] A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach, D. Kiela, Flava: A
foundational language and vision alignment model, 2021. URL: https://arxiv.org/abs/2112.
04482. doi:10.48550/ARXIV.2112.04482.

[9] J. Li, R. R. Selvaraju, A. D. Gotmare, S. Joty, C. Xiong, S. Hoi, Align before fuse: Vision and
language representation learning with momentum distillation, 2021. URL: https://arxiv.
org/abs/2107.07651. doi:10.48550/ARXIV.2107.07651.

[10] A. El-Nouby, S. Sharma, H. Schulz, D. Hjelm, L. E. Asri, S. E. Kahou, Y. Bengio, G. W. Taylor,
Tell, draw, and repeat: Generating and modifying images based on continual linguistic
instruction, 2019. arXiv:1811.09845.

[11] S. R. Dubey, A decade survey of content based image retrieval using deep learning,
IEEE Transactions on Circuits and Systems for Video Technology (2021) 1–1. URL: http:
//dx.doi.org/10.1109/TCSVT.2021.3080920. doi:10.1109/tcsvt.2021.3080920.

[12] R. Zellers, Y. Bisk, A. Farhadi, Y. Choi, From recognition to cognition: Visual commonsense
reasoning, 2019. arXiv:1811.10830.

[13] K. Baker, A. Parekh, A. Fabre, A. Addlesee, R. Kruiper, O. Lemon, The spoon is in the
sink: Assisting visually impaired people in the kitchen, in: Proceedings of the Reasoning
and Interaction Conference (ReInAct 2021), Association for Computational Linguistics,
Gothenburg, Sweden, 2021, pp. 32–39. URL: https://aclanthology.org/2021.reinact-1.5.

[14] C. Chen, S. Anjum, D. Gurari, Grounding answers for visual questions asked by visu-
ally impaired people, 2022. URL: https://arxiv.org/abs/2202.01993. doi:10.48550/ARXIV.
2202.01993.

[15] H. Ben-Younes, Ã‰loi Zablocki, P. PÃ©rez, M. Cord, Driving behavior explana-
tion with multi-level fusion, Pattern Recognition 123 (2022) 108421. URL: https://

http://dx.doi.org/10.1613/jair.1.11688
http://dx.doi.org/10.1613/jair.1.11688
http://dx.doi.org/10.1613/jair.1.11688
https://arxiv.org/abs/1908.03557
http://dx.doi.org/10.48550/ARXIV.1908.03557
http://dx.doi.org/10.48550/ARXIV.1908.03557
https://arxiv.org/abs/2102.03334
http://dx.doi.org/10.48550/ARXIV.2102.03334
http://dx.doi.org/10.48550/ARXIV.2102.03334
https://arxiv.org/abs/1908.02265
http://dx.doi.org/10.48550/ARXIV.1908.02265
https://arxiv.org/abs/1704.03162
http://dx.doi.org/10.48550/ARXIV.1704.03162
http://dx.doi.org/10.48550/ARXIV.1704.03162
https://arxiv.org/abs/2112.04482
https://arxiv.org/abs/2112.04482
http://dx.doi.org/10.48550/ARXIV.2112.04482
https://arxiv.org/abs/2107.07651
https://arxiv.org/abs/2107.07651
http://dx.doi.org/10.48550/ARXIV.2107.07651
http://arxiv.org/abs/1811.09845
http://dx.doi.org/10.1109/TCSVT.2021.3080920
http://dx.doi.org/10.1109/TCSVT.2021.3080920
http://dx.doi.org/10.1109/tcsvt.2021.3080920
http://arxiv.org/abs/1811.10830
https://aclanthology.org/2021.reinact-1.5
https://arxiv.org/abs/2202.01993
http://dx.doi.org/10.48550/ARXIV.2202.01993
http://dx.doi.org/10.48550/ARXIV.2202.01993
https://www.sciencedirect.com/science/article/pii/S0031320321005975
https://www.sciencedirect.com/science/article/pii/S0031320321005975


www.sciencedirect.com/science/article/pii/S0031320321005975. doi:https://doi.org/
10.1016/j.patcog.2021.108421.

[16] R. Cadene, C. Dancette, H. Ben-younes, M. Cord, D. Parikh, Rubi: Reducing unimodal
biases in visual question answering (2019). URL: https://arxiv.org/abs/1906.10169. doi:10.
48550/ARXIV.1906.10169.

[17] V. Agarwal, R. Shetty, M. Fritz, Towards causal vqa: Revealing and reducing spurious
correlations by invariant and covariant semantic editing, 2019. URL: https://arxiv.org/abs/
1912.07538. doi:10.48550/ARXIV.1912.07538.

[18] L. Chen, X. Yan, J. Xiao, H. Zhang, S. Pu, Y. Zhuang, Counterfactual samples synthesizing
for robust visual question answering, 2020. URL: https://arxiv.org/abs/2003.06576. doi:10.
48550/ARXIV.2003.06576.

[19] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, L. Zhang, Bottom-up
and top-down attention for image captioning and visual question answering, 2017. URL:
https://arxiv.org/abs/1707.07998. doi:10.48550/ARXIV.1707.07998.

[20] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, D. Parikh, Making the v in vqa matter:
Elevating the role of image understanding in visual question answering, 2016. URL: https:
//arxiv.org/abs/1612.00837. doi:10.48550/ARXIV.1612.00837.

[21] Z. Boukhers, T. Hartmann, J. Jürjens, Coin: Counterfactual image generation for vqa
interpretation, 2022. URL: https://arxiv.org/abs/2201.03342. doi:10.48550/ARXIV.2201.
03342.

[22] A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Batra, D. Parikh, Vqa: Visual
question answering, 2015. URL: https://arxiv.org/abs/1505.00468. doi:10.48550/ARXIV.
1505.00468.

[23] K. Kafle, C. Kanan, Visual question answering: Datasets, algorithms, and future challenges,
Computer Vision and Image Understanding 163 (2017) 3–20. URL: https://doi.org/10.1016%
2Fj.cviu.2017.06.005. doi:10.1016/j.cviu.2017.06.005.

[24] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li,
D. A. Shamma, M. S. Bernstein, F.-F. Li, Visual genome: Connecting language and vision
using crowdsourced dense image annotations, 2016. URL: https://arxiv.org/abs/1602.07332.
doi:10.48550/ARXIV.1602.07332.

[25] C. Fellbaum, Wordnet: An electronic lexical database (1998).
[26] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier, S. Lazebnik,

Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-
sentence models, in: 2015 IEEE International Conference on Computer Vision (ICCV),
2015, pp. 2641–2649. doi:10.1109/ICCV.2015.303.

[27] M. Ren, R. Kiros, R. Zemel, Exploring models and data for image question answering, 2015.
arXiv:1505.02074.

[28] Y. Zhu, O. Groth, M. Bernstein, L. Fei-Fei, Visual7w: Grounded question answering in
images, 2016, pp. 4995–5004. doi:10.1109/CVPR.2016.540.

[29] Y. Zou, Q. Xie, A survey on VQA: Datasets and approaches, in: 2020 2nd International
Conference on Information Technology and Computer Application (ITCA), IEEE, 2020.
URL: https://doi.org/10.1109%2Fitca52113.2020.00069. doi:10.1109/itca52113.2020.
00069.

[30] M. Banchhor, P. Singh, A survey on visual question answering, in: 2021 2nd Global Confer-

https://www.sciencedirect.com/science/article/pii/S0031320321005975
https://www.sciencedirect.com/science/article/pii/S0031320321005975
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2021.108421
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2021.108421
https://arxiv.org/abs/1906.10169
http://dx.doi.org/10.48550/ARXIV.1906.10169
http://dx.doi.org/10.48550/ARXIV.1906.10169
https://arxiv.org/abs/1912.07538
https://arxiv.org/abs/1912.07538
http://dx.doi.org/10.48550/ARXIV.1912.07538
https://arxiv.org/abs/2003.06576
http://dx.doi.org/10.48550/ARXIV.2003.06576
http://dx.doi.org/10.48550/ARXIV.2003.06576
https://arxiv.org/abs/1707.07998
http://dx.doi.org/10.48550/ARXIV.1707.07998
https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1612.00837
http://dx.doi.org/10.48550/ARXIV.1612.00837
https://arxiv.org/abs/2201.03342
http://dx.doi.org/10.48550/ARXIV.2201.03342
http://dx.doi.org/10.48550/ARXIV.2201.03342
https://arxiv.org/abs/1505.00468
http://dx.doi.org/10.48550/ARXIV.1505.00468
http://dx.doi.org/10.48550/ARXIV.1505.00468
https://doi.org/10.1016%2Fj.cviu.2017.06.005
https://doi.org/10.1016%2Fj.cviu.2017.06.005
http://dx.doi.org/10.1016/j.cviu.2017.06.005
https://arxiv.org/abs/1602.07332
http://dx.doi.org/10.48550/ARXIV.1602.07332
http://dx.doi.org/10.1109/ICCV.2015.303
http://arxiv.org/abs/1505.02074
http://dx.doi.org/10.1109/CVPR.2016.540
https://doi.org/10.1109%2Fitca52113.2020.00069
http://dx.doi.org/10.1109/itca52113.2020.00069
http://dx.doi.org/10.1109/itca52113.2020.00069


ence for Advancement in Technology (GCAT), 2021, pp. 1–5. doi:10.1109/GCAT52182.
2021.9587797.

[31] H. Sharma, A. S. Jalal, A survey of methods, datasets and evaluation metrics for vi-
sual question answering, Image and Vision Computing 116 (2021) 104327. URL: https:
//www.sciencedirect.com/science/article/pii/S0262885621002328. doi:https://doi.org/
10.1016/j.imavis.2021.104327.

[32] A. Panesar, F. I. Doğan, I. Leite, Improving visual question answering by leveraging
depth and adapting explainability, in: 2022 31st IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), 2022, pp. 252–259. doi:10.1109/
RO-MAN53752.2022.9900586.

[33] K. Alipour, J. P. Schulze, Y. Yao, A. Ziskind, G. Burachas, A study on multimodal and
interactive explanations for visual question answering (2020). URL: https://arxiv.org/abs/
2003.00431. doi:10.48550/ARXIV.2003.00431.

[34] J.-H. Huang, M. Alfadly, B. Ghanem, M. Worring, Assessing the robustness of visual
question answering models, 2019. URL: https://arxiv.org/abs/1912.01452. doi:10.48550/
ARXIV.1912.01452.

[35] J. Lu, J. Yang, D. Batra, D. Parikh, Hierarchical question-image co-attention for visual
question answering, 2016. URL: https://arxiv.org/abs/1606.00061. doi:10.48550/ARXIV.
1606.00061.

[36] M. Jiang, S. Chen, J. Yang, Q. Zhao, Fantastic answers and where to find them: Immersive
question-directed visual attention, in: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 2977–2986. doi:10.1109/CVPR42600.2020.
00305.

[37] F. Sammani, T. Mukherjee, N. Deligiannis, Nlx-gpt: A model for natural language expla-
nations in vision and vision-language tasks, 2022. URL: https://arxiv.org/abs/2203.05081.
doi:10.48550/ARXIV.2203.05081.

[38] L. Chen, Y. Zheng, Y. Niu, H. Zhang, J. Xiao, Counterfactual samples synthesizing and
training for robust visual question answering, 2021. URL: https://arxiv.org/abs/2110.01013.
doi:10.48550/ARXIV.2110.01013.

[39] E. Abbasnejad, D. Teney, A. Parvaneh, J. Shi, A. van den Hengel, Counterfactual vision
and language learning, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 10041–10051. doi:10.1109/CVPR42600.2020.01006.

[40] Z. Liang, W. Jiang, H. Hu, J. Zhu, Learning to contrast the counterfactual samples for robust
visual question answering, in: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Association for Computational Linguistics,
Online, 2020, pp. 3285–3292. URL: https://aclanthology.org/2020.emnlp-main.265. doi:10.
18653/v1/2020.emnlp-main.265.

[41] S. Ren, Y. Deng, K. He, W. Che, Generating natural language adversarial examples
through probability weighted word saliency, in: Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, Association for Computational
Linguistics, Florence, Italy, 2019, pp. 1085–1097. URL: https://aclanthology.org/P19-1103.
doi:10.18653/v1/P19-1103.

[42] J. Wei, K. Zou, Eda: Easy data augmentation techniques for boosting performance on text
classification tasks, 2019. URL: https://arxiv.org/abs/1901.11196. doi:10.48550/ARXIV.

http://dx.doi.org/10.1109/GCAT52182.2021.9587797
http://dx.doi.org/10.1109/GCAT52182.2021.9587797
https://www.sciencedirect.com/science/article/pii/S0262885621002328
https://www.sciencedirect.com/science/article/pii/S0262885621002328
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2021.104327
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2021.104327
http://dx.doi.org/10.1109/RO-MAN53752.2022.9900586
http://dx.doi.org/10.1109/RO-MAN53752.2022.9900586
https://arxiv.org/abs/2003.00431
https://arxiv.org/abs/2003.00431
http://dx.doi.org/10.48550/ARXIV.2003.00431
https://arxiv.org/abs/1912.01452
http://dx.doi.org/10.48550/ARXIV.1912.01452
http://dx.doi.org/10.48550/ARXIV.1912.01452
https://arxiv.org/abs/1606.00061
http://dx.doi.org/10.48550/ARXIV.1606.00061
http://dx.doi.org/10.48550/ARXIV.1606.00061
http://dx.doi.org/10.1109/CVPR42600.2020.00305
http://dx.doi.org/10.1109/CVPR42600.2020.00305
https://arxiv.org/abs/2203.05081
http://dx.doi.org/10.48550/ARXIV.2203.05081
https://arxiv.org/abs/2110.01013
http://dx.doi.org/10.48550/ARXIV.2110.01013
http://dx.doi.org/10.1109/CVPR42600.2020.01006
https://aclanthology.org/2020.emnlp-main.265
http://dx.doi.org/10.18653/v1/2020.emnlp-main.265
http://dx.doi.org/10.18653/v1/2020.emnlp-main.265
https://aclanthology.org/P19-1103
http://dx.doi.org/10.18653/v1/P19-1103
https://arxiv.org/abs/1901.11196
http://dx.doi.org/10.48550/ARXIV.1901.11196
http://dx.doi.org/10.48550/ARXIV.1901.11196


1901.11196.
[43] S. Garg, G. Ramakrishnan, BAE: BERT-based adversarial examples for text classification, in:

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguistics, Online, 2020, pp. 6174–6181. URL:
https://aclanthology.org/2020.emnlp-main.498. doi:10.18653/v1/2020.emnlp-main.
498.

[44] J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, Y. Qi, Textattack: A framework for
adversarial attacks, data augmentation, and adversarial training in nlp, 2020. URL: https:
//arxiv.org/abs/2005.05909. doi:10.48550/ARXIV.2005.05909.

[45] A. Karimi, L. Rossi, A. Prati, AEDA: An easier data augmentation technique for text
classification, in: Findings of the Association for Computational Linguistics: EMNLP 2021,
Association for Computational Linguistics, Punta Cana, Dominican Republic, 2021, pp.
2748–2754. URL: https://aclanthology.org/2021.findings-emnlp.234. doi:10.18653/v1/
2021.findings-emnlp.234.

[46] M. Lymperaiou, G. Manoliadis, O. M. Mastromichalakis, E. G. Dervakos, G. Stamou, To-
wards explainable evaluation of language models on the semantic similarity of visual con-
cepts, 2022. URL: https://arxiv.org/abs/2209.03723. doi:10.48550/ARXIV.2209.03723.

[47] J. Wan, J. Yang, S. Ma, D. Zhang, W. Zhang, Y. Yu, Z. Li, Paeg: Phrase-level adversarial
example generation for neural machine translation, 2022. URL: https://arxiv.org/abs/2201.
02009. doi:10.48550/ARXIV.2201.02009.

http://dx.doi.org/10.48550/ARXIV.1901.11196
http://dx.doi.org/10.48550/ARXIV.1901.11196
https://aclanthology.org/2020.emnlp-main.498
http://dx.doi.org/10.18653/v1/2020.emnlp-main.498
http://dx.doi.org/10.18653/v1/2020.emnlp-main.498
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2005.05909
http://dx.doi.org/10.48550/ARXIV.2005.05909
https://aclanthology.org/2021.findings-emnlp.234
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.234
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.234
https://arxiv.org/abs/2209.03723
http://dx.doi.org/10.48550/ARXIV.2209.03723
https://arxiv.org/abs/2201.02009
https://arxiv.org/abs/2201.02009
http://dx.doi.org/10.48550/ARXIV.2201.02009

	1 Introduction
	2 Visual Question Answering (VQA)
	3 Related work
	4 Method
	4.1 Perturbations

	5 Experiments
	5.1 Color Maximal explanations
	5.2 Color Minimal explanations
	5.3 Synonym Adjectives explanations
	5.4 Synonym Verbs explanations
	5.5 Hypernym Noun explanations
	5.6 Hyponyms Noun explanations
	5.7 Sibling Noun explanations
	5.8 Deletion Noun explanations

	6 Conclusion and Future Work

