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Abstract

Neurosymbolic approaches to AI typically involve attempts to reincorporate the structure and speed of

symbolic reasoning into the flexible representations of deep learning. “Knowledge,” in this understanding,

is typically represented in a structured ontology or knowledge base that relies on human expertise and

effort to construct. In this paper, we present a vision for “language-endowed intelligent agents,” a type of

lifelong learner which begins with a hand-crafted knowledge base and a deep language understander and

increases it over the course of its life through dialogue and interaction with both humans and other AI

systems—generative large language learning models in particular. We discuss the requirements for such

a system, present evidence toward the feasibility of the approach, and conclude with future challenges

and research directions.

Keywords
Language-endowed intelligent agents (LEIAs), Learning through dialogue between DL model and LEIA,

Neurosymbolic AI, Lifelong learning

1. Introduction

The emergence of deep learning made AI today’s technology of tomorrow in the eyes of

developers, potential users and the general public. Deep learning (DL) models can uncover

patterns implicit in enormous collections of data and demonstrate impressive performance on a

slew of text processing tasks due largely to improvements in neural language modeling using

versions of transformer architectures [1], as implemented in BERT [2], GPT [3, 4] and other

model families. Still, they are subject to a number of conceptual and practical limitations related

to resource consumption, performance in adversarial settings, and ability to “understand” in

a colloquial sense (e.g., [5, 6, 7]). They are simply very efficient methods of mining huge text

repositories to find the most probable next word to follow a given word sequence and do not

actually understand their inputs or outputs, or the nature of their own processing. This is why
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they fail to explain what they are doing and why.
1

This realization – as well as well-known

difficulties that DL models experience in adversarial settings [8] and their inability to reason [9]

engendered several directions of work to overcome these deficiencies. One example of such a

program of work is explainable AI (XAI) [10], a large-scale research program whose aim is to

develop models that attempt to explain the decision-making behind the output of DL models by

recreating their results using specially developed explanation-oriented models that are based

on human-interpretable features.

A general methodology of overcoming limitations of a particular approach is to use it together

with another approach in a hybrid system designed to carry out a particular task. A task-oriented

methodology involving coexistence of very different processing approaches in a single AI system

is more difficult to implement but promises to yield better results than a system that exclusively

seeks to exploit a single approach. For example, all pre-semantic processing in our OntoSem

language understander [11] is carried out by ML-based subsystems (currently based on Spacy

technology
2
). A number of recent proposals have been put forward to combine neural networks

and symbolic reasoning. These “neurosymbolic” approaches to AI have so far been understood

primarily as a method of using the content, structure and efficiency of symbolic reasoning to

boost the performance of DL models [12, 13, 14]. We describe a program of work that also seeks

to integrate symbolic and neural net processing. However, the objective of the program we

propose is in some sense the inverse of that pursued by the current neurosymbolic approaches.

We propose to use flexible representations, big data orientation and analogical reasoning

of DL to overcome the notorious “AI knowledge bottleneck.” The complexities and the sheer

expense of acquiring knowledge for AI systems have been amply demonstrated and documented

[15].
3

Lowering this cost through automation is an attractive option. In what follows, we first

describe the infrastructure we developed and demonstrated to facilitate conceptual learning

by AI agents capable of understanding the meaning of language inputs. Next, we describe

our initial experiments on using DL models to enhance the efficiency of the approach. Finally,

we present how we intend to extend the use of DL models in our approach to lifelong agent

learning.

2. The bootstrapping infrastructure for overcoming the
knowledge bottleneck.

AI agents capable of human-level understanding, reasoning, decision-making and action must

rely on vast amounts of knowledge about the world, typically in the form of an ontological

model. Additional knowledge is necessary to support the agent’s ability to interpret percepts

(language, images, etc.) in terms of its ontology. Acquiring such knowledge is notoriously

difficult. One option is to obviate the need for knowledge (this was the initial hope of empirical

methods). The option we are pursuing is to make knowledge acquisition less expensive by

1

While not yet the topic of substantial academic research due to its novelty, many researchers and some popular

media have raised similar concerns about newer models like OpenAI’s ChatGPT.

2

https://spacy.io/

3

Much less publicized is the fact that the cost of human participation in developing ML models is not at all

negligible [16].

https://spacy.io/
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Figure 1: LEIA configuration for routine operation (much detail omitted).

progressively automating it. The architecture of the system (we call such systems “language-

endowed intelligent agents,” or LEIAs) onto which we want to “graft” this learning capability is

illustrated in Figure 1. We develop LEIAs to serve as members of human-AI teams in critical

applications where humans must fully trust LEIAs’ analyses, conclusions and recommendations,

cf. e.g., [17, 18]. As already mentioned, LEIAs include both ML-based and knowledge-based

processing modules [19, 20].

The prerequisites to bootstrap the learning capability of LEIAs include the availability of:

• a natural language (NL) understanding system (OntoSem) capable of extracting and

representing ontologically grounded meanings of language inputs (text meaning repre-

sentations, or TMRs) [20, 11, 21, 22];

• an image interpretation system that ontologically interprets results of computer vision,

yielding visual meaning representations (VMRs) [23, 24, 25, 26];

• a conceptual learning system that takes TMRs and VMRs as inputs and augments the

agent’s knowledge resources – an ontological world model, an episodic memory of concept

exemplars, a lexicon supporting language interpretation and its counterpart supporting

visual perception, the opticon [27, 28].

All three of the above systems used by LEIAs rely on knowledge support – a lexicon for

the language analyzer, an opticon (roughly, a set of image-to-concept pairings) for the image

interpreter, and an ontology basis for all three. At present, we bootstrap the system with an

ontology of ∼160K RDF triples, an English lexicon of ∼30K word senses and a small opticon [29].

The basic idea behind our approach is to exploit the LEIAs’ perception interpretation ca-

pabilities that are already used in their routine operational configurations and augment their

existing reasoning repertoire to include a dedicated learning system that will generate novel,

and enhance/modify existing, knowledge elements. This will in turn enhance the coverage

and precision of the LEIA’s task-oriented perception interpretation and reasoning in a lifelong

virtuous circle.

Knowledge acquisition has been a central concern in LEIA development for a long time [30,

31, 32, 33]. Early efforts concentrated on data analytics support, and ergonomics of manual

acquisition [34].

Once the minimal bootstrapping prerequisites for learning through language understanding

have been developed, we configured several proof-of-concept systems to demonstrate ontology

and lexicon learning by reading [35] and through dialogue with a human user [28]. We imple-

mented both a deliberate learning mode, where the LEIA knows its inputs are intended for this



Figure 2: LEIA configuration that incorporates opportunistic learning based on language understanding.
Learning is triggered when perception interpretation fails. Up till now, data collection was performed
through old-style data analytics and by engaging humans in dialogue. The new configuration will use
DL models for this purpose. This learning environment may also be configured with human validation
of newly learned content.

purpose, and an opportunistic mode, where learning is co-exists with task-oriented operation.

In this mode, if learning is necessary for performing a task at hand, then it is scheduled right

away, while the task operation is suspended. If the LEIA derives an actionable TMR for a

task-related input even if it cannot interpret the input completely [36], then the learning is

postponed until downtime. Figure 2 illustrates a version of LEIA architecture incorporating

“opportunistic” learning triggered when LEIAs encounter difficulties in interpreting sensory

inputs during routine operation. These difficulties are typically made manifest through lacunae

in the lexicon – missing or underspecified lexicon entries, which typically signifies lacunae in

the underlying ontological world model [37].

Manual data collection for learning still requires large amounts of expensive human time. In

order to gradually alleviate this inefficiency, we have started to experiment with using generative

DL models for this purpose instead of either humans or older-style data analytics. As is well

known, current DL models may still generate incomplete or fallacious outputs. This is why it

might be prudent in a complete system to retain old-style data analytics and human interaction

support for the automatic process of learning knowledge content.

3. How LEIA Learning Works: An Example

Suppose, a LEIA receives the input: Systemic sclerosis is a multisystemic autoimmune disease of
unknown origin that affects connective tissue, where all the the lexical material but the words

systemic and sclerosis are already present in its lexicon. OntoSem creates a skeleton lexicon

entry for systemic and, because nouns can refer to either objects or events, two skeleton entries

for sclerosis (Figure 3).

The ‘?’ mark on the entry heads signifies that they are still being learned. The presence of

meaning procedure calls signifies that the semantics of their arguments is underdetermined and

an attempt must be made to further specify them at runtime. Next, the basic semantics module



of OntoSem generates a set of candidate TMRs (Figure 4 illustrates the correct candidate). A

few comments are in order: Autoimmune disease is a known collocation, recorded in the lexicon

as the 9th verbal sense of disease, which requires autoimmune as a modifier.

Figure 3: Initial skeleton lexicon entries learned for the un-

known words in the example.

It maps to the concept

autoimmune-disease. Of un-
known origin is a construction,

recorded as the 16th sense of the

preposition of, that postmodifies a

noun meaning disease, adding the

meaning caused-by idiopathic-

event. That is a relative pronoun

that establishes an as-yet unspeci-

fied case-role relation between the

preceding noun and the following

verb phrase. That relation is specified using a meaning procedure that considers the meanings

of the noun and the verb phrase in the input.

Figure 4: A candidate meaning representation

(TMR) for the example sentence gener-

ated by the basic semantics module of On-

toSem.

Next, the extended semantics module of

OntoSem uses any number of available disam-

biguation heuristics to select the most promis-

ing candidate TMR and, if possible, improve

it. In this example, the most influential heuris-

tic a) detects a NP is an NP structure, b) in-

spects the selectional restrictions on the pred-

icate nominal in the each of the many lexicon

senses of be in the input and c) filters out all

but the definitional sense. As a result, the NP

on the left-hand side is hypothesized to be a

phrasal, systemic sclerosis and the two tenta-

tive lexicon entries in Figure 4 give way to

a single phrasal entry whose meaning (the

filler of its sem-struc zone) is the ontological

concept systemic-sclerosis (Figure 5).

Figure 5: The improved lexicon entry for the con-

struction systemic sclerosis.

The ontological concept in its initial state is

created by using the information in the TMR

(Figure 6). This is the starting point of the

learning cycle that starts with the data collec-

tion (Figure 2) whose purpose is to yield a set

of sentences that will add and modify the in-

formation in the nascent ontological concept.

At this point, systemic-sclerosis is charac-

terized by the values of four properties – is-

a, caused-by, theme and effect. Since the

example sentence was interpreted as defini-

tional, systemic-sclerosis was made a direct



descendant of autoimmune-disease in the ontological graph.

Figure 6: The tentative ontological concept expressing the

meaning of systemic sclerosis.

This is a windfall because this

effectively means that systemic-

sclerosis inherits all the (many)

property-value pairs defined for

its ancestors (Figure 7 illustrates

one of the inheritance chains for

autoimmune-disease in the current

state of the ontology).

Learning on the basis of TMRs de-

rived from the curated set of sen-

tences assembled using a particular

data collection process determines

how and whether to merge the local

and inherited values for the properties already present in the nascent concept as well as whether

to constrain or modify values of inherited properties.

Figure 7: One of the inheritance chains of autoimmune-

disease in the current state of the ontology.

Before DL models, data collection

in our applications was carried out

by keyword searches in text corpora

[35] or through dialogue with a hu-

man [38]. The choice of keywords

and the phrasing of human dialogue

turns were the means of curating the

input to LEIAs’ learning. Effective

use of DL models for the creation of

the curated set of language inputs to

LEIA learning requires the creation

of a set of natural language prompts

expressing the meanings of ontolog-

ical properties (the current ontology

is based on about 300 properties). Once an ontological concept is created the way systemic-

sclerosis was, prompts for all its (local and, if available, inherited) properties are offered to a

DL model to generate text for further learning.
4

4. Integrating Image Recognition and Learning the Opticon

To support ontological interpretation of visual inputs LEIAs must be equipped with an opticon.

The approach to automating its acquisition relies is structurally similar to that of the acquisition

of the lexicon in that opticon acquisition may trigger further ontology acquisition. The presence

of a lexicon is a prerequisite for our approach to opticon acquisition. This is because the process

relies on the image recognition system outputting image representations paired with natural

4

If the newly learned concept does not specify its ancestors, the latter must be determined; space constraints do not

allow us to describe the process we use for this purpose at this time.



language labels. At the most general level, the steps of opticon learning are as follows:

1. the input is a set of DL-generated embeddings of object tokens and English words labeling

each of the tokens; the token representations are in terms of (unmotivated, deep-learned)

feature vectors generated by a DL model (operating either within a real vision system or

a simulated one);

2. The learning system triggers data collection of sentences containing the label

3. Next, the learning system clusters tokens on the basis of the similarity of their embeddings

to the embedding generated by processing sentences that contain the natural language

label (“target term”), thus effectively disambiguating the label without interpreting them

ontologically.

4. The sentences from the cluster that is the best fit for the embedding generated by image

recognition are fed into the conceptual learning loop of Figure 2 and result in generating

novel skeleton lexicon entries and new or modified existing ontological concepts to

formally interpret their meanings.

5. We then can create an opticon entry indexed by the embedding output by the image

recognition system and listing the newly created (or modified) ontological concept as its

meaning.

The above process integrates the learning of all the elements of LEIAs’ semantic memory – the

lexicon, the opticon and the ontology. In the next section we present a method of implementing

Step 3 in the above process within a virtual environment, using a simple example.

5. Experimenting with Integrating DL Models

In [37], a simulator based on the VoxWorld platform [39] was used to generate stochastic object

placements simulating a stacking task.
5

In this task, the agent attempts to stack objects with

different geometric characteristics on top of a cube. These characteristics result in different

behavior when stacking is attempted (e.g., a cube placed correctly will remain in place, a sphere

will almost always roll off, and a cylinder will roll off if placed horizontally but will remain in

place if placed with the flat side oriented downward, etc.). Ontological knowledge, here in the

form of VoxML [29] specification of object properties was used to bootstrap the generation of

the simulations. Knowledge of the objects’ symmetries was used to create perturbations in the

virtual environment to cause the objects to behave more realistically after their placement. E.g.,

objects placed on their rounded edges are more likely to move in directions perpendicular to

the object’s major axis of symmetry.

The object types explored included cube, sphere, cylinder, capsule, small cube, rectangular
prism, egg, pyramid, and cone and we found that neural approaches can successfully classify

these geometric features into the different object types. The vector representations developed

by these neural models come from information directly grounded to object behavior in the

environment.

Our experiment involved the following steps:

5

In this experiment the input is numerical data drawn directly from object interaction in a virtual environment and

does not contain visual information, although as demonstrated in [40, 41, 42], the same principles can be applied to

representations extracted from visual data.



1. Prompt a language model: Generate sentences containing the target term to be

grounded;

2. Extract token-level representations: For each instance of the target token, extract a

contextualized numerical representation from a transformer encoder (e.g., BERT);

3. Linear regression between paired embedding vectors: Compute a transformation

matrix ℳ ∈ R𝑑𝐴 × R𝑑𝐵
using ridge regression;

6

4. Dialogue with a language model: Generate novel sentences containing instances of

the now-“grounded” target term, as well as negative examples.

5. Extract token-level representations: see step 2;

6. Transform new tokens into object space: Multiply extracted novel token embeddings

by precomputed matrix ℳ to transform new tokens into object space.

The language model used here was OpenAI’s ChatGPT model. The model was given prompts

to generate sentences about objects and their properties in context, e.g., Write 20 short sentences
about how blocks are flat on all sides and can be stacked or Write 20 short sentences about how
balls are round and cannot be stacked. Prompts were engineered this way in order to quickly

generate sufficient examples, but in a more authentic dialogue setting, could easily be generated

one at a time with more naturalistic prompts such as “Tell me why it’s hard to stack a sphere

on another object.”

Here, ℳ results in a structure-preserving affine transformation between subspaces of each

embedding space, where the vectors chosen from the respective embedding space each form

at minimum the spanning set of the relevant subspaces. Because the vectors chosen for the

computation of ℳ each represent similar but non-identical individual instances of either a

contextualized token or an object under interaction, these vector subspaces define “concept”-

level representations within the respective models from which they were drawn. An optimal ℳ
will transform new instances (the test set) of object-denoting tokens into or near the subspace

defined by object instances, while non-object-denoting tokens will fall outside of the subspaces

of known objects.

Results Figure 8 shows a 2D projection of initial results. The transformed novel word

embeddings cluster with the object embeddings such that a K-nearest neighbor classifier will

successfully classify these transformed tokens as references to the correct object. The same

tokens used in their other senses (e.g., “block” in the sense of a city block or “ball” in the sense

of a dance), or completely unconnected tokens will not cluster with any relevant object.

This initial demonstration shows the feasibility of a learning approach mediated by a physics-

based interactive event simulator to classify instances of concepts and learn their ontological

interpretation. The example given herein is purposely simple for the sake of clarity. When

starting with a larger ontology, these specific concepts (block and ball) already exist and need not

be learned, but the same principles apply in an opportunistic-learning setting where the LEIA

encounters some novel entity and needs to learn about it and populate its skeleton ontology for

it.

6

In this example ℳ ∈ R768 × R64
(768 = BERT-base embedding size and 64 = object classifier embedding size).

Theoretically the transformation holds without introduction of noise as long as 𝑑𝐴 ≥ 𝑑𝐵 . This technique has

previously been used to compute transformations between embedding spaces in [40] and [43].



Figure 8: 2D projection of BERT token embeddings to object classifier embeddings. Solid color cube and
sphere points represent object emebeddings. Translucent “block” and “ball” points represent embeddings
used to compute mapping ℳ (shown after transformation). Solid “block” and “ball” points (green and
purple) represent transformed token embeddings not used in computing the initial transformation
matrix. ×s represent tokens identical in form to the grounded tokens, but used in a different sense, or
completely extraneous tokens, that cluster with neither object.

6. Discussion

Space constraints do not allow a detailed discussion of the many eventualities that the learning

framework we describe will face during its use. Similarly, we do not present here anything like a

comprehensive account of the types of elements that LEIAs will learn within this framework. The

objective was to give a high-level overview of the approach and to report the the current status

of a conceptual learning system based on deep language understanding and the incorporation

of the capabilities of DL models with the purpose of making this learning more complete and

less expensive.

We contend that the proposed framework will benefit both conceptual learning and DL

models. Indeed, the interaction between a DL model and a LEIA can take a push-me-pull-you

turn: the DL model output supports automation of ontology, lexicon and opticon acquisition,

and the content of LEIA knowledge resources may in turn augment the training datasets of DL

models. Retraining the models with LEIAs’ knowledge resources will enhance success of the

LEIA language interpreter in at least a couple of ways: model outputs can be fomulated using

only items in the LEIA lexicon; and model outputs can be at least partially formulated in the

LEIAs’ ontological metalanguage. One way of doing this is to fine-tune the DL model decoder

to output answers using an appropriately restricted vocabulary. That is, in order to instantiate

a concept, place it in the correct place in the ontology and specify its properties—many of

which will be inherited from its ancestor—and make sure that the new concept is different from

existing ones, ontological knowledge expressed by the DL model must be expressed in terms

already existing within the ontology in order to make it useful. Technically, this is well-within

the capabilities of modern language model training, either by outright prohibiting certain tokens

from the output (because these terms are not yet present in the ontology), or by manipulating

the bias weights in the model’s output layer to decrease the bias for token IDs that should

appear less frequently.



While generative language models can be useful for generating explanations about phenomena

that a LEIA may encounter, they suffer from some limitations resulting in challenges that must

be addressed. While a common criticism of large language models is that they are sophisticated

“brains-in-vats” that do not possess external understanding of the texts they generate, more

prosaically, they are also prone to confidently generating output that is syntactically correct and

sounds coherent but is factually incorrect or not self-consistent. These considerations suggest

that, at least for the foreseeable future, the results of learning using the proposed framework

will have to validated either by humans directly or by analyzing any failures of LEIA functioning

due to incorrect or incomplete learning. While we have in the past implemented ergonomic

environments to facilitate inspection of LEIAs’ knowledge resources and processing results,

they remained outside the scope of this paper. We plan to include such a discussion in future

reports.

7. Conclusion

This text can be viewed as a methodological position paper describing a novel take on integrating

neural net-oriented and symbolic approaches to building artificial intelligent agents, specifically,

to the task of overcoming the AI knowledge bottleneck using automatic conceptual learning

on the basis of extracting the meaning of natural language texts and interpreting it in terms

of a formal ontological world model. This approach builds on our prior work and extends it

through the use of DL models. The proposed approach: a) uses deep learning models to create

curated collections of sentences; b) uses a bootstrapping knowledge base (ontology, lexicon

and opticon) to extract the meanings of these sentences and represent them in an ontologically

interpreted metalanguage; and c) uses a dedicated (currently) rule-based learning system to

extract from these text meaning representations knowledge elements to enhance and modify

the knowledge infrastructure.

This approach may be used opportunistically, during the intelligent agent’s regular task-

oriented operation – triggering learning when the agent receives perceptual input that its

existing knowledge substrate does not cover. Alternatively, the learning mode can be deliberate

– for example, when a human decides to teach the agent or when the agent initiates learning

itself by inspecting its knowledge resources and triggering the learning process when lacunae

and/or inconsistencies are encountered.

This paper presents a bird’s eye view of the proposed methodology, with many details of the

process omitted due to space constraints. Detailed descriptions of the approach, the system

under construction and results of experimentation will be presented in future contributions.
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