
Offline RL+CKG: A hybrid AI model for cybersecurity
tasks
Aritran Piplai1, Anupam Joshi1 and Tim Finin1

1University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD 21250, USA

Abstract
AI models for cybersecurity have to detect and defend against constantly evolving cyber threats. Much
effort is spent building defenses for zero days and unseen variants of known cyber-attacks. Current AI
models for cybersecurity struggle with these yet unseen threats due to the constantly evolving nature
of threat vectors, vulnerabilities, and exploits. This paper shows that cybersecurity AI models will be
improved and more general if we include semi-structured representations of background knowledge.
This could include information about the software and systems, as well as information obtained from
observing the behavior of malware samples captured and detonated in honeypots. We describe how we
can transfer this knowledge into forms that the RL models can directly use for decision-making purposes.

Keywords
Offline reinforcement learning, Cybersecurity knowledge graphs, Conservative Q-Learning, Hybrid AI

1. Introduction

AI is playing an increasingly important role in cybersecurity – that of automating the detection
and mitigation of cyber threats at scale. Traditional rule-based systems capturing explicit
knowledge elicited from analysts do not work well against modern cyber threats, especially
over time [1]. This is because humans do not observe enough variants of cyber threats to create
generalizable rules. Moreover, cyber threats are constantly evolving as adversaries develop new
tactics, techniques, and procedures (TTPs) [2]. The observed data used for creating these rules
may not be as useful over time because attackers have created variants of their attacks that are
quite different in their behavioral manifestation than what was used to create these rules. Even
approaches using inductive machine learning approaches that try to capture tacit knowledge
are limited and not generalizable since the dataset used in training may contain variants that
are quite different from the variants of cyber-threats observed during test time or real-time
evaluations [3].

Reinforcement learning (RL) can prove to be useful for constantly changing domains like
cybersecurity, since it internally creates a simulation map of different variants that may spin off
from the data presented for training. This helps deal with the problem of new attacks used by
adversaries. However, a significant critique of online RL models is that they need to observe a

In A. Martin, K. Hinkelmann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen (Eds.), Proceedings of the AAAI
2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering
(AAAI-MAKE 2023), Hyatt Regency, San Francisco Airport, California, USA, March 27-29, 2023.
*Corresponding author.
$ apiplai1@umbc.edu (A. Piplai); joshi@umbc.edu (A. Joshi); finin@umbc.edu (T. Finin)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:apiplai1@umbc.edu
mailto:joshi@umbc.edu
mailto:finin@umbc.edu
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


vast number of state-action pairs to generate a generalizable policy, making it impractical for
many domains [4], including cybersecurity. However, offline RL techniques [5] have claimed to
be just as good with a limited and fixed number of observations of state-action pairs [6]. One of
the contributions in this paper is we observe how useful offline RL is for cyber-threat detection.
Although offline RL models may produce a policy for cyber-threat detection, it is still limited by
partially observed possibilities of cyber threats. For example, if we look at data that describes
the behavior of a particular malware in a specific environment, the behavior is limited by the
particulars of that environment. The processes created by the malware or the values of system
parameters may be different in a different environment or at a different time. It is impossible
to simulate the possibilities of malware behavior in all environments. This is where explicit
external knowledge comes into play. The external knowledge about a domain that an expert
has can provide the RL algorithms with key information during the learning process. Our other
contribution in this paper is to show how to create knowledge-guided Offline RL algorithms
that can leverage the existing body of work that captures explicit domain knowledge about
cybersecurity as knowledge graphs [7, 8, 9].

2. Related Work

Machine learning and reinforcement learning have been used in cybersecurity increasingly in
recent years. Effective applications of ML have included intrusion detection [10] and attack
detection in cyber-physical systems [11, 12]. To tackle the shortcomings of supervised ML in
cybersecurity, RL is also being used [13, 14, 15]. There is also a body of research focused on
developing cybersecurity knowledge graphs (CKGs) [7, 8, 9] that represent semi-structured
knowledge about cybersecurity data supported by logic axioms. The combination of logic and
reinforcement learning has been gaining popularity [16, 17], and researchers have begun to
experiment with using CKGs for RL for simulated cyber warfare scenarios [18].

There has also been a body of research focused on knowledge graph construction and
modeling. Model-based construction has led to the generation of enterprise knowledge graphs
[19, 20]. Cybersecurity concepts and data can be derived from datasets in STIX, an industry
standard for exchanging threat intelligence [21]. These concepts have led to CKG models such
as UCO [7]. In our prior work, we have slightly modified the ontology in other CKGs [8, 22].
Data to populate CKGs can also be extracted by natural language understanding systems applied
to cybersecurity-related reports. In this paper, we use the modified UCO ontology that we have
previously published.

Offline RL has become more popular because it is able to achieve good performance with
static data. Conservative Q-Learning (CQL) is the state-of-the-art for offline RL algorithms, but
researchers are just beginning to explore improving CQL with external knowledge. Extracting
knowledge from the current data for CQL was recently demonstrated in [23], but this does not
serve our purpose for cybersecurity. In our paper, we describe how external knowledge sources
can be used in offline RL algorithms for cybersecurity tasks.



Figure 1: Figure describing the overview of our approach. The input to the CKG is a piece of intelligence
describing some characteristics of a malware ‘X’. These characteristics are translated to state-action
pairs. If these state-action pairs correspond to out-of-distribution (OOD) state-action pairs for the CQL
algorithm, we can use it to re-estimate the Q-value for the OOD state-action pair.

3. Method

Our research approach uses RL to detect malware. We use a malware behavior dataset containing
information on how different system parameters change values when a malware instance from
a known malware family is detonated. We also incorporate MOTIF [24], a curated dataset of
malware samples and their family names. Our RL algorithm creates a policy to detect a specific
malware in a system for which we have data. We can then use an external knowledge source
that provides information about other malware in the same family, or possibly a similar malware
family. The RL algorithm can then use this knowledge to make changes to the policy.

CKGs contain information about recent developments in cyber threats. In our prior work, we
demonstrated how to generate CKGs from textual threat intelligence and other sources, and used
them in downstream tasks [18]. This is also a part of ongoing research that focuses on enriching
these knowledge graphs with additional information from Wikidata [25, 26]. In our problem,
we use offline RL because observing how system parameters change in real-time is cumbersome
and impractical. Offline RL algorithms typically have the problem of overestimating some
unseen state-action pairs. To address this, researchers have come up with approaches such as
IQL [27] and CQL [4]. CQL downgrades updates on unseen state-action pairs. However, CQL
has been argued to be too conservative in updating unseen data. In our domain, we need to
update unseen data because the unseen variants of malware data will be out-of-distribution
(OOD).

For example, the system parameter observations are made at specific time intervals and not
all changes are caught when a malware is active in the system. When a process, or action,
is created not all state change observations are available to us. As seen in Figure 1, a large



number of CPU threads may be created when a particular process is active. This observation, if
available to us, can be used for modeling in both online and offline RL algorithms. However, if
it is not available to us, offline RL algorithms such as CQL will relatively downgrade this OOD
state-action pair. If we have an external knowledge source that creates its own state-action pair
distribution 𝐾 , this can be used to relatively upgrade the OOD state-action pair (high number
of CPU threads and process ‘x’).

Thus, we can create less conservative updates on unseen data if we have evidence of it in the
CKG’s. Thus we create a 𝛽 term in the equation if the state-action evidence can be retrieved
from the CKG. In the following equation, 𝐷 is the data distribution, and 𝐾 is the distribution
from the knowledge source.

�̂�
𝜋
= argmin

𝑄
max
𝜇

𝛼𝛽𝐸s∼𝐷,a∼𝜇(a|s)[𝑄(s,a)]− 𝛼𝐸(s,a)∼𝐷[𝑄(s,a)]− 𝛽𝐸(s,a)∼𝐾 [𝑄(s,a)]

+𝐸(s,a,s′)∼𝐷

[︁(︀
𝑄(s,a)−

(︀
𝑟(s,a) + 𝐸𝜋

[︀
𝑄
(︀
s′,a′

)︀]︀)︀)︀2]︁
The equation above minimizes the Bellman error values for all state-action pairs. 𝛼 is the
hyperparameter that tackles the increase of the Q-value estimates of data that is not OOD. 𝛽
is another hyperparameter that increases the Q-value estimates of the OOD data if the CKG’s
information supports them.

We use malware behavior data that is achieved after detonating a malware sample in a
controlled environment. The state space is defined by features of the systems’ parameters. In
our experiments, we calculate the temporal difference between system parameters and normalize
them with min-max normalization. The actions are individual processes that cause these state
changes. We propose to find out malicious processes with the help of RL. We have labeled
malicious process names for malware samples from different families, and we are going to use
information from our CKG for these malware families to help RL algorithms. For example, in
Figure 1, we see an OSINT source with some information about CPU threads of a process ‘x’
for a specific malware or a malware belonging to a particular family. As the RL algorithm goes
over the state-action pairs in our system parameter data while constructing Q-tables, it may
come across a state-action pair that was not encountered in the actual system parameter data.
This may be possible due to two reasons. The first reason is the malware sample in this family
may not be adhering to the information provided by the CKG about the same family. Secondly,
because of the periodic nature of data collection of the system parameter data, this particular
state-action pair may not be present in the collected data. This is where the information from
CKG comes in, as it lifts the Q-values for those state-action pairs.

4. Experiments and Results

We experimented with 25 malware samples belonging to four malware families. Our first
experiment used RL algorithms that work on all types of samples and all malware families, and
our second applied family-specific RL algorithms. Each malware sample has time steps (or a
number of states) that range from 2163 to 3750. In some cases, we trim the number of states to



Figure 2: Comparison of cumulative rewards between CQL and CQL with KG guidance

Table 1
Hits@10 calculated for Q-values of malicious processes

Malware Family CQL CQL+CKG (𝛽=0.05) CQL+CKG (𝛽=0.1)

All 0.74 0.72 0.72
Acidbox 0.68 0.73 0.71

RogueRobin 0.87 0.89 0.91
vhd 0.93 0.91 0.91

hiddenwasp 0.86 0.93 0.93

3750 due to a high number of redundant states present in the data collected. The action space
for the experiment with all malware families is 493, and for individual malware families ranged
from 102 to 193. We used user-defined reward functions for these exercises formed by our own
understanding of the malware samples.

In order to check how CKG influences the performance of CQL, we take two approaches.
We plot the cumulative rewards of CQL and CQL with CKG guidance as shown in Figure 2.
However, it is difficult to quantifiably argue that the difference in cumulative rewards actually



(a) Episode Time for DQN with Q-learning as baseline

(b) Episode Time for CQL

(c) Episode Time for CQL with knowledge guidance

Figure 3: Comparison of time required to complete each episode for two experiments

results in better detection capabilities since the reward functions are hand-crafted based on our
own knowledge of the malware. One algorithm having a higher cumulative reward may be
due to the fact that the reward functions are crafted more favorably. One way to check that
the Q-values are representative of the actual quality of the state-action pairs is to see how the



associated Q-values are for state-action pairs involving malicious processes. As we mentioned
before, we labeled some of the malicious processes in the data collected. We check the top 10%
of the Q-values for all state-action pairs in our dataset and observe what percentage of them
involve malicious processes.

Ideally, the malicious processes should have the highest Q-values because our RL training is
designed in such a way. In Table 1, we observe that the Q-values for RL models are trained for
all families and RL models trained for individual families. The CQL model trained for all models
together does not benefit from CKG information. This may be because of the generic nature of
the CKG’s information for all models. A particular process name with a higher Q-value may be
relevant for a particular family, but it may mistakenly raise the Q-values for a state-action pair
for a different family. However, if we look at specific malware families, we see three of the four
malware families observe some lift in scores. We also note how the variable 𝛽 affects the scores.
This variable controls by what factor we raise the scores of the Q-values for OOD state-action
pairs that are suggested by the CKG. Raising the value of 𝛽 may sometimes decrease the score
because, in some cases, it may artificially inflate the values of some state-action pairs. Further
experimentation is needed to calculate the appropriate values of this hyper-parameter.

We also observe the time required to complete each episode. In Figure 3, we see the episode
time for DQN as baseline, CQL, and CQL+CKG with 𝛽 = 0.5. The periodic dips that we see
are due to exploration-exploitation. As we see, the average time to complete each episode is
higher for CQL than for DQN. This is mostly due to higher computation costs for each iteration.
When we compare CQL with CQL with CKG, we observe that there are more dips in the episode
times. We stop each episode when the cumulative rewards reach a threshold, indicating that the
malicious process has been found or when all the states are covered. In some cases, CKG might
have helped to raise the cumulative rewards and made it reach the threshold faster than vanilla
CQL. The average episode time, even though the computation is more complex in CQL+CKG, is
lower because of these dips. However, in some cases, CKG also contributes to the distributional
shift problem of RL training leading to higher episode times.

5. Conclusion and Future Work

In this paper, we study the effects of knowledge guidance on CQL for cybersecurity tasks. CQL,
like other offline RL algorithms, was introduced to tackle the problem of distributional shift
that we observe in online RL training. However, since CQL is too conservative, we see how
knowledge guidance can make the training faster or make the model better at the specific task.
We see that the training time is lower owing to faster episode end times with helpful knowledge
guidance. While looking at the performance of the models, we see that in specific malware
families, knowledge about that type of malware may have helped. However, generalizing
this knowledge at CQL training time across all families causes a small dip in performance.
In malware families, where malware samples do follow a certain trend, the Q-values for the
associated malicious processes have indeed increased, resulting in a more effective model.

Our preliminary results show that for some malware families, such as hiddenwasp, we observe
a lift of 7% in detection capabilities. The ability of KG guidance in increasing the quality of
Q-learning depends on how representative the knowledge is and how easy it is to transfer



the knowledge to RL parameters. Variance between samples of malware families also play an
important role. Some of the problems that we faced in this can be mitigated by using a wider
range of knowledge. We are currently enriching our cyber knowledge bases with the help of
Wikidata [25, 26]. It will be interesting to see how more knowledge about malware families
affects the generalizability of offline RL models trained with knowledge guidance. In this paper,
we talked about specific cybersecurity tasks, such as malicious process detection. We would
like to extend this to other cybersecurity tasks like cyber attacks and defenses.

Acknowledgments

This work was supported by the National Security Agency and National Science Foundation
award 2114892. We thank researchers from the University of Texas at San Antonio for their
data collection infrastructure and for sharing collected malware behavior data.

References

[1] Cybersecurity News, Why signature-based detection struggles to keep up with the new
attack landscape?, http://cybersecuritynews.com/signature-based-detection/, 2022.

[2] C. Johnson, L. Badger, D. Waltermire, J. Snyder, C. Skorupka, et al., Guide to cyber threat
information sharing, NIST special publication 800 (2016).

[3] Forbes, Comparing legacy rules-based cyber-security platforms and AI-based plat-
forms, http://forbes.com/sites/forbestechcouncil/2022/02/14/comparing-legacy-rules-
based-cybersecurity-platforms-and-ai-based-platforms, 2022.

[4] A. Kumar, A. Zhou, G. Tucker, S. Levine, Conservative q-learning for offline reinforcement
learning, Advances in Neural Information Processing Systems 33 (2020) 1179–1191.

[5] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline reinforcement learning: Tutorial, review, and
perspectives on open problems, arXiv preprint arXiv:2005.01643 (2020).

[6] A. Nair, A. Gupta, M. Dalal, S. Levine, Awac: Accelerating online reinforcement learning
with offline datasets, arXiv preprint arXiv:2006.09359 (2020).

[7] Z. Syed, A. Padia, T. Finin, L. Mathews, A. Joshi, UCO: A unified cybersecurity ontology,
in: Artificial Intelligence for Cyber Security: Report WS-16-03, AAAI, 2016, pp. 195–202.

[8] A. Piplai, S. Mittal, A. Joshi, T. Finin, J. Holt, R. Zak, Creating cybersecurity knowledge
graphs from malware after action reports, IEEE Access 8 (2020) 211691–211703.

[9] N. Rastogi, S. Dutta, M. J. Zaki, A. Gittens, C. Aggarwal, Malont: An ontology for malware
threat intelligence, in: International Workshop on Deployable Machine Learning for
Security Defense, Springer, 2020, pp. 28–44.

[10] K. A. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, V. H. C. de Albuquerque, Internet of
things: A survey on machine learning-based intrusion detection approaches, Computer
Networks 151 (2019) 147–157.

[11] D. Ucci, L. Aniello, R. Baldoni, Survey of machine learning techniques for malware analysis,
Computers & Security 81 (2019) 123–147.

[12] D. Ding, Q.-L. Han, Y. Xiang, X. Ge, X.-M. Zhang, A survey on security control and attack
detection for industrial cyber-physical systems, Neurocomputing 275 (2018) 1674–1683.

http://cybersecuritynews.com/signature-based-detection/


[13] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, M. Guizani, Security in mobile edge caching with
reinforcement learning, IEEE Wireless Communications 25 (2018) 116–122.

[14] X. Xu, Y. Luo, A kernel-based reinforcement learning approach to dynamic behavior
modeling of intrusion detection, in: International Symposium on Neural Networks,
Springer, 2007, pp. 455–464.

[15] T. T. Nguyen, V. J. Reddi, Deep reinforcement learning for cyber security, IEEE Transactions
on Neural Networks and Learning Systems (2021).

[16] G. Anderson, A. Verma, I. Dillig, S. Chaudhuri, Neurosymbolic reinforcement learning
with formally verified exploration, Advances in neural information processing systems 33
(2020) 6172–6183.

[17] D. Kimura, M. Ono, S. Chaudhury, R. Kohita, A. Wachi, D. J. Agravante, M. Tatsubori,
A. Munawar, A. Gray, Neuro-symbolic reinforcement learning with first-order logic, arXiv
preprint arXiv:2110.10963 (2021).

[18] A. Piplai, M. Anoruo, K. Fasaye, A. Joshi, T. Finin, A. Ridley, Knowledge guided two-player
reinforcement learning for cyber attacks and defenses, in: International Conference on
Machine Learning and Applications, 2022.

[19] P.-L. Glaser, S. J. Ali, E. Sallinger, D. Bork, Model-based construction of enterprise ar-
chitecture knowledge graphs, in: 26th Int. Conf. on Enterprise Design, Operations, and
Computing, Springer, 2022, pp. 57–73.

[20] M. Smajevic, D. Bork, From conceptual models to knowledge graphs: a generic model
transformation platform, in: 2021 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), IEEE, 2021, pp. 610–614.

[21] B. Jordan, R. Piazza, T. Darley, Stix version 2.1, oasis standard, OASIS Committee Specifi-
cation (2021). Http://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html.

[22] A. Piplai, S. Mittal, M. Abdelsalam, M. Gupta, A. Joshi, T. Finin, Knowledge enrichment
by fusing representations for malware threat intelligence and behavior, in: International
Conference on Intelligence and Security Informatics (ISI), IEEE, 2020, pp. 1–6.

[23] J. Lyu, X. Ma, X. Li, Z. Lu, Mildly conservative q-learning for offline reinforcement learning,
in: Advances in Neural Information Processing Systems, 2022.

[24] R. J. Joyce, D. Amlani, C. Nicholas, E. Raff, Motif: A large malware reference dataset with
ground truth family labels, arXiv preprint arXiv:2111.15031 (2021).

[25] C. Hanks, M. Maiden, P. Ranade, T. Finin, A. Joshi, Recognizing and Extracting Cybersecu-
rity Entities from Text, in: Workshop on Machine Learning for Cybersecurity, International
Conference on Machine Learning, PLMR, 2022.

[26] V. Mulwad, T. Finin, V. S. Kumar, J. W. Williams, S. Dixit, , A. Joshi, A Practical Entity
Linking System for Tables in Scientific Literature, in: 3rd Workshop on Scientific Document
Understanding, AAAI, 2023.

[27] I. Kostrikov, A. Nair, S. Levine, Offline reinforcement learning with implicit q-learning,
arXiv preprint arXiv:2110.06169 (2021).


	1 Introduction
	2 Related Work
	3 Method
	4 Experiments and Results
	5 Conclusion and Future Work

