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Abstract
Knowledge-infusion methods are key to enhance neural models and improve their performance, but they
are not sufficient to enable high-level reasoning, which is typically required by tasks such as natural
language understanding, activity recognition, decision making in complex scenarios. Accordingly, we
propose to use a cognitive architecture as orchestrator of the integration between symbolic knowledge
and machine learning.
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1. Introduction

A large part of neuro-symbolic systems is based on transforming symbolic knowledge into
sub-symbolic representations that are suitable for learning algorithms. For instance, Knowledge
Graph Embedding (KGE) is a prominent approach to reduce knowledge graph (KG) triples
to latent vectors [1]. Such transformation is instrumental to efficient computability of KG
properties, as well as to application in a variety of downstream tasks. Whether the KGE
process is realized by geometric, tensor or deep learning models, the purpose is to compress
KG structures into a low-dimensional space, where symbolic statements are replaced by dense,
sub-symbolic expressions. Furthermore, concatenation, non-linear mapping, attention-like
mechanisms, gating mechanisms, are additional methods used to adapt knowledge structures to
neural computations (e.g., [2, 3, 4]).
In this position paper we claim that, while these knowledge-infusion methods are key to
enhance neural models and improve their performance, they are not sufficient to enable high-
level reasoning, which is typically required by tasks such as natural language understanding,
activity recognition, decision making in complex scenarios. We propose, instead, to adopt a
cognitive architecture [5, 6] as a framework to combine knowledge representation and reasoning
with machine learning.
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Figure 1: The Elephant in the Room: the probability that a label assigned by an object detection system
is correct increases when the context is factored in: in this example, the label ‘elephant’ could plausibly
denote a picture of the pachyderm, but not the pachyderm itself.

2. Motivations

2.1. Lack of Context and Reasoning

Over the last decade, the integration of deep learning in computer vision systems has yielded
substantial advancements. For instance, neural models can achieve good performance in
object detection when training and testing domains originate from the same data distribution.
However, recent work shows that minimal/regional modifications implanted in the data at
test time cause significant drop in accuracy (e.g., [7, 8]). The examples documented in [8]
are of particular interest, as they indicate how common sense contextualization, by means of
incorporating a priori structured knowledge into deep models, can mitigate the effect of those
perturbations, resulting in more robust performance [9]. In general, a visual model suitably
infused with knowledge extracted from semantic resources like ConceptNet [10] can strengthen
the connections holding within instances of the same conceptual domain (e.g., couch, television,
table, lamp are located in living rooms) and discard out-of-context interpretations (e.g., no real
elephants are located in living rooms, but photographs of elephant may be – figure 1 depicts
such case).

When shifting to the language domain, and to tasks like automated question answering, the
key role played by knowledge-based contextualization remains evident. For instance, it has
been demonstrated that using KG triples to disambiguate textual elements in a sentence, and
embed the corresponding concepts and relations in large language models [11], significantly
improves performance (e.g., [12]). In fact, despite of the impressive results that Neural
Language Modeling (NLM) is producing in Natural Language Processing (NLP) [13, 14, 15],
basic reasoning capabilities are still largely missing1. Let’s expand on this argument, and
consider some examples. In ProtoQA [16], GPT-3 [17] fails to select options like ‘pumpkin’,
‘cauliflower’, ‘cabbage’ as top candidates, for the question ‘one vegetable that is about as big as
your head is?’: instead, ‘broccoli’, ‘cucumber’, ‘beet’, ‘carrot’ are predicted. In this case, the
different models learn some essential properties of vegetables from the training data, but do
not seem to acquire the capability of comparing their size to that of other types of objects,

1This is also the reason why it’s more appropriate to refer to these tasks as NLP, and not NLU (Natural Language
Understanding), which would entail that robust and comprehensive reasoning capabilities are present.



revealing a substantial lack of analogical reasoning [18]. The same issues are observed when
ChatGPT-3, a recent popular version of GPT-3 optimized for conversations, is considered: the
main difference is that ChatGPT-3 is capable of generating plausible answers only when the
question is submitted literally, but fails to do so when the question is paraphrased by using
synonyms of the verbal form ‘about as big as’, e.g., ‘about the same size’, ‘about the same shape’,
‘comparable to’, etc. This hypersensitivity to surface-level linguistic features (vocabulary,
syntax, etc.) – a proxy of the model’s incapability to generalize over textual variations of the
same conceptual content – seem to indicate that the model cannot perform the necessary
(analogical) reasoning steps needed to answer to the question correctly. Along these lines,
recent work [19] has shown that lack of complex inferences, role-based event prediction, and
understanding the conceptual impact of negation, are some of the weaknesses diagnosed when
BERT [11], one of prominent open source language models, is applied to benchmark datasets.
ProtoQA again provides good examples of these deficiencies: in general, neural models struggle
to correctly interpret the scope of modifiers like ‘not’ (reasoning under negation), ‘often’ and
‘seldom’ (temporal reasoning). Regarding the latter, in task 14 of bAbI [20], a comprehensive
benchmark challenge designed by Facebook Research, NLM systems exhibit variable accuracy
in grasping temporal ordering entailed by prepositions like ‘before’ and ‘after’. Similarly, in
bAbI task 17, which concerns spatial reasoning, NLM systems fail to infer basic positional
information that require interpreting the semantics of ‘to the left/right of’, ‘above/below’, etc. If
NLM systems are inaccurate when dealing with common characteristics of the physical world,
their performance doesn’t improve when sentiments are considered: for instance, in SocialIQA
[21], given a context like ‘in the school play, Robin played a hero in the struggle to death with
the angry villain’, models are unable to consistently select ‘hopeful that Robin will succeed’
over ‘sorry for the villain’ when required to pick the correct answer to ‘how would others feel
afterwards?’. It’s not surprising that reasoning about emotional reactions represents a difficult
task for pure learning systems, when we consider that such form of inference is deeply rooted
in the sphere of human experiences and social life, which involves a ‘layered’ understanding of
mental attitudes, intentions, motivations, empathy.

2.2. The Cognitive Factor

The anecdotal errors presented above are representative of a widespread phenomenon: i.e.,
large language models are currently not suited for human-like reasoning. But, are mainstream
neuro-symbolic approaches sufficient to guarantee it? Limitations emerge in this case too: latent,
sub-symbolic expressions can only augment training signals with features derived from explicit
semantic content, but this infusion process doesn’t carry any information about the inferential
mechanisms needed to process the learned knowledge.2 Such mechanisms are based on general
logic-based reasoning, e.g. Region-Connection-Calculus for spatial reasoning [24], Allen’s
temporal axioms [25], and on domain/task-dependent reasoning, which is often associated with
decision making. Implementing these mechanisms, and integrating them with neuro-symbolic

2Relevant work exists showing how deep learning models can replicate logical reasoning (e.g., [22, 23]), but it doesn’t
follow that any form of reasoning should be reduced to sub-symbolic learning (or at least this is an assumption
only for some closely-paired neuro-symbolic systems).



Figure 2: ACT-R integrated with independent neural and symbolic modules.

approaches, is what we advocate for in this position paper: in particular, in the next section we
make the case for developing a cognitive neuro-symbolic reasoning framework, namely a
framework where a cognitive architecture is integrated with a neural and a symbolic module.3

3. Method

Cognitive architectures attempt to capture at the computational level the invariant mechanisms
of human cognition, including those underlying the functions of control, learning, memory,
adaptivity, perception and action. ACT-R (Adaptive Control of Thought, Rational), in particular,
[27], is designed as a modular framework including perceptual, motor and memory components,
synchronized by a procedural module through limited capacity buffers. Over the years, ACT-R
has accounted for a broad range of tasks at a high level of fidelity, reproducing aspects of
complex human behavior, from everyday activities like event planning [28] and car driving [29],
to highly technical tasks such as piloting an airplane [30], and monitoring a network to prevent
cyber-attacks [31]. In previous work, ACT-R has been used as a component in pipelines that
include either learning algorithms (e.g., biologically-inspired neural networks [32]) or external
knowledge (e.g., [33, 34]): no effort exists, however, to integrate the cognitive architecture with
neuro-symbolic methods and structures. We claim that such extension would be instrumental
to enhance AI-systems and enable high-level reasoning.
Figure 2 outlines our proposed framework: the boxes in blue, enclosed in the grey rectangle,

3Our approach is complemental to the body of work on neuro-symbolic cognitive reasoning (see for instance [26],
which investigates how neuro-symbolic approaches can be used to realize human-like cognitive reasoning.



represent the default components of ACT-R, those in green the proposed extensions. The
integration occurs along three main directions:

• knowledge↭memory: the external symbolic module, which can include background/-
domain knowledge graphs (KG), lexical resources (LR), rule bases (RB), and a suitable
inference engine, is linked to the declarative memory. This is a two-way integration: the
symbolic module can be read or written by ACT-R, where the latter operation is triggered
when populating or pruning world knowledge is needed as part of task-execution.

• neural⇝ perception: the neural module, which can include convolutional, recurrent,
long-short-term memory networks etc., is trained and tested with raw data processed from
the environment, providing relevant patterns of information to the perceptual module.
This integration bypasses the direct connection holding – in standard ACT-R – between
the perceptual module and the environment.4

• knowledge⇝ neural: embedding mechanisms govern knowledge-infusion in the neural
module, enabling knowledge-based contextualization of patterns of information distilled
from the environment, and used as input for the ACT-R’s perceptual module.

If the mutual connections between the two proposed modules and ACT-R provide compre-
hensive knowledge structures along with scalable learning functionalities, they don’t – per se –
bring about high-level reasoning: this capability emerges from two features of the integrated
framework, namely the cognitive architecture’s own procedural module and the inference
engine in the external symbolic module.
The procedural module matches the content of the other module buffers and coordinates their
activity using production rules, which are ‘condition-action’ pairs tied to the task at hand.
Productions use an utility-based computation to select, from a set of task-specific plausible
rules, the single rule that is executed at any point in time. For instance, when building a
recommendation system to support a mechanic in troubleshooting a car engine, a relevant
scenario that needs to be covered is a vehicle that doesn’t start but has power; in this example,
a high-utility production rule should capture the following heuristic: if the engine holds
compression well, and the fuel system is working correctly, then check
the spark plugs. The conditions in this rule clearly require empirical evidence, as it is often
the case when cognitive architectures are applied to real-world problems: in our scenario, such
evidence could be actually gathered by a real technician using the recommendation system in
a human-machine-teaming fashion, a type of application that would fall under the ‘cognitive
model as oracle’ paradigm [35].
The inference engine in the symbolic module is used to derive knowledge from assertions in the
semantic resource of reference, a well-known feature of symbolic AI systems. What is important
to stress here, is that – in our proposal - this form of logic-based reasoning has two functions:
1) providing a combination of asserted and inferred knowledge that ACT-R declarative memory
can process and pass to the production system; 2) supporting knowledge-infusion into neural
modules. In particular, the first functionality helps to decouple basic forms of reasoning, e.g.
temporal and spatial, from cognitive assessments performed by the production system on

4Such connection assumes symbolic representations of visual and auditory signals being available to the architecture
through pre-processing.



conditional actions. Such feature makes our proposed system efficient, as ACT-R productions
are not well-suited to logical reasoning.

4. Conclusion

In the current debate on the limits of AI, the split is oftentimes between those who think that
“more data” is the panacea, and those that support designing systems that integrate knowledge
representation and reasoning with learning algorithms. In this position paper, which can be
conceived as a product of the second category, we made the case for adopting a cognitive
approach to perform that integration, inspired by the results that architectures like ACT-R have
produced, over the last decades, in modeling complex human tasks and high-level reasoning.
We described the main components of a cognitive neuro-symbolic reasoning system, and outlined
their intrinsic characteristics and functionalities. At present, we are working on a first proof-of-
concept of such system, focused on use cases from Industry 4.0.
To paraphrase Yoshua Bengio [36], we don’t think this is the only possibility to reach human-
level reasoning in AI, but through a diversity of explorations, we’ll increase our chances to find
the ingredients we are missing.
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