
Will Edge Computing Enable Location-based
Extended/Mixed Reality Mobile Gaming?
Demystifying Trade-off of Execution Time
vs. Energy Consumption
Aleksandr Ometov, Jari Nurmi

Tampere University, Korkeakoulunkatu 1, Tampere, 33720, Finland

Abstract
The trailblazing development in mobile and wearable-based gaming dictates both the support of new
technology enablers to allow for current demand and the development of modern computational offload-
ing strategies to decrease the energy of handheld devices and maintain the energy emissions caused
both by computation and transmission of data. Modern cellular networks already provide some support
for proximity-based gaming, e.g., Ingress, PokemonGo, and The Witcher: Monster Slayer, among others.
However, the demand of users is pushing the boundaries toward full-immersive Extended and Mixed
Reality (XR/MR) experiences. Thus, computational offloading to the wireless network Edge becomes
inevitable to keep the immersion high. This paper aims to analyze the impact of computational offloading
(and, thus, execution time) on energy consumption. Computationally demanding games are analyzed
for cases run locally, sent to a conventional remote server (cloud), offloaded to the user-owned more
energy-independent device, or to the network edge. The results show that Edge computing operates the
most efficiently regarding the trade-off between energy spent for execution vs. data transmission. It is
also noted that distance to the edge node remains one of the critical factors affecting energy consumption.
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1. Introduction

One direction of current mobile gaming development is using handheld and wearable devices
for game execution, e.g., in specialized areas or even outdoors [1, 2]. Naturally, mobile gaming
could be executed locally on the device or via the remote server located in the cloud [3]. But
both scenarios require the support of two fundamental enablers: powerful computational
nodes and wireless networks [4]. However, technological advancement allows offloading the
computationally demanding tasks to the network infrastructure-based servers closer to the user.

In many cases, handheld devices cannot provide satisfactory (console, computer-like, or
Virtual Reality-like) immersion in a standalone mode as those are heavily limited by computa-
tional capacity, battery power, and communications capabilities [5]. According to Ericsson, the
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Figure 1: Reference architecture for XR/MR Mobile Gaming scenario: (1) – Local execution; (2) –
Offloading to the gateway; (3) – Offloading to the cloud server; (4) – Offloading to the edge server.

latter is becoming less important with the development of cellular networks beyond 5G, which
are expected to enable true-to-life worlds, sensory-rich feedback, and the end of lag [6] by
delivering more efficient and on-the-fly computational offloading capabilities for content-heavy
applications [7].

Overall, computational offloading moves some computing tasks from a local energy-dependent
device to a remote computing location, e.g., a remote cloud server, as shown in Figure 1.
Offloading is especially beneficial for resource-constrained devices, e.g., low-power Internet of
Things (IoT) devices, wearables, or smartphones, or when the device must temporarily carry out
tasks that are not within its capabilities [8]. For many typical smartphones, mobile gaming also
falls within this scope. Naturally, this process requires support for efficient wireless connectivity.

The development of cellular networks beyond 5G (towards 6G) already allows for most
human-driven use cases [9], i.e., for the connectivity to remote servers, thus, unloading the
local GPU/CPU and potentially extending battery life. Naturally, it comes with a trade-off for
transmission overheads and delays. Still, it comes with support for the actual user mobility and
proximity-based communication enablers – their efficient convergence is the cornerstone of
mobile gaming [10].

Overall, mobile games that use the player’s location as a crucial gameplay component are
referred to as location or proximity-based games. The Witcher: Monster Slayer and PokemonGo
are well-known examples of mobile location-based games. Here, players fight or capture XR/MR
or virtual creatures while exploring the real world, as well as collectively competing with each
other [11].

Naturally, the location-based game requires some knowledge of its’ location, i.e., it uses Other
Global Navigation Satellite Systems (GNSS), commonly referred to as the main representative
of GPS. The cellular network identifies the player’s location. It is further used for gameplay



interactions, e.g., fixing the unique location-bonded objectives on the map. This produces a
distinctive gaming experience that combines the virtual and actual worlds. But, at the same
time, it brings additional load to the cellular network as the gameplay-related data and the user
telemetry needs to be transmitted to the game server (following the traditional gaming model).
This might congest the network, especially in places with many players along with normal
cellular users, increasing network traffic and occupying more wireless mediums.

To add more oil to the fire, proximity-based games often require more than just an intermittent
cellular link but a reliable communications channel [12]. This requirement comes from the need
for real-time interactions between the virtual world and the real one. Moreover, some level
of communication should be maintained even when the player isn’t actively playing for, e.g.,
random gamification encounters. Increased communications overhead will eventually increase
the battery discharge rate and battery lifetime.

Proximity games empowered by computational offloading have their pros and cons. On the
one hand, this might result in heavier network load, thus, higher licensed wireless medium use.
Still, on the other hand, it can also enable a completely new level of thrilling gaming experience
that fuses the virtual and actual worlds.

To summarize, cellular networks already play a crucial role in offloading computing tasks for
mobile gaming. The offloading is currently done to the game server. At the same time, new
cellular network standardization activities also allow offloading the data to the closest and more
energy-independent device in the network, e.g., a gateway on an Edge-powered cellular Base
Station (BS) [13].

This work aims to study the impact of energy consumption if the computationally demanding
task was executed locally on a handheld/wearable device, offloaded to the closest user-carried
gateway, or executed on the network edge BS. This work only focuses on the energy consumption
of the local end devices, not the infrastructure nodes, as those are assumed to have a constant
power supply.

The rest of the paper is organized as follows. Section 2 provides the background information
on the applicability of computational offloading to mobile gaming and related benefits. Next,
Section 3 outlines the system model used to simulate offloading the computationally expensive
gaming task to the network Edge. Further, numerical results are summarized in Section 4.
Challenges and future perspectives are provided in Section 5. The last section provides the
conclusions and outlines future work direction.

2. Motivation and background

Computational offloading, being still in its infancy, can play a significant role in proximity-based
gaming by allowing the game to carry out complex calculations and data processing on remote
servers rather than on the player’s device [5].

First, it can enable more sophisticated proximity-based games, which frequently require
processing large amounts of data, such as mapping information and real-time location data,
to offer improved game features. The advanced game can offer more sophisticated features
and a more engaging gaming experience by shifting this processing to distant servers. This is
especially important for Mixed/Augmented Reality scenarios, as those require both immersion



and heavy traffic processing.
Additionally, it might enable enhanced performance on low-end devices, i.e., on the player’s

device, proximity-based games can operate more quickly and smoothly by offloading computa-
tionally demanding tasks to remote servers [14]. As a result, improved frame rates, less lag, and
a better gaming experience can all be obtained. Edge computing nodes can give proximity-based
games more computing power, leading to better performance and gaming experience for the
players.

The decreased data usage may also serve as a catalyst for networks that go beyond 5G, which
is particularly important for cellular network operators. Proximity-based games can lessen the
amount of data that must be transmitted over the cellular network while loading the backhaul
by offloading computationally demanding tasks to distant servers. This can lessen the player’s
data usage to better use network resources, lower user data plans, and reduce the load on the
constrained cellular network resources that operate in licensed bands.

Next, it will enable lower latency in localized gaming that doesn’t require any connectivity
to the server. Edge computing can significantly reduce latency in proximity-based gaming by
having computing resources closer to the end users. Real-time conversations and an immersive
gaming experience may result from this.

Edge computing may also improve proximity-based games’ security and privacy by processing
sensitive data locally rather than sending it to a distant cloud server. By doing this, the sensitive
data could be preserved locally, thus, limiting potential scopes of attacks. However, that requires
a separate set of ethical studies.

In summary, computational offloading can significantly contribute to proximity-based gaming
by allowing the game to perform difficult calculations and data processing on distant servers.
This may lead to enhanced game features, better performance, fewer hardware requirements,
and less data usage.

3. System model

Based on the general wearable architecture, we assume a scenario involving a consumer Aug-
mented Reality (AR) glasses [15] as the wearable device paired with the user’s flagship 2023
smartphone. The smartphone is more powerful in terms of computing and energy resources
than the AR device. Moreover, the smartphone is assumed to have a reliable wireless link to the
cellular BS, which, in turn, has Edge computing capabilities.

Following the literature, we use a broader steady-state computing approach to express the
game tasks. Here, a single state could be defined as a subprocess with the load aspect: data
needed to be processed 𝐷 (in bits); and the computing aspect: 𝐶 – the number of CPU cycles/bit
required to process the subprocess [16]. The calculation of 𝐶 is based on various hardware
parameters, e.g., memory, execution time, thread CPU time, number and type of instructions,
and function calls [17].

The system could be described in four scenarios: (1) – Local execution on wearable; (2) –
offloading to the gateway; (3) – offloading to the Cloud (located in 300km from the BS and with
the gateway in 50m); (4) – offloading to the Edge with varying distance to the BS. The latter two
cases may help save the energy resources of a device where the game is executed and reduce



latency for better experience and immersion.
As a metric of interest, we focus on the normalized power consumption and task completion

times for the abovementioned scenarios. Naturally, the analyzed device may perform local
processing, resulting in increased task execution time due to low processing power (if it even
fulfills the game’s requirements, potentially being a low-end one), thus, degrading the overall
user experience. Alternatively, it could be offloaded to a more computationally powerful user
device, e.g., a tablet or laptop carried along via proximity-based and network-assisted wireless
link or an Edge server with comparatively higher computing resources at the expense of the
additional power expended by the device in transmitting data to the task executor and receiving
the processed results.

Nonetheless, if the task is offloaded to the Edge server from the end device, there is a need for
a gateway node to act as a relay. The smartphone will serve as a relay node, receive the input
data from the end device, and forward it to the edge server and vice versa to communicate the
results via a long-range wireless link. Based on the technological development state-of-the-art,
communications-wise and in contrast to conventional wearables, many latest AR/VR devices
are equipped with multiple connectivity options such as Bluetooth Low Energy (BLE), Wi-Fi,
mmWave, and/or LTE communication interfaces [18]. Therefore, we assume that the wearable
device connects to the user’s smartphone over Wi-Fi, further accessing the Edge server through
a cellular LTE network.

Therefore, for an outdoor scenario, we assume that the AR device connects to the user’s
smartphone over conventional short-range IEEE 802.11 protocol (a.k.a., Wi-Fi), further accessing
the Edge server through a cellular network.

Moreover, we assume that the subprocess (task) is already atomic and cannot be divided
into smaller processes. We consider a dataflow of the AR device per second as the task 𝐷.
Due to the nature of the game quest, we assume that the generated data size (e.g., video or
image processing) is much higher than the resulting data size (e.g., providing a decision about
the quest completion). Thus, transferring the resulting data takes many orders of magnitude
lower demand on the communications link than the generated one and, therefore, could be
neglected [19].

The performance evaluation results are based on the publicly available framework [27]. The
system parameters are provided in Table 1. Basically, the task is a junk of data that needs to
be processed. Notably, increasing the task data higher than the computation intensity in CPU
cycles per bit does not affect the offloading until the system reaches the saturation of the traffic
channel, i.e., when it fills the bottleneck of either IEEE 802.11 or LTE channels. However, our
derivations are analytical and do not consider those scenarios.

3.1. Local execution

In the first scenario, the task is executed locally on the device [22], and the corresponding time
is thus

𝑇𝑤
𝑖 =

𝐷𝑖𝐶𝑖

𝐹𝑤
𝑖

, (1)

where 𝐷𝑖 is the input data size of task 𝑖 in bits, 𝐶𝑖 is the number of CPU cycles/bit required to
execute the task 𝑖, and 𝐹𝑤

𝑖 denotes the processing power available on the wearable device in



Table 1
Main system parameters

Parameter Value Ref.

Input data size 20 MB n/a
Task computational intensity 103cycles/bit [20]
Computational capacity of AR device 1GHz [15]
Computational capacity of the Gateway 2.2GHz [21]
Computational capacity of the Edge server 20GHz [22]
Computational capacity of the Cloud server (e.g., Amazon Sumerian) 172.8GHz [23]
Idle power consumption by the Wi-Fi module 0.177W [24]
Transmit power consumption by the Wi-Fi module 1.094W [24]
Receive power consumption by the Wi-Fi module 0.867W [24]
Distance between the device and the gateway 0.8m [25]
Distance between the used and the BS 50, 100, 200, 400, m n/a
Distance between the BS and the Cloud 300km n/a
Idle power consumption by the LTE module 0.03W [26]
Transmission power consumption by the LTE module 0.1995W [22]

terms of CPU cycles per second.
Naturally, the local task execution depends on the hardware specifics, thus, could be de-

picted as
𝑃𝑤
𝑖 = 𝛼𝑤((𝑉 𝑤)2𝐹𝑤

𝑖 ), (2)

where 𝑉 𝑤 – voltage of the chip, 𝛼𝑤 is the processor capacitance based on the chip [28]. Notably
by [29], 𝑉 could be approximated as proportional to 𝐹𝑤

𝑖 , therefore,

𝑃𝑤
𝑖 = 𝛼𝑤(𝐹𝑤

𝑖 )3. (3)

Therefore, for an input data size of 𝐷 bits and the computational intensity of the task 𝐶
cycles/bit, the energy consumption for executing a task locally on the wearable device, 𝐸𝑤 , can
be estimated as

𝐸𝑤
𝑖 = 𝑃𝑤

𝑖 𝑇𝑤
𝑖 = 𝛼𝑤(𝐹𝑤

𝑖 )2(𝐷𝑖𝐶𝑖). (4)

3.2. Task offloading to the gateway

The natural way to offload the task to the closes computationally more powerful device is
to execute the task on the user’s gateway node, e.g., tablet or smartphone, which is, in turn,
connected to the network.

The execution time for the scenario is, naturally, related to the computational time of the
offloaded task (depending on the gateway specification), and short-range link transmission to
the device (reception of reply could be considered as a negligibly small value)

𝑇 𝑠
𝑖 = 𝑇 𝑠,𝑡𝑥

𝑖 + 𝑇𝑠,𝑒𝑥, (5)



where 𝑡𝑥 denotes the transmission state and 𝑒𝑥 – computational one.
Naturally, 𝑇 𝑠,𝑡𝑥

𝑖 is related to the physical characteristics of the channel, which could be
abstracted as throughput 𝑇𝐻𝑤𝑖𝑓𝑖 based on [30]. For simplicity, we omit the discussion on the
estimation and fix the parameters to follow IEEE 802.11 specifications (see Table 1). Thus, 𝑇 𝑠,𝑡𝑥

𝑖 ,
similarly to eq. (1) could be defined as

𝑇 𝑠
𝑖 =

𝐷𝑖

𝑇𝐻𝑤𝑖𝑓𝑖
+

𝐷𝑖𝐶𝑖

𝐹 𝑠
𝑖

. (6)

Overall energy consumption follows a different trend since it also needs to consider the
time when the wearable device is idle while waiting for the computation on a remote node to
accomplish, as

𝐸𝑠
𝑖 = 𝐸𝑤,𝑡𝑥

𝑖 + 𝐸𝑠,𝑒𝑥 + 𝐸𝑤,𝑖𝑑𝑙𝑒, (7)

where 𝐸𝑠,𝑒𝑥 is calculated similarly to eq. (1), 𝐸𝑤,𝑖𝑑𝑙𝑒 corresponds to the time when the end
device is idling while waiting for the task to be executed remotely, and 𝐸𝑤,𝑡𝑥

𝑖 is energy spent
for transmission (reception by the smartphone does not contribute to the end device energy
consumption) as

𝐸𝑤,𝑡𝑥
𝑖 =

𝑃𝑤,𝑡𝑥𝐷𝑖

𝑅𝑤
𝑖

, (8)

and 𝐸𝑤,𝑖𝑑𝑙𝑒
𝑖 can be estimated as

𝐸𝑤,𝑖𝑑𝑙𝑒
𝑖 = 𝑃𝑤,𝑖𝑑𝑙𝑒

𝑖 𝑇𝑠,𝑒𝑥. (9)

where 𝑃𝑤,𝑖𝑑𝑙𝑒
𝑖 is the power spent in idling.

3.3. Task offloading to the edge and cloud server

The scenario of offloading to the cloud is the third traditional use case often used in current
application developments. It usually requires the same communication overheads as offloading
to the gateway. Still, it is supplemented by the additional time and energy consumption caused
by long-range wireless transmission and a minor transmission over the fiber to the remote
server. Offloading to the edge is very similar, excluding the fiber and with lower computational
power. Therefore, the set of equations is kept uniform.

The time consumption could be, thus, defined as:

𝑇 𝑜𝑓𝑓
𝑖 = 𝑇𝑤,𝑡𝑥

𝑖 + 𝑇 𝑠,𝑡𝑥
𝑖 + 𝑇 𝑓𝑖,𝑡𝑥

𝑖 + 𝑇 𝑜𝑓𝑓,𝑒𝑥
𝑖 , (10)

where 𝑇 𝑠,𝑡𝑥
𝑖 is the transmission time over the long-range link (e.g., LTE), 𝑇 𝑓𝑖,𝑡𝑥

𝑖 is the trans-
mission time over the fiber, and 𝑇 𝑜𝑓𝑓,𝑒𝑥

𝑖 is the offloaded task computation time. 𝑇 𝑠,𝑡𝑥
𝑖 could

is defined in [22]. The related discussion is also omitted for simplicity. At the same time, the
throughput 𝑇𝐻𝑙𝑡𝑒 is calculated based on the standard [31] for a non-line-of-sight scenario that
takes into consideration the distance between the transmitter and receiver 𝑑𝑙𝑡𝑒.

For the edge offloading scenarios, 𝑇 𝑓𝑖,𝑡𝑥
𝑖 would be equal to zero.



From the energy consumption perspective, the equations follow the same trend, i.e., the
device needs to spend more energy idling while waiting for the reply. However, this dependence
is not the same as for time:

𝐸𝑜𝑓𝑓
𝑖 = 𝐸𝑤,𝑡𝑥

𝑖 + 𝐸𝑤,𝑖𝑑𝑙𝑒
𝑖 , (11)

where 𝐸𝑤,𝑖𝑑𝑙𝑒
𝑖 is the corresponding energy consumption while waiting for the reply:

𝐸𝑤,𝑖𝑑𝑙𝑒
𝑖 = 𝑃𝑤,𝑖𝑑𝑙𝑒

𝑖 (𝑇 𝑠,𝑡𝑥
𝑖 + 𝑇 𝑓𝑖,𝑡𝑥

𝑖 + 𝑇 𝑜𝑓𝑓,𝑒𝑥
𝑖 ). (12)

This way, the energy consumption and task time execution could be calculated for all scenarios.
Interestingly, they all follow similar exponential trends with different exponents (2 vs. 3).

4. Performance evaluation

This section outlines a set of selected execution runs and highlights the main tradeoffs and
non-linearities between energy and time consumption.

Figure 2(a) shows the energy consumption results for a fixed 𝐷 of 20mb/task, corresponding
to the minimum AR-like dataflow. Not-normalized value for the local execution scenario is 0.16.
For AR offloading scenario, the computational trade-offs in terms of energy consumption, we
have cases when execution locally may be more beneficial than computational offloading. For
example, local execution (1) is almost ten times less energy-consuming than executing it on
the gateway device (2) due to relatively similar hardware capabilities (the gateway is only 5
times more powerful than the glass). Cloud offloading for this scenario still seems to be the best
solution energy-wise, but that changes tremendously concerning the execution time. Notably,
depending on the distance to the BS (scenarios 4a-d), the offloading orchestrator may decide to
execute the task locally or offload it to the Edge or Cloud. The simulations also proved that the
given range of task intensity does not significantly affect the execution/transmission energy
consumption. Thus, related plots were excluded for the sake of space.

Simultaneously, the results were obtained for the task execution time (normalized per task),
see Figures 2(b). Not-normalized value for the local execution scenario is 160. Time-wise, the
results of energy and time vary a lot. For example, the application parameters may require
execution latency beyond a certain threshold, e.g., in mission-critical or latency & reliability
scenarios [32]. In this case, local execution may quickly step out of the option. The decision
would be left for the orchestrator to either try to execute the command on the gateway or
offload it to the Edge or Cloud (while those are clearly affected by the wireless propagation as
the main driver for increased latency).

An example of the task operation may also be based on the device’s computational intensity,
which depends on the hardware parameters, see Figure 3(a). Here, the less computationally
powerful the device is – the more impact on the system operation is observed. The capabilities
of AR devices degrade the fastest. At the same time, the almost infinite computational power of
the Cloud only has a minor effect. Naturally, as the task remains the same, the impact on the
communication side is fixed, also visible from Edge-related dashed curves, which have almost
no effect on the distance to the BS, see Figure 3(b). The reason behind this may be natural – the
actual execution of the task on any device takes a significantly longer time than the transmission.
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Figure 2: Normalized results for 20 mb/task: (1) – Local execution on wearable; (2) – Offloading to the
gateway; (3) – Offloading to the cloud server (fixed distance to BS of 50m); (4a-d) – Offloading to the
edge server

That may change for cases of more heavy traffic, e.g., high-resolution VR scenarios. However,
that is unlikely to be considered as mobile gaming but rather ones in indoor [33].

In summary, the application and actual operation scenario remain the main drivers for
deciding whether to process the task locally or offload it to a remote location. At the same time,
state-of-the-art devices already provide very high computational capabilities. Simultaneously,
the bottlenecks of battery and communications links would remain present for a very long time.

5. Challenges and Discussion

While computational offloading can bring several benefits to proximity-based gaming, several
challenges need to be addressed to make it a successful and effective solution:

Network connectivity: Proximity-based gaming requires a relatively constant connection to the
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Figure 3: Normalized time consumption vs. the device computational task intensity for different
offloading scenarios.

network to transmit data between the device and the remote servers, which could be congested
very fast for various reasons [34]. This can be challenging in areas with poor network coverage
or high congestion, resulting in poor performance and reduced user experience. Solutions like
proximity-based communications (e.g., Device-to-Device (D2D) communications) or utilization
of higher frequency may solve the congested licensed wireless medium issue [35, 36]. However,
it still requires certain connectivity to the cloud/network orchestrator.

Bandwidth requirements: Computational offloading requires significant bandwidth to transmit
data between the device and the remote servers. This can be challenging, especially in areas
with limited bandwidth or high network congestion. It can result in increased latency and
reduced performance. Utilization of heterogeneous networking and improved spacial reuse and
prioritization of time-critical traffic may decrease the bandwidth load on the wireless network
side. The load balancing behind the backhaul may be solved by efficient data compression
on the device side and/or by utilizing Network Function Virtualization (NFV) packet-level



solutions [37]. Revised traffic shaping may also improve the overall system performance.
Execution Latency: Latency, or the time it takes for data to travel between the device and the

remote servers supplemented by the execution delay, is an important factor in proximity-based
gaming. High latency can result in reduced performance for localized gaming (for cases when
the server presence is not mandatory for the entire gaming experience) and a less immersive
gaming experience. Novel solutions to orchestrate the games themselves must be developed
to efficiently enable localized gaming via, e.g., advanced Mobile Edge Computing focused on
reliability and latency [32].

Security and Privacy: Offloading computational tasks to Edge servers can also raise security
concerns, as sensitive data, such as the player’s location, is transmitted over the network and
processed on third-party hardware [38]. This can increase the risk of data breaches and raise
privacy concerns. Traditional privacy-preserving approaches and recently booming advanced
contact tracing algorithms may be applied to ensure the desired level of privacy (required for a
certain application). Secure virtualization and virtual machine deployment on the Edge may be
another promising research direction.

Cost: Setting up and maintaining a computational offloading infrastructure can be expensive,
requiring significant investment in hardware and software resources. However, the standardiza-
tion activities set by 3GPP in this direction are already developing at a strong pace [13]. Even
today, application developers can use region-specific Cloud infrastructure to reduce the latency
of gaming, resulting in a decrease in overall operational costs. New service placement strategies
must be developed to fulfill costs, latency, and energy efficiency trade-offs.

Hardware & Software limitations: As general hardware and System-on-Chip (SoC) perfor-
mance constantly grow, the offloading may be executed even on present hardware. However,
with the growing demand for applications, adding more racks on the Edge may become un-
reasonable [39]. Therefore, new solutions to decrease task complexity need to be developed.
Those may cover better predictability approaches already heavily studied, e.g., assisted remote
surgeries, by applying Machine Learning (ML). From a hardware perspective, some games may
generally require “good enough" results, i.e., allowing some room for inexact or approximate
computing.

Overall, computational offloading can bring several benefits to proximity-based gaming. Still,
it also presents several challenges that need to be addressed, such as network connectivity,
bandwidth requirements, latency, security, and cost. These challenges must be carefully con-
sidered and managed to ensure the success and effectiveness of computational offloading in
proximity-based gaming.

6. Conclusions

In summary, the future of computational offloading for mobile gaming will likely see continued
growth and development, driven by technological advances and the increasing demand for
more immersive and engaging mobile gaming experiences.

In this work, we have highlighted that future Mixed/Extended Reality scenarios for mobile
gaming have a lot of aspects to consider while developing the computational offloading strategies
still have a long path to go through. Especially important, we have shown that the device’s



energy consumption in local execution and various offloading cases do not go in hand with
latency. Thus, an intelligent approach to set the target function is of out-most need to be defined
while developing future location-based games powered by the offloading mechanisms.

As a future work, we aim to understand how location-based gaming would affect the wearable
device battery life and study the impact on the cellular network’s infrastructure energy con-
sumption, commonly left unnoticed during the analysis. It is mainly motivated by the present
energy crisis in Europe. Therefore, we aim to contribute to the sustainable development of the
operators’ future wireless networks.

Acronyms

5G 5th generation wireless network
AR Augmented Reality
BLE Bluetooth Low Energy
BS Base Station
D2D Device-to-Device
GNSS Global Navigation Satellite Systems
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
LTE Long-term evolution
ML Machine Learning
MR Mixed Reality
NFV Network Function Virtualization
SoC System-on-Chip
Wi-Fi Wireless Fidelity
XR Extended Reality
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