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Abstract
With the advent of smartphones and wearable devices, indoor positioning systems are relevant to the
ageing in place and in-home monitoring paradigms. In terms of positioning, Wi-Fi is a widely known
and used technology for this purpose. While fingerprinting in large areas benefits from a large wireless
network with several Access Point (AP) providing network access, the availability of Wi-Fi signals with
full or partial Line-of-Sight (LOS) conditions at home is mostly limited to a single AP. This work presents
two datasets collected in an urban flat and in a home-like laboratory to support single AP positioning. In
contrast to other Wi-Fi datasets where the number of samples is limited in each reference point, the two
datasets have several Received Signal Strengh (RSS) readings per reference and evaluation point in order
to test advanced positioning methods based on Single-AP (S-AP) Wi-Fi fingerprinting.

Keywords
Single-AP positioning, Wi-Fi fingerprinting, Open datasets, 𝑘-NN, ESP32

1. Introduction

While Global Navigation Satellite Systems (GNSSs) and Regional Navigation Satellite Systems
(RNSSs) are widely used outdoors to support navigation, logistics, and transportation, among
other Location Based Services (LBS), there is still not any de-facto to bring accurate and reliable
technology indoors for any environment and context [1, 2, 3].

Given the variety of indoor spaces from relatively small residential homes and urban flats
to large shopping malls or factories, it is difficult to find a positioning technology meeting all
requirements in all possible scenarios. While autonomous vehicle navigation needs low latency
and high accuracy, LBS in a shopping area is much less demanding.

Among all the possible applications, a relevant one considers in-home monitoring in, for
instance, flats in dense urban areas [4, 5, 6]. Among the several positioning technologies available
for this purpose, the ones based onWi-Fi are less intrusive and do not require installing additional
infrastructure to support positioning. Some recent works are exploiting the information coming
from a single W-Fi AP to provide reliable positioning considering not only the actual single
measurements but also their variability among other advanced features [7, 8, 9].
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While several datasets exist for RSS-based fingerprinting indoors [10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22] and outdoors [23, 24], none of them covers the particular case of in-home
monitoring with a single AP and sparse reference data. As suggested by Saccomanno et al. [25],
we would like to explore extracting reliable spatial knowledge from multiple measurements.

The main contributions of this paper include:

• Full description of two new datasets for S-AP Wi-Fi fingerprinting;
• Definition of baseline methods for both datasets;

The remaining of this work is organised as follows. Section 2 described the procedures to
collect the datasets as well as the data format. Section 3 provides some examples of usage of the
dataset, giving the baseline method for this dataset. Discussion and conclusions are provided in
Section 4.

2. Database description

2.1. Locations of datasets

Data were collected in two environments: the urban flat (FLAT) and a research laboratory (LAB)
environment. Both scenarios are partially seen in Fig. 1 (a) and (b).

2.2. Static Data Acquisition with ESP32

(a) (b) (c)

Figure 1: Data collection setup in (a) Urban Flat and (b) Laboratory with (c) an ESP32 board

Data were collected with an ESP32 board (see Fig. 1). In this case, the ESP32 development
board was configured in station mode to receive Wi-Fi router RSS signals, which are then
transmitted to a computer’s serial port. The raw data is obtained on a computer via terminal
software and stored in CSV files.

The data was collected using the ESP32 mounted on the tripod in the two environments.
Only data coming from the router within the scenario were stored. The dataset was captured
in four directions (Up, Down, Right, and Left) in each location in two distinct sets: Reference
Points (RPs) and Testing Points (TPs).



In the dataset collection procedure, each RP’ data values were recorded for 5min in each
direction, i.e., a total of 20 (5×4) min of data per point. The TP’ were recorded for 2min each,
i.e., a total of 8 (2×4) min per point.

The two selected scenarios were complex and the number of points to survey was high.
Therefore, data were recorded on alternate days, with some furniture items being shifted from
one room to another. Two individuals’ movements were recorded in reference and test data
points. While the reference points were arbitrarily assigned symmetrically to capture the most
critical information with the fewest possible effort in both scenarios, most of the test points
were distributed in a grid distribution of ≈0.6m and ≈0.75m for the Urban Flat and Laboratory,
respectively.

2.3. Description of files

We have collected two datasets, one considering an urban flat FLAT and one considering a
laboratory setting URBAN. Each dataset consists of two csv files:
↬DATASET_SingleRSSI_TRAIN.csv: This file contains the reference data (or radio map) col-
lected with the ESP32 to train the positioning models. Each row represents a new sample
(fingerprint) where the position is provided in columns 1 and 2 and the third column contains
the RSS value. The file structure is described in Fig. 1 with an excerpt of data included in the
file FLAT_SingleRSSI_TRAIN.csv.

Table 1
Contents of FLAT_SingleRSSI_TRAIN.csv

𝑥 𝑦 𝑟𝑠𝑠

3.75 1.05 -49
3.75 1.05 -87
3.75 1.05 -52
3.75 1.05 -50
3.75 1.05 -89
3.75 1.05 -51
3.75 1.05 -51
3.75 1.05 -51
3.75 1.05 -51
3.75 1.05 -51
⋮ ⋮ ⋮

1.25 8 -48

↬DATASET_SingleRSSI_TEST.csv: This file contains the evaluation data collected statically
in several evaluation points with the ESP32 to test the positioning models in a similar fashion
than reference/training data was collected. Each row represents a new sample (fingerprint)
where the position is provided in columns 1 and 2 and the third column contains the RSS value.



Table 2
Features of datasets FLAT and LAB

Training/Reference Set Test/Evaluation Set

dataset ‖𝒯 ‖ ‖ℛ𝒫 ‖ Samples perℛ𝒫 𝑁𝐴𝒯 ‖ℰ‖ ‖𝒯 𝒫 ‖ Samples per ℛ𝒫 𝑁𝐴ℰ

FLAT 8507 16 413.88±21.73 2.14% 10790 64 160.61±25.54 0.65%
LAB 6222 31 274.42±16.06 0.11% 10279 86 125.47±17.68 0.00%

2.4. Analysis of the datasets

The main features of the two datasets are included in Table 2, where the number of samples
for training and testing (‖𝒯 ‖ and ‖ℰ‖), the number of RPs (‖ℛ𝒫 ‖), the number of TPs (‖𝒯 𝒫 ‖),
as well as the average number of samples (measurements or S-AP fingerprints) per point and
percentage of missing data/measurements (𝑁𝐴𝒯 and 𝑁𝐴ℰ), are provided.

Fig. 2 provides an interpolation of the radio map (training/reference set) where some statistics
(mean as point colour, the standard deviation of the valid RSS measurements and the percentage
of missing data) are provided for each the RP in the two environments. The extrapolation used
is a Gaussian Process Regression with a squared exponential kernel function. This figure is
included to show difficulty in positioning just with a single RSS measurement.
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Figure 2: Interpolated radio map and extended information for (a) FLAT and (b) LAB datasets



3. Examples of usage

3.1. The 𝑘-NN algorithm

Wi-Fi fingerprinting based on the 𝑘-Nearest Neighbors (𝑘-NN) algorithm was introduced by
Bahl and Padmanabhan in 2000, since then it has been widely used because its simplicity and
smooth integration with RSS values [26].
𝑘-NN is a generic non-parametric supervised learning method introduced in 1951 [27], which

is not only devoted to indoor positioning but also to gene selection [28], text classification [29],
image classification [30], EEG classification [31], among others. 𝑘-NN may be implemented as a
data classifier or regressor, where the output is a class membership or the average of the values
of 𝑘 nearest neighbours, respectively.

For Wi-Fi fingerprinting, including S-AP, 𝑘-NN provides a position estimate by selecting the
𝑘 closest (most similar) samples from the training dataset to the operational sample. Then, the
geometric centroid (a simple average) is applied to the location of the set of 𝑘 closest samples.

To compute the set of closest samples, a distance metric (e.g. Euclidean Distance) or a similarity
metric (e.g. Cosine Similarity) is commonly used [32, 33, 34, 35]. As a fingerprint in S-AP Wi-Fi
fingerprinting is just one value, most of these distance functions and similarity metrics are
equivalent. For simplicity and compliance of our algorithms with other multi-AP datasets, we
assume that City Block distance (i.e. the absolute difference between two values) is appropriate
for our datasets.

3.2. Analysis of 𝑘 in 𝑘-NN

As a use case, we analyse the impact of the value of 𝑘 in 𝑘-NN for the two datasets. As mentioned
before, we assume a City Block distance to compare the two values (i.e. the absolute difference
between two RSS values). The mean positioning error (i.e., the Euclidean distance between the
current and estimated positions) for 𝑘 ∈ [1, … , 100] in both datasets are provided in Fig. 3.
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Figure 3: Analysis of 𝑘 for 𝑘-NN with the introduced datasets

According to Fig. 3, the mean positioning error is significantly reduced over the first iterations.



Table 3
Positioning error (m) for both datasets using 𝑘-NN with 𝑘 = 100

dataset mean 25th perc. 50th perc. 75th perc. 90th perc. 95th perc. 99th perc. max.

FLAT 2.85 1.43 2.49 4.00 5.52 6.68 7.62 8.07
LAB 4.62 2.99 4.48 6.10 7.55 8.51 9.53 12.14

Thus, Table 3 provides advanced error statistics (see [36, 37, 38]) on both datasets with 𝑘 = 100,
which can serve as a baseline for new developments. In addition, we provide the performance
of the individual positioning errors as a CDF plot for 𝑘 = 1 and 𝑘 = 100 in both datasets (see
Fig 4).
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Figure 4: CDF plots of the individual positioning errors for 𝑘-NN with 𝑘 = 1 and 𝑘 = 100 in both
datasets

Given the challenge of positioning with a single measurement from a single AP, the results
obtained with mean errors of 2.58m and 4.62m introduce a challenge for further research.



4. Dicussion and Conclusions

Single-AP (S-AP) is gaining popularity given that most urban homes are not extensive and are
covered by only one AP that has partial LOS in several places and, therefore, can be trusted.

Most of the existing Wi-Fi datasets either cover large environments (with hundreds of APs)
or they do not resemble urban/residential medium-size flats.

This paper introduces two new datasets collected in two different places (an urban flat and
a medium-sized laboratory) to fill this gap in the literature. Despite the dimensions of the
operational areas in both scenarios and the information is limited to just one single AP, the
simple baseline method based on 𝑘-NN provides an accuracy between 2.85m to 4.62m with
𝑘 = 100.
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A. List of acronyms

AP Access Point

GNSS Global Navigation Satellite System

𝑘-NN 𝑘-Nearest Neighbors

LBS Location Based Services

LOS Line-of-Sight

RNSS Regional Navigation Satellite System

RP Reference Point

RSS Received Signal Strengh

S-AP Single-AP

TP Testing Point

B. Online Resources

The dataset and sources for generating the reports and figures are available in:

• Zenodo Package [39]

https://doi.org/10.5281/zenodo.7949032
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