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Abstract

We recently presented the MR-CKR framework to reason with knowledge overriding across contexts

organized in multi-relational hierarchies. Reasoning is realized via ASP with Algebraic Measures,

allowing for flexible definitions of preferences. In this paper, we show how to apply our theoretical

work to autonomous-vehicle scene data: we apply MR-CKR to the problem of generating challenging

scenes for autonomous vehicle learning. In practice, most of the scene data for AV learning models

common situations, thus it might be difficult to capture cases where a particular situation occurs (e.g.

partial occlusions of a crossing pedestrian). The MR-CKR model allows for data organization exploiting

the multi-dimensionality of such data (e.g., temporal and spatial dimension). Reasoning over multiple

contexts enables the verification and configuration of scenes, using the combination of different scene

ontologies. We describe a framework for semantically guided data generation, based on a combination

of MR-CKR and algebraic measures. The framework is implemented in a proof-of-concept prototype

exemplifying some cases of scene generation.

1. Introduction

Testing and evaluation are important steps in the development and deployment of Automated

Vehicles (AVs). To comprehensively evaluate the performance of AVs, it is crucial to test the

AVs’ perception systems in safety-critical scenarios, which rarely happen in naturalistic driving

environment, but still possible in practice. Therefore, the targeted and systematic generation of

such corner cases becomes an important problem.

Most existing studies focus on generating adversarial examples for perception systems of

AVs which are concerned with very simple perturbations in the input (e.g., changing the

color or position of a vehicle). More in general, the generation of adversarial or challenging

examples for neural models is an important problem that gained interest both in industry
1
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and research [1, 2, 3, 4]. Generation of inputs is mostly performed by numerical methods.

For example, [1] uses small numerical perturbations of images, [2] uses an optimization that

minimizes the numerical change of the input data such that it leads to a different prediction of

the network, and [4] generates adversarial text for natural language processing by performing

minimal replacements of characters.

On the other hand, limited efforts have been put on the symbolic generation of complex scenes:

this is the problem we want to consider in this paper, in particular aiming at an ontology-based

and context-specific scene generation (e.g., child walking a dog in the evening in rainy weather).

Specifically, we define our task of interest as follows: given an existing scene (represented by a

scene graph) from a known dataset, we want to generate a new set of scenes that are variations

of the current scene and are:

1. Realistic: consistent with the ontologies describing objects in the scene (e.g., traffic signs

usually do not move);

2. Interesting: they satisfy a semantic restriction, which tells us that the scene is for example,

“dangerous” or challenging for our prediction model (e.g., seeing a cat in the middle of the

street requires special action);

3. Similar: changing the original scene to the generated scenes requires only small variations.

We propose to use symbolic methods to generate valid and challenging scenes on the base

of existing scene graphs and semantic definitions of scenes. In particular, Multi-Relational
Contextualized Knowledge Bases (MR-CKRs) [5, 6] are a useful formalism for this: here, ontological

knowledge is contextualized such that in different contexts it may have different interpretations

(possibly with non-monotonic effects). Thus, MR-CKRs can help us in generating realistic
scenes, since they are capable of handling the background ontologies describing the AV domain.

Additionally, we may have different contextualized notions of interestingness. E.g., it may be

that a dog is by default not considered dangerous but in a special context, next to a crowded

street, it is. MR-CKRs also allow us to express this by associating different independent semantic

restrictions on scenes within different contexts. Another benefit of MR-CKRs is that they come

with a translation to Answer Set Programming (ASP), which can be used to easily express and

efficiently solve hard logical problems.

Additionally, we need a way to measure how similar the generated scenes are to the original

scene that we started from: Algebraic Measures [7] are of great use here. They are a general

framework from the field of ASP that allows us to measure quantities associated with solutions.

As such, they are also capable of expressing a similarity measure of scenes, which we need.

Our main contributions can be summarized as follows:

– We provide a novel framework for semantically guided data generation, which can be adver-

sarial or training data. An overview of the framework is presented in Section 2. By basing

our framework on a combination of MR-CKRs and Algebraic Measures we obtain a highly

flexible approach with efficient solving options by employing translations to ASP.

– MR-CKRs allow us (i) to incorporate ontological background knowledge ensuring realism

of the generated data and (ii) to contextualize the notion of what makes a generated input

interesting. The MR-CKR formalism and its use are presented in Section 3.
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Figure 1: The general framework for generating (similar) interesting scenes with ASP according to

(possibly) related diagnoses defined by an MR-CKR.

– Algebraic Measures enable the maximization of similarity between original and generated data.

The definition of similarity by Algebraic Measures and its realization via weak constraints is

presented in Section 4.

– We provide a proof of concept implementation of our framework in ASP. Our prototype

(presented in Section 5) for scene generation in the domain of AV is intentionally kept minimal

but shows promise.

2. Framework Overview

Before we go into the technical details of how we generate descriptions of new challenging

training scenes, we provide a general structural overview of our framework.

The architecture of our framework is described in Figure 1. The schema shows that we

use an MR-CKR to define, on the one hand, the possible scene modifications and on the other

hand different contexts, here 𝑐1 and 𝑐2, that specify possibilities for a scene to be challenging

respectively interesting. Ideally, these different diagnoses correspond to insights of a neural

network engineer for poor performance of the current neural network. For example, in the AV

context, we might observe that a car does not stop in the correct location when there is not

only a stop sign but also a stop line marking that specifies where the car should stop. Here, we

would therefore want to modify scenes in such a manner that they have both a stop sign and a

stop line marking.

In general, the goal is to generate more scenes that we suspect the network also performs

badly on, such that we have adversarial examples that we can use to train the neural network

in the hope of improving its performance on these situations that are presumably hard for it,

due to a lack of training data. Given the diagnoses in different contexts that may be related via

specialization or otherwise, we can then use the ASP translation of an MR-CKR to obtain an

equivalent ASP encoding to compute models, i.e., representations of generated scenes that are

realistic according to the base ontology included in the MR-CKR.



Moreover, we add further ASP constraints to ensure that the modifications of the scene make

the resulting scene (a) challenging, i.e., it satisfies a diagnosis (using strong constraints) and (b)

close to a given starting scene (using weak constraints that express the algebraic measure).

With such combination, we can thus obtain realistic, challenging scenes that are as similar to

the starting scene as possible. On top of that, the different contexts allow us to specify different

types of target diagnoses resulting in one generated scene that includes it per context.

In the following, we substantiate our abstract idea by formalizing how we generate scenes

with MR-CKR and measure their similarity with Algebraic Measures.

3. Formalization of the Scene Generation Problem in MR-CKR

We begin by briefly introducing the MR-CKR framework and then provide a solution for the

scene generation task making use of MR-CKR.

3.1. MR-CKR: Multi-relational Contextualized Knowledge Bases

We summarize in this subsection the main definitions of the MR-CKR formalism from [6].

We assume the customary definitions for description logics (see, e.g., [8]), where we consider

a generic description logic language ℒΣ based on a DL signature Σ, which is composed of a set

of concept names NC, role names NR and individual names NI.
The contextual structure of a MR-CKR is defined by a nonempty set N ⊆ NI of context names

and a set ℛ of one or more contextual relations ≺𝑖 over them, which are strict (partial) orders

≺𝑖 ⊆ N×N. A way to define contextual relations is to use contextual dimensions [9, 10], that

is a set of contextual “coordinates” associated to each of the contexts: in the case of scene

descriptions, for example, these can represent the time of the day, location type or situation

occurring in a scene.

With each context of N, we associate a contextual language ℒΣ,N as an extension of ℒΣ

representing its local language; in particular, axioms inside contexts can be specified as defeasible

(i.e., they can be overridden in case of exceptions) with respect to one of the contextual relations

composing the contextual structure. Formally, an r-defeasible axiom is any expression of the

form D𝑟(𝛼), where 𝛼 is an axiom of ℒΣ and ≺𝑟∈ ℛ. Multi-relational CKRs are then composed

by a global structure of context based on the contextual relations in ℛ and a set of DL knowledge

bases associated to each of the local contexts.

Definition 1 (multi-relational simple CKR). A multi-relational simple CKR (sCKR) over Σ
and N is a structure K = ⟨C,KN⟩ where: (i). C is a structure (N,≺1, . . . ,≺𝑚) where each ≺𝑖

is a contextual relation over N; (ii). KN = {Kc}c∈N for each context name c ∈ N, Kc is a DL
knowledge base over ℒΣ,N.

Example 1. We provide a simple example of MR-CKR to better explain the intended use of
defeasible axioms. Consider the sCKR K = ⟨C, {K1,K2}⟩ composed of the following elements:

C = {c2 ≺𝑐 c1},
K1 = {D𝑐(Dog ⊑ ¬DangerousAnimal)},
K2 = {Dog ⊑ DangerousAnimal ,Dog(d)}.



Intuitively, we want to ensure that in the more specific context c2, dogs are viewed as dangerous
animals, thus the more general defeasible axiom in c1 is not applied to the instance 𝑑 of Dog .

Interpretations of MR-CKRs I = {ℐ(c)}c∈N are families of DL interpretations associated to

each of the contexts that agree on the interpretation of individuals. Given an axiom 𝛼 ∈ ℒΣ

with FO-translation ∀x.𝜑𝛼(x), we say that the instantiation of 𝛼 with a tuple e of individuals in

NI, written 𝛼(e), is the specialization of 𝛼 to e, i.e., 𝜑𝛼(e), depending on the type of 𝛼. Given a

relation ⪰𝑟 , we denote with ⪰−𝑟 any other relation in ℛ different from ⪰𝑟 .

A clashing assumption for a context c and relation 𝑟 is a pair ⟨𝛼, e⟩ such that 𝛼(e) is an

axiom instantiation of 𝛼, and c′ ⪰−𝑟 c
′′ ≻𝑟 c. A clashing set for ⟨𝛼, e⟩ is a satisfiable set 𝑆 of

ABox assertions s.t. 𝑆 ∪ {𝛼(e)} is unsatisfiable. Intuitively, clashing assumptions represent

the assumption that e are exceptional individuals of 𝛼, clashing sets provide a justification of

such exceptionality. We extend interpretations with clashing assumptions in what we call CAS-

interpretations: a CAS-interpretation is a structure ICAS = ⟨I, 𝜒⟩ where I is an interpretation

and 𝜒 = {𝜒1, . . . , 𝜒𝑚} such that each 𝜒𝑖, for 𝑖 ∈ {1, . . . ,𝑚}, maps every c ∈ N to a set 𝜒𝑖(c)
of clashing assumptions for context c and relation ≺𝑖.

We say that a CAS-interpretation ICAS = ⟨I, 𝜒⟩ is a CAS-model for K (denoted ICAS |= K),

if it verifies all strict and defeasible axioms of K, i.e., informally: (i) ℐ(c′) |= 𝛼 for every strict

axiom 𝛼 in a context c with c′ ⪯* c; (ii) ℐ(c′) |= 𝛼 for every 𝑖-defeasible axiom D𝑖(𝛼) in a

context c related by a non-𝑖 relation, that is c′ ⪯−𝑖 c; (iii) ℐ(c′′) |= 𝜑𝛼(d) for every 𝑖-defeasible

axiom D𝑖(𝛼) in a context c with c′′ ≺𝑖 c
′ ⪯−𝑖 c and d not exceptional, that is ⟨𝛼,d⟩ /∈ 𝜒𝑖(c

′′).
We say that ⟨𝛼, e⟩ ∈ 𝜒𝑖(c) is justified for a CAS model ICAS , if some clashing set 𝑆⟨𝛼,e⟩,c

exists such that ℐ ′(c) |= 𝑆⟨𝛼,e⟩,c (and for all I′CAS agreeing on the interpretation of individuals).

A CAS model ICAS of a sCKR K is justified, if every ⟨𝛼, e⟩ ∈ 𝜒 is justified in K.

We provide a local preference on clashing assumption sets for each of the relations:

(LP). 𝜒1
𝑖 (c) > 𝜒2

𝑖 (c), if for every ⟨𝛼1, e⟩ ∈ 𝜒1
𝑖 (c) ∖ 𝜒2

𝑖 (c) with D𝑖(𝛼1) at a context c1 ⪰−𝑖

c1𝑏 ≻𝑖 c, some ⟨𝛼2, f⟩ ∈ 𝜒2
𝑖 (c) ∖ 𝜒1

𝑖 (c) exists with D𝑖(𝛼2) at context c2 ⪰−𝑖 c2𝑏 ≻𝑖 c s.t.

c1𝑏 ≻𝑖 c2𝑏.

Intuitively, 𝜒1
𝑖 (c) is preferred to 𝜒2

𝑖 (c) if 𝜒1
𝑖 (c) exchanges the “more costly” exceptions of 𝜒2

𝑖 (c)
at more specialized contexts with “cheaper” ones at more general contexts. A model preference
is obtained by combining the preferences of the relations: it is a global lexicographical ordering

on models where each ≺𝑖 defines the ordering at the 𝑖-th position.

(MP). I1CAS = ⟨I1, 𝜒1
1, . . . , 𝜒

1
𝑚⟩ is preferred to I2CAS = ⟨I2, 𝜒2

1, . . . , 𝜒
2
𝑚⟩ if:

(i) there exists 𝑖 ∈ {1, . . . ,𝑚} and some c ∈ N s.t. 𝜒1
𝑖 (c) > 𝜒2

𝑖 (c) and not 𝜒2
𝑖 (c) > 𝜒1

𝑖 (c),
and for no context c′ ̸= c ∈ N it holds that 𝜒1

𝑖 (c
′) < 𝜒2

𝑖 (c
′) and not 𝜒2

𝑖 (c
′) < 𝜒1

𝑖 (c
′).

(ii) for every 𝑗 < 𝑖 ∈ {1, . . . ,𝑚}, it holds 𝜒1
𝑗 ≈ 𝜒2

𝑗 (i.e., (i) or its converse do not hold for

≺𝑗).

Finally, we say that an interpretation I is a CKR model of K (in symbols, I |= K) if: (i) K has

some justified CAS model ICAS ; (ii) there exists no justified I′CAS that is preferred to ICAS .

Example 2. Using the semantics mechanism from above, we can show how to interpret the
sCKR in the previous example. We can consider the CAS-interpretation ICAS = ⟨I, 𝜒⟩ where



𝜒(c2) = {⟨Dog ⊑ ¬DangerousAnimal , 𝑑⟩}. This implies that ICAS is a CAS-model if the defea-
sible axiom of c1 is not applied to the only Dog in c2, as expected. Note that such CAS-model is also
justified, since the clashing assumption admits the clashing set {Dog(𝑑),DangerousAnimal(𝑑)}:
thus, considering that no other alternative CAS-model that is minimal with respect to the pref-
erence can be defined, the considered interpretation is also a CKR-model. The preference de-
fined above is useful to prefer defeasible axioms in the most specific contexts: for example, if
Dog ⊑ DangerousAnimal in c2 was defined as defeasible (w.r.t. the same contextual relation of
the above defeasible axiom), the context below c2 would have preferred the more specific axiom.

As a method to implement reasoning on MR-CKRs, we provided in [6] a translation for MR-

CKRs to ASP logic programs, which can be used to reason on instance checking and query

answering in a given context. It is based on a uniform encoding of DL knowledge bases

using a materialization calculus, which is extended for defeasible axioms. To give a flavor of

the translation, the following rules define the conditions for application and overriding of a

defeasible inclusion like 𝐷𝑟𝑒𝑙1(𝐸 ⊑ 𝐹 ):

instd(X,F,C,T) :- def_subClass(E,F,C1,REL1), instd(X,E,C,T),
prec(C,C2, REL1), preceq(C2,C1, REL2), REL1 != REL2,
not ovr(subClass,X,E,F,C1,C,REL1).

ovr(subClass,X,E,F,C1,C,REL1) :- def_subClass(E,F,C1,REL1),
prec(C,C2,REL1), preceq(C2,C1,REL2),
REL1 != REL2, instd(X,E,C,"main"),
not test_fails(nlit(X,F,C)).

For details and discussion, we refer to [6].

3.2. Scene generation in MR-CKR

Following the intuitive structure of Figure 1, the role of MR-CKR in our architecture is to define

the logical constraints of the scenes we want to generate, on the basis of a common scene

ontology. Given its multi-contextual structure, the MR-CKR is useful to provide (i) a complex

representation (a contextualization) of the contents of the base scene and (ii) its modifications

towards the different diagnoses of interest.

With respect to the second aspect, the basic organization of contexts can be defined as in

Figure 2. The contexts of this structure are related by a contextual relation ≻𝑠𝑖𝑚, denoting the

relation of similarity: the upper context Exchange contains, in form of 𝑠𝑖𝑚-defeasible axioms,

the axioms that can be modified in the diagnosis scenes. In the Base context, we assume to

have the description of the base scene and the base axioms of the scene description ontology.

The contexts Diagnosis-1 , . . . ,Diagnosis-N then provide the different modifications to the

base scene that we are interested in modeling. The kind of axioms that are needed to model the

different modifications depend on the kind of changes (additions, deletions, etc.) that we want

to admit in scene modifications; more details on such axioms will be provided in the following

sections, where we consider specific modifications.

With respect to the scene contextualization, we can take advantage of the multi-relational

nature of MR-CKR to further define the properties of the context in which the scene takes place.



Exchange

Base

Diagnosis-1 Diagnosis-N…

Figure 2: General structure of contexts for scene modification.
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Figure 3: Example of multi-relational contextual structure for scene representation.

Example 3. An example of such contextualization is shown in Figure 3. In this contextual structure,
the relation given by the horizontal arrows represents the specialization of scenes with respect to
the specificity of the location: starting from axioms that are verified for general scenes, we can
add further logical constraints that are true for city scenes and then town scenes. Note that such
direction is orthogonal to the base contextual structure described above: location-defeasible axioms
can express knowledge that is, e.g., accepted in general locations, but not valid in town scenes.

After modelling scenes by such framework, we want to use the translation of MR-CKR to ASP in

order to generate the possible models of the diagnoses contexts: these models then correspond

to alternative generated scenes. However, we now need a method to provide a measure for

the similarity of the generated scenes with respect to the scenes of interest: as we detail in the

following sections, this can be easily defined by means of algebraic measures.

4. Formalization of Similarity using Algebraic Measures

If we generate a new scene based on a starting scene, we want to optimize a measure of similarity.

Here, we use algebraic measures [7], which measure and aggregate quantities associated with

models by evaluating a formula over a semiring.

Definition 2 (Semiring). A commutative semiring 𝒮 = (𝑆,⊕,⊗, 𝑒⊕, 𝑒⊗) is an algebraic struc-
ture with binary infix operations ⊕,⊗ such that



1. ⊕ and ⊗ are associative and commutative,

2. ⊗ right and left distributes over ⊕,

3. 𝑒⊕ (resp. 𝑒⊗) is a neutral element for ⊕ (resp. ⊗), and

4. 𝑒⊕ annihilates 𝑆, i.e., ∀𝑠 ∈ 𝑆 : 𝑠⊗𝑒⊕ = 𝑒⊕ = 𝑒⊕⊗𝑠.

Examples of well-known commutative semirings are

– F = (F,+, ·, 0, 1), where F ∈ {N,Z,Q,R}, the semiring over the numbers in F with addition

and multiplication,

– 𝒫 = ([0, 1],+, ·, 0, 1), the probability semiring,

– ℛmin,+ = (R ∪ {∞},min,+,∞, 0), the min-plus semiring.

Another list of semirings, which is annotated with applications, can be found in [11].

In order to connect the quantitative aspects of semirings and the qualitative ones of logics

we use weighted logics [12].

Definition 3 (Weighted Logic). Let𝒱 be a set of propositional variables and letℛ = (𝑅,⊕,⊗, 𝑒⊕, 𝑒⊗)
be a semiring. A weighted (propositional) formula over ℛ is of the form 𝛼 given by the grammar

𝛼 ::= 𝑘 | 𝑣 | ¬𝑣 | 𝛼+ 𝛼 | 𝛼 * 𝛼

where 𝑘 ∈ 𝑅 and 𝑣 ∈ 𝒱 . The value J𝛼Kℛ(ℐ) of 𝛼 w.r.t. an interpretation ℐ ⊆ 𝒱 is defined as:

J𝑘Kℛ(ℐ) = 𝑘

J𝑣Kℛ(ℐ) =
{︂

𝑒⊗ 𝑣 ∈ ℐ
𝑒⊕ otherwise. (𝑣 ∈ 𝒱)

J¬𝑣Kℛ(ℐ) =
{︂

𝑒⊕ 𝑣 ∈ ℐ
𝑒⊗ otherwise. (𝑣 ∈ 𝒱)

J𝛼1 + 𝛼2Kℛ(ℐ) = J𝛼1Kℛ(ℐ)⊕J𝛼2Kℛ(ℐ)
J𝛼1 * 𝛼2Kℛ(ℐ) = J𝛼1Kℛ(ℐ)⊗J𝛼2Kℛ(ℐ).

Algebraic measures combine the qualitative language of ASP with the quantitative one of

weighted logic.

Definition 4 (Algebraic Measure). An algebraic measure 𝜇 = ⟨Π, 𝛼,ℛ⟩ consists of an answer
set program Π, a weighted formula 𝛼, and a semiring ℛ. Then, the weight of an answer set
ℐ ∈ 𝒜𝒮(Π) under 𝜇 is defined by

𝜇(ℐ) = J𝛼Kℛ(ℐ).

Intuitively, Π determines the solutions and 𝛼 assigns them weights. Algebraic measures offer

further queries that aggregate the weights of (some) solutions [7] that we however do not

require here.



4.1. Similarity of Scenes

We measure the similarity of two scenes as the minimum cost required to modify one scene to

be equal to another one. There are many ways to modify a scene. For simplicity, we restrict our-

selves to deletion of object 𝑜 from class 𝑐 and addition of object 𝑜 to class 𝑐, denoted deletion(𝑐, 𝑜)
and addition(𝑐, 𝑜), with fixed costs

2 cost(𝐴𝑑𝑑) and cost(𝐷𝑒𝑙) respectively. Advanced options

would be class variation, displacement, or property variation.

We use the weighted formula 𝛼𝑐𝑜𝑠𝑡

Π
class 𝑐,individual 𝑖(addition(𝑐, 𝑖) * cost(𝐴𝑑𝑑)+ ¬addition(𝑐, 𝑖))

*Π
class 𝑐,individual 𝑖(deletion(𝑐, 𝑖) * cost(𝐷𝑒𝑙)+ ¬deletion(𝑐, 𝑖))

over the semiring ℛmin,+, which takes the minimum of different options and sums up the costs

of atomic modifications in one option.

Example 4. For example, consider the interpretation

ℐ = {addition(RollingContainer , 𝑖1),deletion(Child , 𝑖2),deletion(Child , 𝑖3)}.

Intuitively, this means that we add the object 𝑖1 to the concept RollingContainer and remove the
objects 𝑖2 and 𝑖3 from the concept Child . Thus, we expect a cost of cost(𝐴𝑑𝑑) + 2 · cost(𝐷𝑒𝑙).

Since the interpretation ℐ contains addition(RollingContainer , 𝑖1) the first row of 𝛼𝑐𝑜𝑠𝑡 eval-
uates to cost(𝐴𝑑𝑑) and the second row evaluates to cost(𝐷𝑒𝑙)⊗cost(𝐷𝑒𝑙). Since we use ℛmin,+

the operation ⊗ is + and we obtain cost(𝐴𝑑𝑑) + 2 · cost(𝐷𝑒𝑙) as the final cost, as expected.

While algebraic measures are a useful and highly general tool, to specify quantitative measures

for the answer sets of logic programs, most solvers for ASP currently do not support optimization

of the weight of an algebraic measure. However, algebraic measures over the semiring ℛmin,+

can be translated to weak constraints [13].

Since we intentionally kept the measure simple, it is sufficient to use the weak constraints

:∼ addition(𝐶, 𝐼).[cost(𝐴𝑑𝑑), 𝑎𝑑𝑑, 𝐶, 𝐼] :∼ deletion(𝐶, 𝐼).[cost(𝐷𝑒𝑙), 𝑑𝑒𝑙, 𝐶, 𝐼]

which add a cost of cost(𝐴𝑑𝑑) for each individual 𝐼 and concept 𝐶 such that we add 𝐼 to

concept 𝐶 (and anologously for deletion). In general, this is not as simple since measures can

specify complex algebraic expression, which is why we prefer the specifiation via measures.

5. Implementation Prototype for Scene Generation in
Autonomous Driving

We have implemented and tested our approach using an example from Autonomous Driving.
3

Here, we reconstructed and slightly extended the base ontology from [14, 15].
4

It features

2

i.e., costs do not depend on the class or individual.

3

https://github.com/raki123/MR-CKR

4

https://github.com/boschresearch/ad_cskg

https://github.com/raki123/MR-CKR
https://github.com/boschresearch/ad_cskg


𝑐𝑒𝑥𝑐ℎ

D𝑠𝑖𝑚(𝑁𝑎𝑚𝑒𝑑 ⊑ 𝐴𝐷𝐷𝐶) D𝑠𝑖𝑚(𝑁𝑎𝑚𝑒𝑑 ⊑ 𝑁𝑂𝐴𝐷𝐷𝐶)
D𝑠𝑖𝑚(𝑁𝑎𝑚𝑒𝑑 ⊑ 𝐷𝐸𝐿𝐶) D𝑠𝑖𝑚(𝑁𝑎𝑚𝑒𝑑 ⊑ 𝑁𝑂𝐷𝐸𝐿𝐶)
(𝑂𝑅𝐼𝐺𝐶 ⊓𝑁𝑂𝐷𝐸𝐿𝐶) ⊔𝐴𝐷𝐷𝐶 ⊑ 𝐶

𝑐𝑏𝑎𝑠𝑒

𝐴𝐷𝐷𝐶 ⊓𝑁𝑂𝐴𝐷𝐷𝐶 ⊑ ⊥
𝐷𝐸𝐿𝐶 ⊓𝑁𝑂𝐷𝐸𝐿𝐶 ⊑ ⊥

𝑐𝑐ℎ𝑖𝑙𝑑 . . . 𝑐𝑟𝑜𝑙𝑙𝑖𝑛𝑔

:- not found_child. . . . :- not found_rolling&no_human.

:∼ instd(X,𝐷𝐸𝐿𝐶 ,Context,"main"). [1,X,𝐷𝐸𝐿𝐶 ,Context]

:∼ instd(X,𝐴𝐷𝐷𝐶 ,Context,"main"). [1,X,𝐴𝐷𝐷𝐶 ,Context]

Figure 4: MR-CKR and additional constraints used in our prototype for autonomous driving.

different scenes, each annotated with the objects included in it. The included objects are

annotated with information about them, such as their type. Furthermore, the ontology includes

axioms that add knowledge about the relationship between different concepts in the ontology.

Overall, the base ontology has more than 3 million axioms, concerning knowledge of 41 concepts,

more than 100 scenes, and more than 50,000 objects.

We provide an overall sketch of the construction of the MR-CKR and its interplay with ASP

constraints in Figure 4. We go over the different parts step by step.

MR-CKR Encoding. Here, we describe how scenes can be modified (annoted via solid black

boxes in Figure 4). Namely, we state that every named object should either be added or not added

(resp. deleted) to each modifiable concept. Additionally, we ensure that the modification takes

effect by stating that a concept contains exactly those objects (i) which it originally contained

before modification and that were not deleted, or (ii) that were added.

Apart from that, the MR-CKR contains the axioms from the base ontology and one context

𝐶𝑖 for each diagnosis 𝑖. We use the following diagnoses:

1. 𝑐𝑐ℎ𝑖𝑙𝑑: the scene contains an object that is in the class 𝐶ℎ𝑖𝑙𝑑. It is dangerous due to unpre-

dictable behaviour compared to other humans.

2. 𝑐𝑟𝑜𝑙𝑙𝑖𝑛𝑔 : the scene contains an object that is in the class 𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 but no object in

the class 𝐻𝑢𝑚𝑎𝑛. It is dangerous due to unpredictable behaviour of the rolling container.

We then translate the resulting encoding to ASP using the CKRew software
5

from [6].

Additional ASP Constraints. To ensure that in context 𝐶𝑖 the diagnosis 𝑖 is derived, we add

strong constraints (annoted via solid gray boxes in Figure 4). For example, for the first diagnosis

in context 𝐶1, we ensure the presence of a child using the rules

5

https://github.com/dkmfbk/ckrew

https://github.com/dkmfbk/ckrew


found_child :- instd(X, 𝐶ℎ𝑖𝑙𝑑, 𝐶1, "main"). :- not found_child.

To ensure similarity, we add weak constraints (annoted via the dashed gray box in Figure 4).

This ensures that a penalty of 1 is added every time we add or delete an individual 𝑋 to 𝐶 .

Note that the penalty is applied for every context.

The ASP translation of the MR-CKR and the additional constraints constitute the encoding of

the problem in ASP. To obtain solutions, we then used a standard ASP solver, namely clingo [16].

Example 5. Assume our input scene contains four objects 𝑖1, . . . , 𝑖4 and Child(i2 ), Child(i3 ),
Car(i4 ) hold. Due to the ontology axiom Child ⊑ Human , we could derive Human(i2 ) and
Human(i3 ).

Thus, in context 𝐶2, where we need a rolling container but no human, we need to remove 𝑖2 and
𝑖3 from the Child concept and add an object to the RollingContainer concept. Thus, a potential
modification (restricted to context 𝐶3) is represented by the interpretation

ℐ = {instd(𝑖1, 𝐴𝐷𝐷𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟, 𝐶3, “𝑚𝑎𝑖𝑛”), instd(𝑖2, 𝐷𝐸𝐿𝐶ℎ𝑖𝑙𝑑, 𝐶3“𝑚𝑎𝑖𝑛”),

instd(𝑖3, 𝐷𝐸𝐿𝐶ℎ𝑖𝑙𝑑, 𝐶3, “𝑚𝑎𝑖𝑛”)}.

As discussed in the previous example, it has cost cost(𝐴𝑑𝑑) + 2 · cost(𝐷𝑒𝑙), which is 3 since we
assign cost 1 to addition and deletion respectively.

As there is no modification of a lower cost, one of the possible generated scenes for 𝐶3 consists of
𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟(𝑖1), 𝐶𝑎𝑟(𝑖4), i.e., it contains a rolling container 𝑖1, no humans, but a car 𝑖4.

On the other hand, in the context 𝐶1 we do not need to perform any modifications, since the
original scene already contains a child.

5.1. Specialized Translation

The original MR-CKR to ASP translation is capable of handling highly complex relations

between contexts and supports arbitrary defaults and flexible ontological background knowledge.

However, this comes at the cost of an encoding in ASP that is not suitable for our purposes,

using large scene graphs with many contexts and concepts.

To circumvent this, we specialized the encoding to our setting. Recall that the (defeasible)

axioms of the MR-CKR (see Figure 4, annoted in green) tell us that we guess either the addition

or the non-addition of any named individual 𝑋 to 𝐶 , as long as there is no other reason in the

ontology that prevents both. As our base ontology is consistent, there can never be a reason in

our ontology that prevents the non-addition. Hence the either-or really holds in our setting.

This allows us to use the following rules to encode the (defeasible) axioms above:

instd(X,𝐴𝐷𝐷𝐶,Con,"main") :- instd(X,"Named",Con,"main"),
not instd(X,𝑁𝑂𝐴𝐷𝐷𝐶,Con,"main").

instd(X,𝑁𝑂𝐴𝐷𝐷𝐶,Con,"main") :- instd(X,"Named",Con,"main"),
not instd(X,𝐴𝐷𝐷𝐶,Con,"main").

Clearly, the same can be done for deletion and non-deletion.

This specialized translation for our setting leads to a significant performance improvement.

While the original encoding only allows us to generate new scenes using tiny starting scenes, the

improved strategy allows inference of the real world scenes from the ontology within seconds.
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Figure 5: Solving time after using the General (top) and Specialized (bottom) translations.

5.2. Scalability

We briefly investigate how large the instances that we can solve can become, while maintaining

a low runtime. Here, we compare the original translation, denoted General, and the specialized

one, denoted Specialized.

Secondly, we investigate how much the solving time depends on (i) the number of objects in

the scene and (ii) the number of contexts. We vary (i) between 1 and 20 and (ii) between 1 and 5

on a randomly chosen example scene from the ontology.

Here, we use clingo [16] on the generated programs with input option “-t 3” to specify that

three threads in parallel should be used to solve the problem. We apply a time limit of 120

seconds and assign runs that do not finish during this time a runtime of 120 seconds.

The results of our investigation are given in Figure 5. We see that even if only one context

is used, the runtime after General grows quickly. While it still remains in a feasible range

when using one context and up to 20 objects in the scene, the same cannot be said when more

contexts are used. For five contexts, solving already becomes slow when ten or more objects

are included in the scene. Additionally, the original scene has many more objects (more than

300), thus, this translation can only be employed to restricted examples, even if there is only

one context.

On the other hand, for Specialized we see that the solving time is consistently far below one

second, even when using all five contexts and 20 objects in the scene. Note here the different

limits of the Y-axis, which we adapted to make the runtimes visible. Even using the full scene,

which constitutes a realistic industry size example (including more than 300 objects) the solving

time remains at around 0.67 seconds. We observed a similar effect in the grounding size, which



went to around 80 thousand rules and did not finish with more than half a million rules already

produced for the specialized and general encoding, respectively.

We see that while the original translation General is able to handle a broader range of MR-

CKRs, it pays off to use the specialized translation Specialized in our setting. With Specialized

we can generate new scenes in subsecond times, even if the full scene (i.e., all its objects) and

all contexts are used. This suggests that with Specialized we can also generate new inputs for

more complex semantic conditions and base ontologies than the ones provided in our prototype,

giving us interesting opportunities to extend our work in the future.

6. Conclusion

We have introduced a new framework to generate new interesting inputs for neural models

based on existing ones, in particular the setting of scene generation for AV scene data. Notably,

our framework does so based on symbolic reasoning methods. This allows us, on the one hand,

to incorporate real world knowledge (in the form of contextual knowledge) that ensures that

the generated inputs are realistic, and, on the other hand, to formulate a semantic criterion that

should be satisfied by the new input. We saw that all components that we incorporated in our

framework add their respective benefits:

– MR-CKR allows us (i) to incorporate ontological knowledge easily and (ii) to perform

different modifications in different contexts.

– Algebraic Measures allow us to easily specify a cost value to optimize.

– ASP, as a declarative backend programming language, allows us to perform reasoning/scene

generation efficiently using standard solvers.

While we only considered a small example in our prototype, it successfully generates new scene

descriptions. Furthermore, as it can be easily generalized to the generation of different types of

scenes, it provides a proof of concept of our approach.

In future work, it will be interesting to extend this example with more complicated semantic

descriptions of interesting scenes gathered by inspecting poor performing inputs for a prediction

task with a neural model: in particular, it would be interesting to use more complex contextual

structures to represent different variations of the scenes, but also use inputs performances to

give a quantification of the more interesting cases to be generated. Another open challenge

is to use the symbolic description of the new scene to generate images that can be fed to the

neural model and assess how much training with these new examples improves the network

performance.
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