
1

On the impact of sensors update in declarative AI for
videogames
Denise Angilica

1
, Giorgio Michele De Giorgio

1
and Giovambattista Ianni

1

1University of Calabria

Abstract

Declarative methods such as Answer Set Programming show potential in cutting down development

costs in commercial videogames and real-time applications in general. Sensors update is one of the major

bottlenecks preventing their adoption in such dynamic domains. In this work we show a new optimized

approach for the sensors update cycle deployed in our ThinkEngine, a framework in which a tight

integration of declarative formalisms within the typical game development workflow is made possible in

the context of the Unity game engine. ThinkEngine allows to wire declarative AI modules to the game

logic and to move the computational load of reasoning tasks outside the main game loop using an hybrid

deliberative/reactive architecture. In this paper, we discuss the crucial role of the sensors update cycle

in the run-time performance of our framework and then we propose a new, optimized, sensors update

workflow. After describing the new approach, we report about performance improvements.

Keywords
Answer Set Programming, Declarative Methods, Game Design, Knowledge Representation and Reasoning,

Unity

1. Introduction

The interest of the videogame industry in AI research is not new, both whether we are talking

of inductive/machine learning-based techniques or knowledge-based, deductive techniques [1].

In this respect, declarative methods show potential benefits, like enabling the possibility of

specifying parts of the game logic in a few lines of high-level statements. Possible applications

range from defining the general game logic, to describing non-player characters, programming

tactic and/or strategic credible AI behaviors, to expressing path planning desiderata, non-player

resource management policies and so on.

Many examples of the usage of declarative languages in the industrial videogame realm

exist, starting from the pioneer F.E.A.R. game [2], which used STRIPS-based planning [3].

Other remarkable examples are the games Halo [4] and Black & White [5]. If we look at

videogames from the basic research perspective, it must be noted the longstanding interest in

using (video)games as a controllable and reproducible setting in which to face open research

Original work.

ASPOCP 2023 : 16th Workshop on Answer Set Programming and Other Computing Paradigms
$ denise.angilica@unical.it (D. Angilica); gmdg141995@gmail.com (G. M. De Giorgio); ianni@unical.it (G. Ianni)

� 0000-0002-4069-978X (D. Angilica); 0000-0003-0534-6425 (G. Ianni)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:denise.angilica@unical.it
mailto:gmdg141995@gmail.com
mailto:ianni@unical.it
https://orcid.org/0000-0002-4069-978X
https://orcid.org/0000-0003-0534-6425
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


issues: one might cite the GDL [6], VGDL [7] and Ludocore [8] which are languages adopted for

declaratively describing General Game Playing [9]. The Planning Domain Definition Language

(PDDL) found natural usage in the videogame realm [10, 11, 12]; among its sister languages,

we will herein focus particularly on Answer Set Programming (ASP), the known declarative

paradigm with a tradition in modeling planning problems, robotics, computational biology as

well as other industrial applications [13]. ASP does not come last in its experimental usage in

videogames: it has been used to various extents, e.g., for declaratively generating level maps [14]

and artificial architectural buildings [15]; it has been used as an alternative for specifying general

game playing [16], for defining artificial players [17] in the Angry Birds AI competition [18], and

for modelling resource production in real-time strategy games [19], to cite a few. Despite this

potential, however, performance and integration shortcomings are still a limit to the widespread

adoption of declarative methods in professional videogames: ASP makes no exception in this

respect.

Two aspects are of concern: i) integration, i.e., the ease of wiring declarative modules with

other standard parts of the game implementation, and ii) performance in real-time contexts.

Concerning the first issue, we build on our recent proposal of ThinkEngine [20], a tool working

in the known Unity game engine [21], which allows wiring declaratively-programmed Brains
to videogame implementations.

As for the performance issues, first recall that an ASP solver works by taking in input some

declarative specification 𝑆, a description 𝐷 of the input problem at hand and produces output

answer sets, which encode a description of possible solutions to the input 𝑆 ∪𝐷.

It is known that ASP solvers do not exhibit an acceptable performance for fast-paced and

repeated evaluation. With this in mind, we already moved some steps forward by equipping

our ThinkEngine with the Incremental-DLV2 solver [22] that allows for faster and incremental

answer sets generation in a variety of domains. However, since the game-world is dynamic,

there is the need to collect game’s information and translate it in logical assertions to be fed

in input to the solver: the impact of this job should not be underestimated as it can be as time

consuming as answer set generation, if not properly implemented.

In this paper, after briefly presenting the features of the ThinkEngine system, we show a new

approach for implementing the sensing update cycle based on a new sensor update workflow and

we report about experiments on the new ThinkEngine version, compared with its older version

whose performance was badly affected by the previous sensor update cycle implementation.

2. ThinkEngine overview

ThinkEngine [20] is a system allowing to integrate declarative-based reasoning modules in a

videogame or any other kind of software developed in Unity [21]. Unity is a reference cross-

platform game engine primarily used to develop videogames and simulations for more than 20

different platforms like mobile, computers, and consoles [23].

In Unity the game-world’s objects are called GameObject (GO) and their behavior is defined

by enriching them with Components that are scripts encoding specific aspects of GOs. The

main elements of ThinkEngine are the so called Brains. Brains can be attached at will to game

characters, they can drive parts of the game logic, and can be used in general for delivering AI



at the tactical or strategic level within the game at hand.

One can have planner brains or reactive brains, which respectively make different types of

decisions: deliberative ones (i.e., plans), which, in the terminology of our ThinkEngine, are

sequences of actions to be executed in a programmable order, or reactive decisions which can

have an immediate impact on the game scene. Plans work in the spirit of the Goal Oriented

Action Planning methodology (GOAP), a popular way of deploying academic planning in

the realm of videogames since its introduction in F.E.A.R. [2]. Multiple planner brains can

be prioritized to control the same character, thus introducing a form of multiple-behavior

programming. Moreover, as game environments are subject to fast changes, one can program

the appropriate plan aborting logic.

ThinkEngine has been developed having the integration of declarative ASP modules in mind,

but other types of automated reasoning can be in principle wired (e.g., PDDL), by writing the

appropriate glue code. ASP specifications are composed of set of rules, hard and soft constraints,

by means of which it is possible to express qualitative and quantitative statements. In general, a

set of input values 𝐹 (called facts), describing the current state of the world, are fed together

with an ASP specification 𝑆 to a solver. Solvers in turn produce sets of outputs 𝐴𝑆(𝑆 ∪ 𝐹 )
called answer sets. Answer sets contain the result of a decision-making process expressed in

terms of logical assertions. These, depending on the application domain at hand, might encode

actions to be made, employee shifts to be scheduled, protein sequences, and so on.

ThinkEngine is integrated in the Unity game engine both at design-time and at run-time. At

design-time, one can add, wire and program brains in the game editor. A brain can be wired

to sensor inputs, and one can decide where a brain acts on the game by connecting actuators
or defining plan actions. Sensor values can be aggregated within a time window according

to a policy of choice (like max, min, average, oldest or newest value), while Triggers can be

defined to program when brain reasoning activities must take place at run-time. Brains can

be embedded in reusable objects, called prefabs in the Unity terminology. At run-time, most

of the game runs in the usual single-threaded game loop [24], while brain reasoning tasks are

offloaded to separate threads. An information-passing layer allows communication between

brains and the main game loop. In this latter, a sensor update cycle periodically refreshes sensor

readings. Inputs (i.e., sensor readings) and outputs (i.e. actuator values or plans) of brains are

bidirectionally converted to/from the ASP-Core2 format [25], according to a properly defined

mapping discipline between the game world data and ASP logic assertions.

3. The sensors update cycle

Sensors play a crucial role in various domains where the collection of real-time data is essential

for decision-making, monitoring, and control. There are several domains where real-time sensor

readings are crucial such as healthcare, robotics, gaming, sports, home automation, and more.

Sensor technology continues to evolve, enabling new applications and driving advancements in

various industries.

The continuous reading of data structures in order to check if values have changed in a

time-critical manner poses several challenges and requires avoiding some drawbacks. There are



MappingUnity

Knowledge

Sensors

Decision
Appliers

ASP Solver

Brains

THINK

SE
NS
E

ACT

Figure 1: The ThinkEngine run-time architecture.

a number of issues associated with the process, especially concerning performance impact and

resource utilization.

An informed decision-making reasoning task requires the availability of up-to-date and

comprehensive sensor values. In this respect, a fruitful enactment of ASP within a highly

dynamic environment cannot ignore this fundamental aspect. Let us assume sensor readings

are modeled as a pool of propositional facts 𝐹 . 𝐹 should fairly reflect the latest readings from

the game scene before being fed as input to the solver of choice.

One can implement the sensors update cycle basically in two distinct ways. Let us assume

a sensor collector node 𝐶𝑁 keeps track of the latest readings 𝐹 of a set of sensors: i) with a

push approach, sensors notify pro-actively 𝐶𝑁 of their changes, and 𝐶𝑁 keeps track of the

update; ii) in the pull approach, 𝐶𝑁 cyclically reads data from the pool of sensors in order

to detect possible changes. Clearly, in the pull approach, 𝐶𝑁 must have an active role and is

subject to a heavier computational load; with the push approach, some computational load is

shifted to the remote sensing nodes. The implementation of a push methodology is however

not straightforward, and some care must be given in order to avoid that 𝐶𝑁 is flooded with

notifications for even the slightest change: this is especially important when sensors range over

continuous values.

It must be however noted that in simulated environments deployed within a single computing



node, the shift of computational load towards remote sensing nodes is mostly fictitious. In

the specific case of game engines, one has to recall that the game scene data structures are

accessible only within the single-threaded game loop. The Unity game engine does not make

an exception in this respect.

Furthermore, although feasible in principle, the push approach would put a further burden

on game designers. Indeed, to achieve a push-based update cycle, game designers would have

to modify their existing implementation by enriching it with notification glue code attached to

all the property values to be sensed. This approach does not fit the spirit of ThinkEngine whose

goal is to reduce to the bare minimum the effort required to game designers.

We thus opted for a pull-based approach, which led to our old implementation (𝐼𝑂 in the

following). 𝐼𝑂 made use of a reflection layer that, at run-time, would navigate object properties

and retrieve the sensor information to be passed to the reasoning layer [26]. In the next section,

we will overview the role of run-time reflection in this process, and we will introduce the new

approach 𝐼𝑁 where the usage of reflection is moved at design-time, thus reducing the time

required to pull data at each iteration.

4. Improving sensors performance of ThinkEngine

In previous versions of ThinkEngine, the Sensors module consisted mainly of four interacting

classes:

• SensorConfiguration. This class inherits from MonoBehaviour, the class used in Unity

for defining Components of GOs. When designers want to observe the properties of a

given game object 𝐺, they need to add a SensorConfiguration to it. Properties of

interest in the 𝐺 can be selected and added to the SensorConfiguration. When a

property is selected as a sensor, an aggregation function can be chosen, which is applied

to the sequence of the last recorded values for the sensor at hand (default is 200). The

aggregation function options include maximum, minimum, average, oldest, and newest

values.

• MonoBehaviourSensorsManager. An instance of this class is automatically added when

the designer inserts a SensorConfiguration and is meant to handle the instantiation

of sensors at run-time. For each SensorConfiguration and each property, this class

instantiates a single sensor for basic type properties. For complex data structures, such as

lists, the number of instantiated sensors matches the number of elements in the collection.

In the latter case, it is dynamically checked whether the size of the data structure has

changed at run-time. Whenever the data structure increases in size, new sensors are

instantiated, while the removal of elements causes the destruction of the homologue

unused sensors.

• Sensor. A sensor is an object associated with a single property or an element of a data

structure. Currently, ThinkEngine supports basic types such as integers and booleans,

and some data structures such as lists and one-dimensional and two-dimensional arrays.

• SensorsManager. A singleton instance of this class performs the sensor update cycle at

run-time. This cycle involves the following operations: for a given sensor 𝑆 attached



on a property 𝑃 (1) its value is updated (UpdateValue), (2) it is checked whether the

corresponding MonoBehaviourSensorsManager should instantiate or delete sensors

(Manage), and (3) 𝑆 is serialized to a string value in the format of a logic assertion for the

ASP solver (Map).

In the 𝐼𝑂 implementation, all the instantiation, management and update steps use reflection

techniques [27] to achieve their goals. Recall that in object-oriented programming reflection

refers to the ability of a program to examine and modify its own structure and behavior at

runtime. In a sense, reflection corresponds to higher-order reasoning and reification in logic.

For instance, by means of reflection, one can list and modify properties and methods of a given

object at run-time, although this capability comes at the price of slower access to data structures.

In order to give an idea of the actual update process, let GO be a game object of interest for

the AI module, let C be a component of GO, let Obj be a property of C and list a property of

Obj pointing to a list of integers 𝐿. At run-time, the property retrieving process would work

as described in Algorithm 1. This process must be repeated each time that an instantiation

(Algorithm 2) or manage (Algorithm 3) or update (Algorithm 4) operation has to be performed.

Indeed, throughout the game, the value of properties can change at any level of the hierarchy.

In the three latter algorithms, SC is a Sensor Configuration associated with GO. Elements in

SC.PropertyNames point to all the properties relevant for the AI module. Each element is a list

of strings, each 𝑖-th element corresponding to the name of a property at the 𝑖-th level of the

hierarchy. The serialization operation of the sensor values, i.e. the final translation in logical

assertions, does not need to retrieve the coordinates of the property at hand since all the needed

information, at that point, is stored in the sensor.

Algorithm 1 Property Retrieval

1: Input: {}
2: Output: Property 𝑃
3: 𝐶𝑜𝑚𝑝 = 𝐺𝑂.RetrieveComponentByName(𝐶);

4: if 𝐶𝑜𝑚𝑝 is not null then
5: 𝑃1 = 𝐶𝑜𝑚𝑝.Type().GetPropertyByName(𝑂𝑏𝑗);

6: if 𝑃1 is not null then
7: 𝑃 = 𝑃1.Type().GetPropertyByName(𝑙𝑖𝑠𝑡);
8: return 𝑃
9: end if

10: end if

Algorithm 2 Sensors Instantiation

1: Input: List of property names 𝑆𝐶.𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑁𝑎𝑚𝑒𝑠
2: Output: {}
3: 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 = 𝑆𝐶 .PropertyNames

4: while 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 is not empty do
5: 𝑃 = 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠.Pop()

6: 𝑃1 = RetrieveProperty(𝑃 )

7: if 𝑃1 is not null then
8: 𝑀𝑎𝑝𝑝𝑒𝑟 = GetMapper(𝑃1.Type())

9: 𝑀𝑎𝑝𝑝𝑒𝑟.Instantiate(𝑃1)

10: end if

11: end while



Algorithm 3 Sensors Management

1: Input: List of property names 𝑆𝐶.𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑁𝑎𝑚𝑒𝑠
2: Output: {}
3: 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 = 𝑆𝐶 .PropertyNames

4: while 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 is not empty do
5: 𝑃 = 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠.Pop()

6: 𝑃1 = RetrieveProperty(𝑃 )

7: if 𝑃1.size > OldSize(𝑃1) then
8: 𝑀𝑎𝑝𝑝𝑒𝑟 = GetMapper(𝑃1.Type())

9: 𝑀𝑎𝑝𝑝𝑒𝑟.InstantiateNewSensors(𝑃1)

10: end if

11: end while

Algorithm 4 Sensors Update

1: Input: List of property names 𝑆𝐶.𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑁𝑎𝑚𝑒𝑠
2: Output: {}
3: 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 = 𝑆𝐶 .PropertyNames

4: while 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 is not empty do
5: 𝑃 = 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠.Pop()

6: 𝑃1 = RetrieveProperty(𝑃 )

7: 𝑀𝑎𝑝𝑝𝑒𝑟 = GetMapper(𝑃1.Type())

8: 𝑀𝑎𝑝𝑝𝑒𝑟.UpdateSensors(𝑃1)

9: end while

In order to overcome performance impact issues, in a previous version of ThinkEngine [20] we

introduced a workload balancing strategy by distributing the whole update cycle (comprising

both the management step and the update step for each given sensor) over a number of frames.

This strategy is effective in spreading the computational load of the update cycle over longer

intervals of time. However, it is implied some aging of older sensor readings and it affects the

responsiveness of Brains. These have to wait for a full update cycle before being triggered. The

culprit of this loss of performance is mainly due to the heavy usage of reflection at run-time.

We thus opted for shifting the operations of reflection to design-time by providing the

ability to generate and compile ad-hoc run-time scripts for each target property. In other words,

Algorithm 1 is now executed at design-time and it is used in an iterative algorithm that generates

reflection-independent scripts to be executed at run-time. Each of these scripts is tailored to

a specific property 𝑃 so that at run-time all information about 𝑃 itself is available without

navigating the property tree. The impact on the designer’s effort is limited to prompting a code

generation task via Unity’s GUI.

Given a property 𝑃 , its sensor script generation process is as follows: first, we retrieve via

reflection the features of 𝑃 by navigating the property hierarchy of the GO that 𝑃 belongs to.

In particular, depending on the type 𝑇 of 𝑃 , we find the appropriate IDataMapper. The code

of a specific IDataMapper implements the serialization strategy transforming an instance of

type 𝑇 into a set of logical assertions in ASP syntax.

Once this information is collected, we dynamically generate some code to be compiled and

used at runtime using a template class that is completed in its parametric parts. The generated

sensor class inherits from an abstract class called Sensor and, therefore, implements three



Figure 2: Designer interaction with ThinkEngine.

methods:

• The Initialize method is responsible for initializing the sensor’s data structures;

• The Update method, called every frame, in the same way as 𝐼𝑂, performs both the

UpdateValue and Manage operations. In 𝐼𝑂 , the target property was visited twice: once

to determine if multiple sensors needed instantiation for complex properties like lists or

arrays, and again to observe the actual new value of the property. In 𝐼𝑁 , everything is

done in a single pass within the Update method of the Sensor object. Additionally, there

is no longer a need to instantiate a sensor for data structures. Each sensor, if required

by the property type, has data structures that can dynamically accommodate a variable

number of information, which can change at run-time;

• The Map method returns a string representing the fact(s) for this sensor to pass as input

to the ASP solver.

These methods collectively handle the update and mapping of the sensor’s data, providing

the necessary functionality for integrating the sensor with ThinkEngine.



Figure 3: Structure of the test.

5. Experiments

We conducted experiments on 𝐼𝑁 and 𝐼𝑂 in order to assess performance improvements and

identify strengths and weaknesses. Given the particular setting in which ThinkEngine works,

we devised a proper data collection experimental setting as described in Figure 3.

First of all, we are interested in recording frame durations for a given test that is run in an

experimental game scene. Intuitively, the shorter a frame cycle lasts, the higher framerate a



game can achieve. A test is run multiple times: in each run we increased the workload by adding

more sensors to the scene. This is repeated for a certain number of iterations or until the frame

rate dropped below a specific threshold.

To ensure meaningful measurements and isolate the performance of just the sensor update,

we took further measures:

• The computational load of the sensor update cycle should be dominant compared to the

rest of the application. We thus avoided to add Brains or any other computationally heavy

objects in the scene;

• We started the test in a build of the application rather than through the Unity Editor.

This avoids any interference from the Editor’s work that could affect the application’s

performance;

• Since the SensorsManager of 𝐼𝑂 adaptively manages the workload of the update cycle,

we disabled it. I.e. during the experiments, the SensorsManager of 𝐼𝑂 is forced to

perform updates for all active sensors in the same frame.

More in detail, the test procedure is as follows:

• Create a given number of GameObjects, each containing five sensors (i.e. we add a

SensorConfiguration with five properties of interest);

• Suspend the experiment for a fixed amount of time, in order to avoid inaccurate transient

measurements;

• Begin recording the duration of a given number of frames;

• Save all the recorded durations to a text file;

• If the average duration falls below a certain threshold or a certain number of iterations is

reached, stop the experiment. Otherwise, repeat all the steps.

The threshold for the average frame rate is set to terminate the experiment when the per-

formance deteriorates too much. Since the number of recorded frames is fixed, a very low

frame rate would result in a prohibitively long duration for the experiment. The suspension

of the experiment is done to avoid recording a transient performance impact caused by the

instantiation of GameObjects and writing to a file.

Three experiments
1

were conducted: i) the first one compared 𝐼𝑂 and 𝐼𝑁 on the same set of

parameters; ii) the second one aimed to determine how many sensors can be managed before

the performance becomes unacceptable with 𝐼𝑁 ; iii) the third experiment focused on identifying

the bottlenecks in 𝐼𝑁 .

The performance of 𝐼𝑁 is significantly better than the previous one (Figure 4). The new

version achieves a much higher average of frame per second (FPS) with the same number of

sensors, but it also scales much better when the number of sensors is increased. It must be noted

that 𝐼𝑂 goes below the acceptable threshold of 60 FPS as soon as half a thousand of sensors are

added. In the second experiment we kept the setting of the first experiment but we tested 𝐼𝑁



Figure 4: Comparing the two implementations.

Figure 5: FPS achieved based on the number of sensors in the scene.

only. It was possible to reach several thousand sensors before the test stopped when the lower

bound threshold of 60 FPS was reached.

Additional information was sought regarding the behavior of 𝐼𝑁 , specifically in order to

identify possible remaining bottlenecks in the update cycle. The third experiment was conducted

by measuring the computational cost of the Update method of the SensorsManager, and

comparing it with the additional work required to generate the mapping string. The results

indicate that a significant portion of the workload is attributed to the Map operation(Figure 6).

The serialization to logical facts made of strings results indeed in a considerable amount of

garbage generation, causing the Garbage Collector (GC) to work more frequently and for longer

periods, thus causing a faster decaying framerate.

1

https://github.com/DeMaCS-UNICAL/ThinkEngine-Sensors-Performance-Experiments

https://github.com/DeMaCS-UNICAL/ThinkEngine-Sensors-Performance-Experiments


Figure 6: The new bottleneck is the logical assertion generation.

6. Conclusions

While the videogame industry has long recognized the value of using games as controlled

environments for addressing open research issues, the integration and performance challenges

associated with declarative methods have hindered their widespread adoption. Our contribution

addresses these challenges by introducing the ThinkEngine system, a tool built on the Unity game

engine that facilitates the integration of declaratively-programmed "Brains" into videogame

implementations. This system has demonstrated improved performance over previous iterations,

overcoming limitations associated with the sensor update cycle.

Our experiments have shown that the new implementation of the sensing update workflow

in ThinkEngine outperforms its predecessor in all aspects. By leveraging a new approach to

collecting and translating game information into logical assertions for the ASP solver, we have

significantly reduced the time required for producing action to be executed. This improvement

enhances the real-time capabilities of ThinkEngine, making it a more practical and efficient

solution for incorporating declarative methods into professional videogames.

The results of our study highlight the increasing potential for declarative methods in the

videogame industry. Future work can focus on further optimizing performance, expanding the

range of declarative functionalities, and exploring additional applications of ThinkEngine in

different types of videogames.

Acknowledgments

This work was partially supported by: the PNRR MUR project PE0000013-FAIR, Spoke 9 - Green-

aware AI – WP9.1; the project “Declarative Reasoning over Streams” (CUP H24I17000080001) –

PRIN 2017 and by the LAIA laboratory (part of the SILA laboratory network at University of

Calabria).



References

[1] J. Pfau, J. D. Smeddinck, R. Malaka, The case for usable AI: what industry professionals

make of academic AI in video games, in: CHI PLAY (Companion), ACM, 2020, pp. 330–334.

[2] J. Orkin, Three states and a plan: the AI of F.E.A.R., in: Game Developers Conference,

2006.

[3] N. Nilsson, STRIPS planning systems, Artificial Intelligence: A New Synthesis (1998)

373–400.

[4] Halo, 2001. URL: https://www.xbox.com/en-US/games/halo.

[5] Black & White, 2001. URL: https://www.ea.com/games/black-and-white.

[6] M. R. Genesereth, N. Love, B. Pell, General game playing: Overview of the AAAI competi-

tion, AI Mag. 26 (2005) 62–72.

[7] T. Schaul, A video game description language for model-based or interactive learning, in:

CIG, IEEE, 2013, pp. 1–8.

[8] A. M. Smith, M. J. Nelson, M. Mateas, LUDOCORE: A logical game engine for modeling

videogames, in: CIG, IEEE, 2010, pp. 91–98.

[9] D. P. Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas, General video game AI:

competition, challenges and opportunities, in: AAAI, 2016, pp. 4335–4337.

[10] O. Bartheye, E. Jacopin, A real-time PDDL-based planning component for video games, in:

AIIDE, The AAAI Press, 2009.

[11] J. Robertson, R. M. Young, The general mediation engine, Experimental AI in Games:

Papers from the 2014 AIIDE Workshop. AAAI Technical Report WS-14-16 10 (2014) 65–66.

[12] J. Robertson, R. M. Young, Automated gameplay generation from declarative world

representations, in: AIIDE, AAAI Press, 2015, pp. 72–78.

[13] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37

(2016) 53–68.

[14] A. M. Smith, M. Mateas, Answer set programming for procedural content generation: A

design space approach, IEEE Trans. Comput. Intell. AI Games 3 (2011) 187–200.

[15] L. van Aanholt, R. Bidarra, Declarative procedural generation of architecture with semantic

architectural profiles, in: CoG, IEEE, 2020, pp. 351–358.

[16] M. Thielscher, Answer set programming for single-player games in general game playing,

in: ICLP, volume 5649 of LNCS, Springer, 2009, pp. 327–341.

[17] F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova, A. Tucci,

A. Wimmer, Angry-hex: An artificial player for angry birds based on declarative knowledge

bases, IEEE Trans. Comput. Intell. AI Games 8 (2016) 128–139.

[18] J. Renz, X. Ge, S. Gould, P. Zhang, The angry birds AI competition, AI Mag. 36 (2015)

85–87.

[19] M. Stanescu, M. Certický, Predicting opponent’s production in real-time strategy games

with answer set programming, IEEE Trans. Comput. Intell. AI Games 8 (2016) 89–94.

[20] D. Angilica, G. Ianni, F. Pacenza, Declarative AI design in Unity using answer set program-

ming, in: CoG, IEEE, 2022, pp. 417–424.

[21] Unity 3D game engine, Last accessed: Jan 2023. URL: https://unity3d.com/unity.

[22] D. Angilica, G. Ianni, F. Pacenza, J. Zangari, Integrating asp-based incremental reasoning

in the videogame development workflow (application paper), in: PADL, volume 13880 of

https://www.xbox.com/en-US/games/halo
https://www.ea.com/games/black-and-white
https://unity3d.com/unity


Lecture Notes in Computer Science, Springer, 2023, pp. 96–106.

[23] F. Messaoudi, G. Simon, A. Ksentini, Dissecting games engines: The case of unity3d, in:

NetGames, IEEE, 2015, pp. 1–6.

[24] Unity, order of execution for event functions, Last accessed March 2023. URL: https:

//docs.unity3d.com/Manual/ExecutionOrder.html.

[25] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,

M. Maratea, F. Ricca, T. Schaub, ASP-Core-2 input language format, Theory Pract.

Log. Program. 20 (2020) 294–309.

[26] D. Angilica, G. Ianni, et al., Tight integration of rule-based tools in game development, in:

AI*IA, 2019.

[27] M. H. Ibrahim, Reflection in object-oriented programming, Int. J. Artif. Intell. Tools 1

(1992) 117–136.

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

	1 Introduction
	2 ThinkEngine overview
	3 The sensors update cycle
	4 Improving sensors performance of ThinkEngine
	5 Experiments
	6 Conclusions

