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Abstract
The use of assurance cases is gaining popularity, particularly in the safety-critical system industry, as an
organized approach to submitting documentation for the safety and security certification of systems.
However, these arguments can become overwhelming and complicated, even for moderately complex
systems. Therefore, there is a compelling requirement to develop new automation strategies that can aid
in creating and assessing assurance cases. Existing assurance-case tools primarily automate syntactic
analysis, focusing on structural completeness, while providing limited or no support for semantically
evaluating the logical aspects of the assurance case.

In prior work, we introduced a framework called Assurance 2.0, which aims to enhance the rigor of
assurance cases by emphasizing the reasoning process, evidence utilized, and explicit identification of
counter-claims (defeaters) and counter-evidence. In this paper, we present a new approach to enhancing
Assurance 2.0 by incorporating semantic rule-based analysis capabilities. Firstly, we systematically con-
vert the assurance case into Prolog predicates and constraints. Then, leveraging the analysis capabilities
of the s(CASP), a goal-directed top-down solver for Constraints Answer Set Programs, we evaluate the
semantic properties of assurance cases, including logical consistency, completeness, and indefeasibility.
The application of these analyses provides both authors and evaluators with higher confidence when
assessing the assurance case.

Keywords
Assurance Cases, Semantic Analysis, s(CASP)

1. Introduction

In recent years, there has been a growing interest in the safety-critical field to develop assurance
cases as a means of establishing credible confidence in claims made about a system, particularly
regarding its safety or security. These assurance cases typically consist of a claim that defines
the desired property, evidence supporting the design and construction of the system, and
a well-structured and persuasive argument demonstrating that the evidence is sufficient to
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support the claim. Unlike the traditional approach of presenting a laborious checklist of activities
performed or not performed for system assurance, assurance cases focus on creating a systematic
argumentative record. As a result, they are widely recommended as a practical alternative for
organizations seeking safety/security certification from agencies such as the FAA [1].

At its core, a correct assurance case is one in which the top-level claim logically follows
from the composition of its sub-claims, arguments, and supporting evidence. However, even
for systems of moderate complexity, assurance cases can become exceedingly large, consisting
of extensive sets of arguments and a substantial body of evidence, all expressed in natural
language. Consequently, both the authors and evaluators of assurance cases must diligently
verify the correctness of the arguments and evidence and ensure they logically support the
stated claims about the system. Unfortunately, this process is time-consuming, intellectually
demanding, and prone to errors. The risk lies in the possibility of approving flawed assurance
arguments and consequently certifying systems that are unsafe or insecure.

To address this challenge, researchers and practitioners worldwide have developed numerous
tools and techniques aimed at automatically analyzing specific syntactic elements of assurance
cases. These include ensuring adherence to notations, assessing structural completeness, and
conducting grammar and spell checks within the natural language descriptions [2]. However,
there is currently not adequate support for systematically reasoning about the semantics or
underlying meaning of the claims, arguments, and evidence presented in assurance cases, as
well as verifying the accuracy of the logical relationships established throughout the case.
Nevertheless, implementing rigorous automation for semantic analysis would reduce human
effort and enhance confidence in the assurance case.

This paper presents our approach to conducting a formal analysis of specific semantic aspects
within assurance cases. We have previously introduced Assurance 2.0 [3], a novel framework
designed to enhance the rigor of assurance cases by emphasizing the reasoning process, evi-
dence utilized, and explicit identification of defeaters (or counter-claims) and counter-evidence.
The accompanying tool, Assurance and Safety Case Environment (ASCE) [4], facilitates the
systematic creation of Assurance 2.0 cases and performs structural analysis to ensure their
proper structure. The approach detailed in this paper extends this previous work by leveraging
the s(CASP), a goal-directed top-down solver for Constraints Answer Set Programs [5, 6], to
semantically reason about various properties of the assurance case such as consistency (absence
of logical contradictions), indefeasibility (absence of violations), completeness, etc.

We begin by formally establishing the objects pertaining to the system under consideration,
the properties that are asserted, and the operational environment for each claim, argument, and
evidence. Although this step currently requires manual effort, we are actively investigating
methods to automatically extract this information from natural language descriptions. Subse-
quently, we automatically convert the entire assurance case into predicates and constraints
expressed in Prolog as a logic programming language. We then interface with the s(CASP)
reasoning engine to systematically examine the consistency of the predicates, identifying any
violations of the constraints, and assessing the completeness of the assurance arguments.

In order to illustrate the concepts of our approach and tool-suite, we will use a generic
example [7] that concerns an assurance case built to determine whether the father of Jon (a
teenager not yet of driving age) will allow him to ride a car with Tim (a college student known
to Jon’s family) to a football game. The top-level claim “Tim is a safe enough driver (to take



Jon to the game)" is supported by sub-claims and corroborating evidence that establish Tim’s
capability to drive safely. While there are more details associated with each claim and argument,
we will focus on the high-level particulars solely for the purpose of illustration.

2. Assurance 2.0 Methodology: A brief primer

Assurance 2.0 is a modern framework to support reasoning and communication about the behav-
ior and trustworthiness of engineered systems and their certification. This framework adopts a
Claims-Arguments-Evidence approach, with an increased focus on the evidence presented, the
logical reasoning utilized, and the exploration and assessment of counter-claims [8, 9].

Figure 1: Safe Driver Case in Assurance 2.0

Figure 1 shows an Assurance 2.0 case for the safe driver example. It has a top-level claim (blue
ellipse) that is hierarchically refined into fine-grained sub-claims (blue ellipses) via arguments
(green round-edge rectangles) that are eventually discharged by evidence (purple rectangles)
at the leaf level. The rationale for such refinements is captured in side-claims (yellow ellipses).
Further, doubts, concerns, or counter-claims on any part of the case are captured as defeaters
(red ellipses) [8]. Defeaters provide the ability for authors and reviewers to challenge the case,
which can later be addressed by adjusting the case or analyzing and disputing the challenge.

Recently, Assurance 2.0 is augmented with the notion of theories [10]. Theories are reusable
assurance case fragments that resemble claims in structure but are designed to be applicable to
a wide range of objects rather than specific system elements. They are comparable to function
calls in typed programming languages. When applying a theory in an actual assurance case, the
author instantiates it with concrete objects of the system in consideration. For example, instead
of defining the assurance case for Tim (Figure 1), a “Theory of Safe Driver", Figure 2, can be
defined for a generic human “X". When applying this theory, the author must systematically



instantiate X = Tim (or any other driver), and supply all the evidence obligations for Tim, to
establish that Tim is a safe driver. A primary benefit of using theories is that many of these
theories will have been used and analyzed previously, and therefore provide “pre-certified"
sub-cases whose defeaters have been considered and eliminated.

Figure 2: Theory of Safe Driver

3. Assurance Case to Logic with Semantic Formalism

To a large extent, assurance cases rely primarily on free-form natural language to document
arguments and evidence, despite having a well-structured graphical outlook. As the complexity
of the system being considered increases, assurance cases become excessively large and complex.
In current practice, authors and evaluators manually review the entire case to ensure semantic
correctness (the top-level claim logically follows from its sub-claims, arguments, and evidence),
and that there are no logical inconsistencies or fallacies. Unfortunately, this process is time-
consuming and intellectually demanding, due to the inherent ambiguity, and inconsistency
of natural language. Consequently, automating semantic reasoning would greatly reduce
human effort and enhance the quality and confidence in these cases. However, free-form natural
language is not conducive to such automation. Conversely, fully formal notations are impractical
to represent assurance arguments.

To that end, we define a balanced approach that presents details in an intuitive and "minimally"
formal way. We take a two-step approach, where we first categorically ground the terms used
in the descriptions. Then the assurance case is transformed into a logical notation that can be
subject to various formal analyses at the back end.

Step 1: Objects-Properties-Environment Specification:
Fundamentally, assurance cases consist of blocks or "nodes" that describe the properties or
relationships applicable to objects in a certain environment. Leveraging this general structure
of description, we independently define the "Properties," "Objects," and "Environment" for
each node, allowing us to formally express statements like "Object O satisfies property P in



environment E." For instance, the assertion "Tim is a safe driver in the US" can be deconstructed
into "Object = Tim," "Property = safe driver," and "Environment = US." When multiple objects and
properties are associated with a node, it becomes necessary to specify their relationships, such
as each property is applicable to all objects or each object or a specific object. This relationship
is preserved and meticulously converted into appropriate logic predicates.

Currently, our ASCE assurance case authoring tool enables users to explicitly define objects,
properties, and environments, along with their relationships to the assurance nodes, in addi-
tion to providing natural language descriptions. While the tool currently supports this dual
specification, we are actively exploring methods to automatically extract Objects-Properties-
Environment information from the descriptions, thereby streamlining the process.

Step 2: Transformation to Logical Notation
In order to convert the assurance case into a logical notation suitable for the desired semantic
analysis, we opt for the domain of Logical Programming (LP). This choice is based on the
fact that each concept in Assurance 2.0 and the intended analysis can be readily mapped to
corresponding concepts in LP. The mapping between these concepts is illustrated in Table 1.

Assurance 2.0
Concept

Mapping to LP

Top-level Claim In the assurance case, the top-level claim aligns with the concept of queries in
LP, which can be subjected to logical entailment analysis.

Sub-Claims and
Side-Claims

Sub-claims and side claims are analogous to predicates in LP serving the purpose
of capturing the relationships between objects.

Argument Arguments that establish relationships among sets of objects-properties-
environment can be equated to rules in LP where logical implications are utilized
to describe these relationships.

Evidence Evidence artifacts that establish the truth about the system are facts in LP
Defeater Defeaters are counter-claims to provide support for not believing that claim,

which is the same as negation in formal logic
Binding theory definitions require the specification of variables for objects and the envi-

ronment, that will be subsequently instantiated with terms when applied to a
specific assurance case. This process aligns with the concept of substitution in
LP, which involves dynamically mapping variables to terms.

Reasoning Assurance case reasoning revolves around demonstrating that a top-level claim
is entailed based on its arguments and evidence. This directly corresponds to
proofs in logic, where the validity or truth of a claim is through logical reasoning.

Table 1
Concept Mapping between Assurance 2.0 and LP

By utilizing the Objects-Properties-Environment specification provided in each assurance
case node, and based on the above concept mapping, the ASCE tool automatically translates the
case into predicates in Prolog, a widely used logical programming language. The transformation
process follows the guidelines presented in Table 2. In this table, the term ’ClaimPredicate’ refers
to a Prolog predicate represented as the claim([O], [P], [E]), where [O], [P], and [E] represent
comma-separated lists of Objects, Properties, and Environments associated with each assurance
node. As we formalize the properties, the object-property relationships specified during the



definition of objects and properties are preserved. This preservation ensures precision in the
analysis. Consequently, the ’PropertyList’ is derived from the ClaimPredicate based on the
specified object-property relationship, as enumerated in Figure 3. Furthermore, to maintain
the structure of the case during export and ensure traceability, certain metadata (such as node
identifiers, descriptions, etc.) is also included within the exported predicates.

Node Prolog Translation

Claim

claimStmt(‘Claim_ID’, Application, ClaimPredicate, ‘Description’) :-
[claimStmt|evidenceStmt|side_ClaimStmt], ClaimPredicate, theory (‘Theory_ID’,
Application, Claim).

theory (‘Theory_ID’, Application, Claim).

Evidence
evidenceStmt(‘Evidence_ID’, Application, ClaimPredicate, ‘Artefact’, ‘URI’) :-
ClaimPredicate.

ClaimPredicate :- PropertyList.

Side Claim
side_ClaimStmt(‘Side_Claim_ID’, Application, ClaimPredicate, ‘Justification’) :-
[claimStmt|evidenceStmt|side_ClaimStmt], ClaimPredicate.

ClaimPredicate :- PropertyList.

Defeater
false :- defeater(‘Defeater_ID’, defeats(‘Node_ID’), [O],[P],[E]).
defeater(‘Defeater_ID’, defeats(‘Node_ID’), [O],[P],[E]) :- PropertyList.

Table 2
Assurance 2.0 Node Mapping to Prolog

Figure 3: Object-Property Relationships

When ASCE tool exports the assurance case as Prolog predicates, to methodize the analysis,
they are categorically saved in separate files: (i) the top-level claim is saved as a query, (ii) the
negation of the top-level claim is saved as a negative query, (iii) the body of the assurance case
– arguments, sub-claims, side-claims, and evidence – are saved together as rules and facts, (iv)
theory definitions are saved separately, while their reference to applications are saved along
with the body of the assurance case, and (v) defeaters are saved as integrity constraints that
counter the claims. In the following section, we elaborate on various formal analyses.

4. Semantic Reasoning

The fundamental reason to translate the assurance case into Prolog predicates is to allow
semantic analysis, which is otherwise not possible. In particular, our interest is to rigorously
analyze the assurance case for the various properties that include but are limited to the following:



• Indefeasibly Justified: Possession of adequate arguments and evidence that logically entails
the top-level claim, and no unresolved defeaters remain.

• Theory Application Correctness: Guarantee of correctness of application of theories
• Property-Object-Environment Definition Consistency: Absence of contradictions in the

property-object-environment definitions.
• Evidence Validity and Adequacy: Existence and appropriateness of all evidence to support

their respective claim
• Completeness: Completeness with respect to the assurance case covering the domain of

objects, properties, and environments defined for the system in consideration
• Harmonious Coexistence of Theories: Ability among theories (definitions and their applica-

tions) to coexists within the same assurance case without causing logical violations.

In order to perform the aforementioned analysis of Prolog predicates, we leverage the ca-
pabilities of s(CASP), a logic programming solver. Our choice of s(CASP) is based on several
reasons. Firstly, s(CASP) supports automated commonsense reasoning, which enables inferences
to be drawn from a set of predicates or knowledge in a manner similar to human reasoning.
This feature is particularly well-suited for reasoning about assurance cases. Moreover, s(CASP)
facilitates deductive and abductive reasoning, which is essential for proving whether a top-level
claim can be deduced based on the arguments, evidence, and assumptions in assurance cases.
Also, s(CASP) supports reasoning about global constraints and invariants, making it capable of
analyzing scenarios that violate these constraints. Additionally, the top-down solving strategy
employed by s(CASP) generates concise, human-understandable justifications [11]. These justifi-
cations play a crucial role in precisely identifying the reasons for assurance failure and resolving
concerns. Furthermore, s(CASP) offers support for various forms of negation, which have di-
verse applications in assurance reasoning. For instance, we currently utilize default negation to
derive detailed justifications for why the top-level claim cannot be proven. Additionally, we are
exploring the use of Negation as Failure, which involves deriving negative conclusions from the
absence of positive information, to automatically identify defeaters. Finally, s(CASP) possesses
the ability to perform non-monotonic reasoning, allowing for the revision of conclusions in
light of new information. This feature is particularly valuable for incrementally assessing and
improving the strength of assurance cases during the authoring process.

In essence, using s(CASP), the verification of the correctness of the assurance case involves
executing the query along with the body of the assurance case and defeaters. A successful
execution results in the display of a “model," which essentially is a detailed explanation as to
why the top-level claim is entailed. Conversely, if the query fails, no model is returned. In such
cases, executing the negated query allows retrieving an explanation for the cause of the failure
and its specific location. The returned model is presented in a tree structure, facilitating the
understanding of the trace of what was entailed or failed. Failures typically occur due to the
violation of one or more of the analyzed properties listed below.

Indefeasibly Justified
This semantic property is fundamental to an assurance case. Possessing this property implies: (a)
The top-level claim is sufficiently supported by well-founded arguments and evidence, ensuring



justification. (b) There are no unresolved defeaters that could potentially alter the decision
regarding the top-level claim, called indefeasibility. When the positive query is successfully
executed in s(CASP) and an explanation is provided, it signifies that the assurance case indeed
possesses this property. Conversely, if the negative query is successfully executed, s(CASP)
returns the unresolved defeaters as global integrity violations. An example output illustrating
this scenario, for the safe driver example where claim node "C8" is defeated, is shown in Figure 4.

Figure 4: Execution output showing failure due to defeater in Safe Driver Case

Theory Application Correctness
As previously explained, a theory consists of properties that are applicable to specific types
of objects and environments. In theory nodes, objects, and environments are represented as
Prolog variables (names starting with an uppercase letter). During the authoring of assurance
cases, "types" of objects and environments, as well as all possible instantiations (constants
defined with lowercase letters) are all pre-defined. The author appropriately selects them during
theory definition and application. To ensure that incorrect instantiations are avoided, we utilize
s(CASP). The analysis involving theories is more complex compared to others since s(CASP)
dynamically associates the variables in theories with the constants in theory application.

When utilizing theories in the analysis process with s(CASP), it involves verifying the cor-
rectness of theory application based on two key factors: (a) Ensuring that the constants chosen
as objects and environments align with the respective instantiations defined in the theory. (b)
Validating that the properties specified in the theory nodes correspond to the properties in
the corresponding application nodes. For instance, let’s consider the scenario depicted in the
"Theory of Safe Driver" definition and its application in Figure 2. A correct application of this
theory will yield a comprehensive justification tree, exemplified in Figure 5. However, if there
were any inaccuracies in specifying the properties or objects, executing the negated query will
result in a justification that can be used to trace the error and identify the issue at hand.

Property-Object-Environment Definition Consistency
Inconsistencies within the specifications of properties, objects, and environments in the nodes
of an assurance case can pose a problem as they may lead to flawed validation of assurance
arguments. While logical solvers can easily identify conflicts between predicates and their
negations in logical representations, conflicts based on natural language words are not as
straightforward to detect. For example, in natural language, words like ‘good driver’ and ‘bad



Figure 5: Snippet of the Execution output of consistent application of Theory of Safe Driver

driver’ are considered opposites, but in logic, they may not be. However, from an assurance
case perspective, it is crucial to semantically identify and report such opposites and conflicts.
To address this issue, we propose the introduction of specialized, domain-specific rules. For
instance, in the safe driver assurance case, conflicts among property specifications such as ‘good
driving habits’ for Tim in one node, and ‘bad driving habits’ for Tim in another, can be detected
and reported by s(CASP) by incorporating a rule that ‘bad driving habits’ for any person is the
negation of ’good driving habits’ for that person.

Evidence Validity and Adequacy
The provision of appropriate evidence is crucial to assurance cases. While ASCE tool struc-
turally detects claims with missing evidence nodes, incorrect or inadequate evidence within the
evidence node is essentially a semantic check. By introducing domain-specific rules relevant to
evidence will help automatically detect and report the issues. For instance, by introducing a
rule that requires testimonials of ‘good driving habit’ by two or more safe drivers (E1 node in
Figure 1), s(CASP) can report inadequacies in the provided evidence. Since s(CASP) can perform
substitution, these rules can be defined using Prolog variables and reused for other assurance
cases in the domain. We are currently investigating generic rules that can be broadly applied
to a class of evidence. For instance, test-case artifacts should also always have an associated
coverage analysis report.

Completeness
In general, completeness is the state of encompassing everything that is needed. Given a pre-
defined global set of objects-properties-environment for the system in consideration, and by
defining a rule such as ‘domain completeness’ that requires every property-object-environment
is used at least once in a claim or evidence node, we can leverage s(CASP) to analyze the



completeness of assurance case. For instance, in the safe driver case, if there are multiple types
of vehicle inspection records available in the domain, while Tim’s case only accounts for one of
them, s(CASP) can help report the incompleteness; this can either be resolved by adding the
evidence to the case or removing the additional one from the domain.

Completeness refers to the state of encompassing all the necessary elements. To assess the
completeness of an assurance case, we can utilize the pre-defined global set of objects, properties,
and environments for the system under consideration. By defining say, a "domain completeness"
rule that required every property-object-environment combination to be used at least once in a
claim or evidence node, and employing s(CASP) for analysis, we can evaluate the completeness
of the assurance case. For example, in the case of safe driver assurance, if there are multiple
types of vehicle inspection records available in the domain, but Tim’s case only included one of
them, s(CASP) can be leveraged to precisely identify the incompleteness.

Harmonious Coexistence of Theories
Theories are reusable assurance fragments that can be independently specified, and ‘pre-certified’
and be applied to different cases. when constructing assurance cases, more than one theory
may be applied to an assurance case. However, when multiple theories are linked and applied
within an assurance case, there is a risk of conflicting properties among their definitions or in
their concrete applications. We are currently exploring approaches to define novel rules and
will allow s(CASP) to check for the presence of conflicts, or determine that the theories can
harmoniously coexist within that assurance case.

The realm of semantic analysis offers a wide range of possible analyses. As part of our
ongoing work, we are exploring valuable and powerful properties to analyze. Automating these
analyses will provide valuable insights and relieve humans from repetitive tasks, leading to
improved decision-making regarding assurance cases.

5. Conclusion

Our Assurance 2.0 framework is designed to facilitate reasoning and communication regarding
the behavior and trustworthiness of engineered systems, with the ultimate goal of achieving
certification. In this paper, we have presented our approach to augment it with semantic analysis
capabilities. We begin by systematically converting the Assurance 2.0 case into Prolog predicates
and utilize s(CASP) to conduct various semantic analyses. We have conducted evaluations
on complex systems, and the preliminary results show promise. As a result, we are further
enhancing the capabilities of our tools and techniques to enable more in-depth analysis of the
semantics of assurance cases.
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