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Abstract
We examine how well the state-of-the-art (SOTA) models used in legal reasoning support abductive
reasoning tasks. Abductive reasoning is a form of logical inference in which a hypothesis is formulated
from a set of observations, and that hypothesis is used to explain the observations. The ability to
formulate such hypotheses is important for lawyers and legal scholars as it helps them articulate logical
arguments, interpret laws, and develop legal theories. Our motivation is to consider the belief that
deep learning models, especially large language models (LLMs), will soon replace lawyers because they
perform well on tasks related to legal text processing. But to do so, we believe, requires some form of
abductive hypothesis formation. In other words, while LLMs become more popular and powerful, we
want to investigate their capacity for abductive reasoning. To pursue this goal, we start by building a
logic-augmented dataset for abductive reasoning with 498,697 samples and then use it to evaluate the
performance of a SOTA model in the legal field. Our experimental results show that although these
models can perform well on tasks related to some aspects of legal text processing, they still fall short in
supporting abductive reasoning tasks.
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1. Introduction

The rise of transformer-based deep learning models [1] has brought remarkable advancements in
natural language processing (NLP), including tasks related to legal text processing [2, 3, 4, 5, 6, 7].
These advancements have the potential to improve access to justice and legal services for
underserved communities, and to enhance the efficiency and accuracy of judicial processes.

However, a critical component of legal intelligence is abductive reasoning, which is of
paramount importance for lawyers and legal scholars in formulating logical arguments, in-
terpreting laws, and developing legal theories [9, 10]. Figure 1 is an example of statute law
retrieval task requiring abductive reasoning skill in the existing COLIEE Competition [8]. Since
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Figure 1: An example of statute law retrieval task requiring abductive reasoning skill in COLIEE
Competition [8]. The truth value (No) of the statement is determined by assuming that the statement is
either true or false, and then searching for the appropriate legal article that provides the best explanation
for that assumption. In this case, the relevant article is Article 192, which provides an exception to
A’s ability to demand the return of the bicycle against B through an action for recovery of possession.
Abductive reasoning is utilized in determining that the statement’s value is ”No” based on the application
of Article 192 and the exception it presents.

transformer-based models have shown promising results in various NLP tasks within the legal
field, it is essential to evaluate their performance on tasks involving abductive reasoning to
better understand their capabilities and limitations as AI tools in the legal field.

Existing literature has explored the development and evaluation of transformer-based models
for legal text processing tasks such as legal document retrieval, summarization, entailment,
and question-answering. Yet, there is a gap in evaluating these models for the crucial task of
abductive reasoning. To address this gap, we first articulate an empirical method to reveal the
role of abductive reasoning in legal information processing. We identify an appropriate corpus
of examples by examining the ART dataset [11], which is the first large dataset for abductive
reasoning tasks, and 𝛼𝑁𝐿𝐼 task, which investigates the viability of language-based abductive
reasoning.

In this paper, we focus on:

• Enhancing the reliability of the dataset for abductive reasoning through task redefinition
and data augmentation.

• Evaluating the performance of a state-of-the-art (SOTA) transformer-based model in the
legal field on abductive reasoning tasks.



Our experimental results show that although the selected SOTA model can perform well on
tasks related to legal text processing, it still falls short in supporting abductive reasoning tasks,
shedding light on an important limitation of these models in legal reasoning. This study provides
a more comprehensive understanding of the capabilities of transformer-based models in the
legal domain, emphasizing the importance of abductive reasoning, which is often overlooked in
related research.

2. Background

2.1. Legal Text Processing

There has been significant research on the use of artificial intelligence and machine learning
(AI) in the legal field in recent years. This research has resulted in the development of a number
of state-of-the-art models that are able to perform various tasks related to legal text processing,
such as contract risk analysis and case law retrieval.

Deep learning models have the ability of automated latent feature extraction, which allows us
to use these models not only for similarity matching tasks but also in other semantic matching
tasks such as question answering [12, 13], machine reading comprehension [14, 15], image
retrieval [16] and entitymatching [17, 18]. These tasks are all important for the general challenge
of legal reasoning.

In the legal retrieval task, legal documents are usually structured and existing systems
are designed to retrieve relevant legal texts (e.g., regulations) based on a given query. This
task is an essential component of intelligent legal counsel systems and commonly appears
in legal automated processing competitions [19, 8, 20, 21]. One of the challenges in legal
information retrieval is that the available data is usually very limited. This is why the current
best systems often need to be based on some supportive rules or data augmentation methods.
As a consequence, Deep learning with transfer learning methods has been successfully applied
to this problem in a number of ways [12, 2, 22, 23, 24].

Retrieval tasks are foundational to many other legal text processing tasks. For example,
contract analysis often involves retrieving relevant provisions or clauses from a contract based
on a given query. Similarly, case law retrieval involves identifying and retrieving relevant case
law and legal precedent based on a given query. These tasks require making inferences and
educated guesses about what information is likely to be relevant, based on the characteristics of
the query and the available data.

In addition, many other legal text-processing tasks, such as legal document classification
and summarization, are also related to retrieval. For instance, classifying a legal document
as relevant or irrelevant to a given case may involve retrieving similar documents and using
them as a reference. Similarly, summarizing a legal document may involve retrieving relevant
information and condensing it to a shorter form. Overall, retrieval tasks form the foundation
for many legal text processing tasks, and the ability to perform retrieval effectively is essential
for the development of intelligent legal counsel systems and other AI tools for the legal field.

Note that retrieval tasks and abductive reasoning are closely related. In retrieval tasks, the
goal is to identify and retrieve relevant information from a database or collection of documents
based on a given query. This requires making an educated guess or inference about what



information is likely to be relevant, based on the characteristics of the query and the available
data. Similarly, in abductive reasoning, the goal is to construct an argument or form a hypothesis
based on a set of observations and a limited amount of information. This also requires making an
educated guess or inference based on the available evidence, in order to explain the observations
and arrive at a plausible conclusion.

2.2. Abductive Reasoning

Our approach to test deep learning models based on transformers [1] for reasoning is focused on
abductive reasoning tasks, because abductive reasoning is such an important aspect of human
reasoning [25]. In a typical abductive reasoning problem, one is given a set of observations,
and the goal is to identify a hypothesis that can best explain the observations. This process can
be divided into two steps: 1) potential hypothesis identification, and 2) hypothesis evaluation.
In the first step, we need to identify a small set of potential hypotheses that are likely to explain
the observations. In the second step, we need to evaluate the potential hypotheses and rank
them within the current context of use, e.g., assess a set of alternative hypotheses w.r.t. which
provides the basis for a “best” explanation.

Because the complexity of the real world is high, it is impossible to consider all potential
hypotheses. Instead, we typically assume that a set of potential hypotheses is given, and the
evaluation of the hypotheses is based on logical reasoning. This second step is similar to the
scoring or ranking function used in the second step of an information retrieval process.

There are several ways to limit the number of potential hypotheses, for example, limiting
the context, constraining the search space, or using a heuristic search method. Generally, only
commonsense heuristic reasoning can help to limit the number of potential explanations. For
example, suppose we want to explain why a health professional regulator received a complaint.
In that case, we are only interested in explanations that are related to the health and care
professionals’ conduct or practice according to the relevant regulations [26, 27]. Therefore, to
be useful in application, we need a mechanism to reduce the set of possible explanations.

Bhagavatula et al. [11] introduce theART dataset, which contains 20K commonsense narrative
contexts and 200K explanations. They approach abductive reasoning as the problem of finding
the hidden middle of a linear series of the form, 𝒪1 ∧ ℋ ⟹ 𝒪2, where we observe 𝒪2, and 𝒪1,
and we try to come up with the best hypothesisℋ. In one example, they show two observations:

• Observation 1: Jenny cleaned her house and went to work, leaving the window just a
crack open.

• Observation 2: When Jenny returned home she saw that her house was a mess!

In 𝛼𝑁𝐿𝐼, the task of a model is to choose the most plausible explanatory hypothesis among the
given candidates. For example:

• Hypothesis 1: A thief broke into the house by pulling open the window.
• Hypothesis 2: At work, she opened her window and the wind blew her papers every-
where.



Of the hypotheses above, if their common sense semantics are accepted, Hypothesis 1 is the
most plausible for the two given observations. However, if we consider the possible existence
of enthymemes, the outcome may be different. For example, if “the house” in Hypothesis 1
does not refer to Jenny’s house, then Hypothesis 1 becomes completely inappropriate as an
explanation for the observations. The existence of enthymemes affects the reliability of ART
and 𝛼𝑁𝐿𝐼 for two reasons:

1. Dataset ART is constructed by crowd-sourcing with the fact that different people will
have different sets of implicit arguments to support their different decisions.

2. As a consequence, in 𝛼𝑁𝐿𝐼 task, the model simply chooses a hypothesis which is more
plausible than the other. That is, the model always outputs a Yes label and aNo label for a
pair of inputs, it does not happen that both hypotheses are plausible (or both implausible).
In addition, within this setting, annotators may introduce their bias into the training and
evaluation of the model.

3. Dataset Construction

While crowdsourcing can be an effective way to build a large dataset for evaluating the per-
formance of deep learning models on tasks which require some logical capability [11], such as
abductive reasoning, it is important to carefully verify the soundness and quality of the data.
This can help to ensure that the dataset accurately represents the task and does not contain
errors or biases that could impact the model’s performance.

One way to increase the number of data points and ensure the soundness of the data is to use
logic-based data generation techniques, such as symbolic reasoning or logical theorem proving.
This can help to generate a larger number of high-quality examples of abductive reasoning that
are consistent with the intended task and application domain.

Additionally, it is important to define the task clearly and accurately based on the character-
istics of the data. If the task is not well-defined or does not align with the characteristics of
the data, the model’s performance may be difficult to interpret or may be difficult to explain.
Carefully defining the task and choosing a suitable evaluation metric can help to ensure that
the model’s performance is accurately assessed and interpreted.

First, we precisely formulate the problem. With two observations 𝒪1, 𝒪2, and a hypothesis
ℋ, the model needs to verify the validity of the Expression 1.

𝒪1 ∧ ℋ ⟹ 𝒪2 (1)

We then analyze the two drawbacks of ART and subsequently construct L’ART as an expanded
and improved version based on negation rules and theory generators.

3.1. Logical Consistency

Compared with conventional programming languages, natural language have higher semantic
tolerance, but therefore lower logical consistency. This is why, until recently, direct natural
language-to-software conversion tools have relatively limited use. This well-known challenge
of natural language use can also be an issue affecting the quality of crowdsourced datasets



like ART and the models trained on it. Sharing the same view on this issue, [28] train their
Transformer model with data generated from a logic-based program called a theorem generator.
Expanding on this result, Gaskell et al. [29] introduce an adversarial framework to improve the
logical consistency of these “soft” theorem provers. This is done by training a discriminator,
which is then used to detect incorrect outputs from the theorem prover. The crucial insight of
this work is that a model trained with improved logical consistency can be applied to the task
of soft theorem-proving with higher accuracy.

Without the support of a logic-based program in the data generation process, ART does
not provide any guarantee of logical consistency of its content. For example, there are some
samples in the dataset whose plausibility determination is based heavily on the enthymeme
in the evaluator’s knowledge base, which has the potential to introduce inconsistency. For
example, here is a sample from ART:

• Observation 1: Ron started his new job as a landscaper today.
• Observation 2: Ron is immediately fired for insubordination.
• Hypothesis 1: Ron ignores his boss’s orders and called him an idiot.
• Hypothesis 2: Ron’s boss called him an idiot.

In other words, without a logic-based program in place, the data generated by ART may not
be completely consistent or accurate. Additionally, the evaluator’s own biases and knowledge
can influence the plausibility of certain samples, leading to inconsistencies in the dataset. The
example above, where Ron is fired for insubordination, produces two different hypotheses for
why that might be the case, which further illustrates this potential for inconsistency in the data
generated by ART.

To overcome this drawback, instead of only requiring the model to choose between two given
candidate hypotheses, we reformatted the dataset and forced the powerful pretrained models to
predict the binary label without limiting the number of candidates. The negative samples are
derived from the positive ones by using logical negation, which guarantees the positive triples
contain the best hypotheses explaining the given observations. This is an important distinction
from the way the dataset was used in the original setting. This adjustment can provide the
ability to achieve logical consistency, and determine whether or not a candidate can be a valid
hypothesis with the two given observations.

3.2. Observation-Hypothesis Interchangeability

From 𝒪1 ∧ ℋ ⟹ 𝒪2, we can deduce ℋ ∧ 𝒪1 ⟹ 𝒪2. In other words, the first observation
and the hypothesis are interchangeable. More specifically, they are two events producing
the second observation. Of the two events becomes the observation, while the event we do
not observe becomes the hypothesis. However, in terms of logic, the two events hold equal
footing, as they are both postulated to explain the second observation. From this, in terms of
dataset construction, we can double the number of positive samples by reversing the role of the
hypothesis and the first observation.

This logical reformulation helps us to realize that if we can not interchange the hypothesis
and the first observation in a triple, the triple is not a valid abductive reasoning sample. For
example, assume that we have a silly triple of 𝒪1, ℋ and 𝒪2 as follows:



• 𝒪1: John is the smartest person in the class.
• ℋ: Every smart person has a green car.
• 𝒪2: John has a green car.

In this case, we cannot interchange the ℋ and 𝒪1 to get:

• 𝒪1: Every smart person has a green car.
• ℋ: John is the smartest person in the class.
• 𝒪2: John has a green car.

This is because the inference chain requires one more piece of information (i.e., the argument
for 𝒪2 from 𝒪1 and ℋ is an enthymeme), namely: “The smartest person in the class is a smart
person,” which is not included in the triple. In the latter triple, the hypothesis “John is the
smartest person in the class.” is not reasonable given only the two observations “Every smart
person has a green car.” and “John has a green car.”

3.3. Logic-augmented Dataset

In our dataset construction process, we consider the above two reformulation factors which are
not considered in ART: (1) We use a logic-based theorem generator to ensure logical consistency
in the data; (2) We use logical formulas to ensure the validity of the triples in terms of abductive
reasoning. Based on these two transformations, we expand and improve the ART dataset and
propose a new dataset called the logic-augmented abductive reasoning dataset (L’ART). L’ART is
introduced as a dataset for a binary classification problem, where the model is trained to predict
the validity of each provided triple.

As described in Section 2.2, in the ART dataset there are triples with high plausibility and
others with low plausibility. We select the highly plausible triples as positive samples. With
the logic-based theorem generator, we randomly generate positive samples that are logically
consistent and find the inference chains which have at least two inference steps to extract 𝒪1,
ℋ and 𝒪2. The hypotheses are then reversed to double the number of positive samples.

Producing negative samples in the context of abductive reasoning is more challenging than
that in ordinary negation. We are looking for a hypothesis to explain the given observation;
but we can not apply a random strategy to generate negative samples as there is no way for us
to know whether a random hypothesis is reasonable for the given observations. We therefore
limit the possibilities through our strategy of exploiting negation, but applying this strategy is
not straightforward in the context of abductive reasoning. Consider that randomly negating the
operators in the Expression 1 might still yield a triple labeled as true. We handle this issue by
first constructing a truth table for the Expression 1, and then uniformly negating the operators.
The truth table for the Expression 1 is as in Table 1.

The first row of Table 1 corresponds to the truth values in the case of positive samples. We
can easily see that the only logical option to negate Expression 1 is to negate the operator 𝒪2.
Interestingly, when we interchange 𝒪1 and ℋ, the soundness of the system is not affected. This
is because the soundness of the system is based on the logical equivalence of 𝒪1 ∧ ℋ ⟹ 𝒪2
and ℋ ∧ 𝒪1 ⟹ 𝒪2.



Table 1
Truth table for Expression 1: 𝒪1 ∧ ℋ ⟹ 𝒪2. The first row corresponds to the truth values in the case
of positive samples.

𝒪1 ℋ 𝒪2 𝒪1 ∧ ℋ ⟹ 𝒪2
T T T T
F F F T
F F T T
T F F T
T F T T
F T F T
F T T T
T T F F

Compared to ART, the data format, number of samples, and their logic consistency in L’ART
are significantly improved. ART, for the positive (plausible) hypotheses, presents a narrative
context to Amazon Mechanical Turk workers who were then asked to make assumptions and
write natural language hypotheses for the two given observations. For the negative (implausible)
hypotheses, the plausible hypothesis can be modified through minimal edits (up to 5 words).
For the positive (plausible) hypotheses, we use a logic-based theorem generator to randomly
generate positive samples that are logically consistent, and identify the inference chains which
have at least two inference steps to extract 𝒪1, ℋ and 𝒪2. We also reuse the positive samples
from ART and reverse the role of the hypothesis and the first observation. For the negative
(implausible) hypotheses, we use a truth table to construct negative samples. The truth table
shows that to negate the expression 𝒪1 ∧ ℋ ⟹ 𝒪2, we need to change the value of 𝒪2 to
false. The model is trained to predict the validity of each provided triple. The L’ART dataset
has almost 2.5 times as many samples as the ART dataset, which contains 200k samples. So
476,167 of the samples in L’ART are used for training, 9,339 for validation, and 13,191 for
testing. This dataset can be used as a benchmark for measuring the abductive reasoning skills
of state-of-the-art models in the legal domain, but it’s not limited to this purpose, as it can
also be a valuable resource for other natural language processing and machine learning tasks,
especially to consider complex NLP tasks because of transformers lack of reasoning ability.

4. Task Redefinition

In addition to the L’ART data’s quantity and quality, task definition is also important in training
and evaluating the model. Bhagavatula et al. [11] introduce the 𝛼𝑁𝐿𝐼 task, in a way that the
model needs to select the most plausible explanatory hypothesis between the two given. We
argue that although this task is appropriate for evaluating the ability of the model to perform
abductive reasoning and find the most plausible explanation, the way the authors limit the
𝛼𝑁𝐿𝐼 task to a binary classification of two hypotheses makes the problem easier and can lead
to an overfitting of the model. The model needs only to learn a binary classification of the two
hypotheses and does not need to learn to find the most plausible explanation. They define 𝛼𝑁𝐿𝐼
task as follows:



• 𝒪1 and 𝒪2 are two observations at time 𝑡1 < 𝑡2.
• ℎ+ is a positive (plausible) hypothesis and ℎ− is a negative (implausible) hypothesis.
• The 𝛼𝑁𝐿𝐼 task is to select the most plausible hypothesis from the ℎ+ and ℎ−.

We redefine 𝛼𝑁𝐿𝐼 as 𝛼𝑁𝐿𝐼 ∗:

• 𝒪1 and 𝒪2 are two observations at time 𝑡1 < 𝑡2.
• ℎ is a candidate hypothesis.
• The 𝛼𝑁𝐿𝐼 ∗ task is to test whether triple (𝒪1, ℎ, 𝒪2) is valid.

The approach of 𝛼𝑁𝐿𝐼 ∗ is similar to 𝛼𝑁𝐿𝐼 but different in the following ways:

• We ask the model to validate the triple instead of only choosing which hypothesis is more
plausible amongst the given two;

• In 𝛼𝑁𝐿𝐼, if the model did not choose a hypothesis, we still do not know whether it is
valid, so we can only know that it is not plausible as the chosen one;

• In addition, 𝛼𝑁𝐿𝐼 ∗ can be feasible even when only one hypothesis or more hypotheses
are given, which is not possible in 𝛼𝑁𝐿𝐼.

5. Experiments and Discussions

Our experiments are designed to test the performance of several alternative models for binary
classification tasks related to abductive reasoning using the L’ART dataset. Our extended dataset
consists of 498,697 samples, of which 476,167 are used as the training set, 9,339 are used as the
validation set, and 13,191 are used as the test set. The max-length in characters for observation
1, observation 2, and hypothesis in the training, validation, and test sets are shown in Table 2.
Pre-trained transformer models have a built-in maximum token length for input, and ensuring
that the maximum length does not exceed this limit helps avoid over-truncation issues. The
number of samples in each class is identical in our binary classification setting.

Table 2
Max-length in characters for observation 1, observation 2, and hypothesis in the train, validation, and
test sets.

Train Validation Test
Observation 1 (𝒪1) 71 71 71
Observation 2 (𝒪2) 74 71 71
Hypothesis (ℋ) 184 147 150

In this experiment, it is crucial to use different training, validation, and test sets to ensure the
evaluation of the selected transformer models is reliable and not influenced by overfitting to
the training data. The training set is utilized for training the models, while the validation set
is employed for tuning the hyperparameters and selecting the best model. Lastly, the test set
assesses the final performance of the chosen model.



We chose specific train/test/validation split ratios to ensure that the models have adequate
data for training while still maintaining ample samples for validation and testing. It is worth
noting that deep learning approaches like these are inherently statistical in nature, and our
validation/test sets, with approximately 10K samples each, provide a reliable reflection of the
results.

We use several different transformer models in the experiment: the original BERT [30] (base
and large version), and the top legal models (BERT-PLI [2], Legal BERT [3], BERTLaw[4] and
NFSP version of Paralaw NetsParaLaw Nets [31]). We train each model on the input data,
using the valid and invalid triples as the labels, and evaluate the performance of the models
on the test set using accuracy. We also report the performance on our validation set. We
run the experiment multiple times to ensure the reliability of the results, and we analyze the
performance of the models on the test data to determine which model performs best on the
binary classification tasks related to abductive reasoning. We also tested GPT-3 [32] zero-shot
prediction and recorded the results on the test set of L’ART.

Table 3
Average performance of the models in three runs, sorted from high to low.

Model Validation Accuracy Test Accuracy
BERT Base 0.6202 0.6162
BERT-PLI 0.6115 0.6115
NFSP 0.5825 0.5808
Legal BERT 0.5756 0.5619
BERTLaw 0.5484 0.5371
BERT Large 0.5016 0.5000
GPT-3 - 0.4959

Table 3 shows the results of the experiment. Our first observation is that performance on the
validation set and the test set are not significantly different, which is a good indication that the
models aren’t overfitting the training data or the hyperparameter tuning process. From those
results, we can also observe that the original BERT Base model performs better on abductive
reasoning than all state-of-the-art legal models and even the BERT Large model. This result is
quite surprising because it means that the pre-trained legal models are not necessarily more
effective than the original BERT Base model on abductive reasoning.

We believe this is because the legal models are trained on documents that are mostly directed
toward legal reasoning, rather than abductive reasoning. In the legal domain, there are many
documents that contain information that can help with legal reasoning, but there is not a
lot of information in the legal domain that can help with abduction. This imbalance in the
training data can lead to a bias in the training process that favors legal reasoning and harms the
performance of the models on abductive reasoning.

The worst performance among finetuned models is BERT Large, which is also a surprise
since it is usually reported to be a robust model on many NLP tasks. This result suggests
that pretraining a model with a larger capacity with more data does not guarantee better
performance. Adding commentary on GPT-3, which has the lowest performance on zero-shot



tasks, we included it for reference purposes, not for comparison, as the model has not been
tuned for the specific domain and therefore cannot be fairly compared to the other models.
Furthermore, a general comment can be made that the poor performance of these models
indicates that abductive reasoning remains a challenging problem. The redefinition of the task
within L’ART helps to make this issue more evident.

6. Conclusions

We have investigated the support for abductive reasoning provided by state-of-the-art (SOTA)
transformer models within the legal field. To accomplish this, we first redefined the task of
abductive reasoning and constructed a reliable dataset. Following this, we utilized the dataset to
assess the performance of SOTA models in the legal sphere, as well as prominent large language
models in Natural Language Processing (NLP). Our experimental results revealed that the SOTA
models, including all legal-specific variants, do not necessarily outperform the original BERT
Base model in abductive reasoning tasks. This outcome provides insight into current limitations
when pretraining large language models for legal applications. The subpar performance of the
original BERT Large and GPT models illustrates that simply increasing the size of the model
and providing it with more data does not guarantee superior performance. Future directions
for this research could include exploring alternative pretraining approaches specifically tailored
to abductive reasoning tasks, developing novel architectures that focus on legal reasoning, and
examining the relationship between model capacity and performance on abductive reasoning
tasks. Additionally, further investigation into leveraging and integrating existing legal domain
knowledge with the pretraining process may lead to more effective models capable of handling
the unique challenges of legal reasoning tasks.
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