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Abstract. Stochastic logic programming (Slp) and Distributional logic
programming (Dlp) are two closely related probabilistic logic program-
ming formalisms that have been previously studied in the context of ma-
chine learning. The former is a restrictive form which has good parameter
estimation results, while the latter is more expressive and has been used
in the context of Bayesian machine learning. Although both formalisms
have easily installed systems for performing the aforementioned machine
learning tasks, these systems have previously no facilities for more gen-
eral probabilistic inference over these probabilistic languages. Here we
describe newly added facilities to both systems for sampling and prob-
abilistic inference. We present unified ways to perform sampling, where
SLD resolution is replaced by stochastic clause selection. Probabilistic in-
ference where the probability of goals is calculated using standard SLD
on augmented clauses. A number of simple and more complex examples
are considered and for sampling we demonstrate stochastic properties by
taking advantage a couple of auxiliary libraries that work well with the
probabilistic packages considered here. initially, limitations of the expres-
sivity of Slps are highlighted by juxtaposing it to the intuitive uniform
membership program of Dlps.

1 Introduction

Stochastic logic programs were introduced to enable probabilistic reasoning within
a labelled clausal context(Muggleton, 1996). They are similar in expressive power
to Prism (Sato and Kameya, 1997; Sato et al., 2005) and have a robust algorithm
(Failure Adjusted Maximisation, FAM) that can perform parameter estimation
from data (Cussens, 2000). Pepl is an SWI-Prolog pack, that is, a user contributed
library that is indexed in the central packs server and can be easily installed
within SWI-Prolog. Pepl, (Angelopoulos, 2016) which implements FAM for Slps.
Here, we describe new features added to the pack (version 2.3) for performing
more general probabilistic inference. An Slp extends clausal logic programming
by allowing ground arithmetic values as labels to clauses. An example of an Slp
implementing a coin toss is shown in Figure 1.

Distributional logic programs (Dlps) were introduced to overcome limitations
in the expressivity of Slps (Angelopoulos and Cussens, 2005, 2008). This category
of probabilistic logic programs allows the probabilistic labels to be arbitrary
arithmetic expressions which are calculated at run-time and typically depend



1 :: doubles(Side) :=

coin(Side),

coin(Side).

0.5 :: coin(head).

0.5 :: coin(tail).

Fig. 1. Programs for coin/1 and doubles/1. Syntax for both Slp and Dlp are
identical for these simple examples.

on the input arguments to concretise the probability labels (Angelopoulos and
Cussens, 2017). Dlps are a super class of Slps thus the Slp programs in Figure 1
are also valid Dlp syntax. Bims is an SWI-Prolog pack that implements Bayesian
model averaging by means of a Metropolis-Hasting algorithm (Angelopoulos and
Cussens, 2001, 2008). The system has been used in a number of publications both
on theoretical aspects (Angelopoulos and Cussens, 2005, 2006) and applications
(Angelopoulos et al., 2009).

Both Pepl and Bims compile probabilistic programs to normal Prolog clauses
with a number of extra parameters and a small number of extra clauses. The
extra parameters allow meta information such as the path to a resolution and
the probability labels can be returned. This information can be then used in
probabilistic inference tasks. The injected extra clauses allow unification and
probability label calculation to take place. Probabilistic logic programming is
a fertile area of research with a number of different formalisms having being
introduced over the years (Riguzzi, 2023).

2 Resolution

As Pepl and Bims were developed with emphasis on machine learning (parame-
ter estimation and model structure respectively), there have been limited general
probabilistic inference over Slps and Dlps. Standard Prolog uses SLD (selective
linear definite clause) resolution to refute goals against a logic program contain-
ing clauses. When labeling the clauses with probabilities we can extend resolution
in two different distinct ways. First, we can use standard SLD derivations, while
holding on to the probabilities of the resolution steps. In this scenario, each set
of instantiations at the end of a refutation has an associated probability value
assigned to it, which is simply the product of probability labels of the clauses
used in the refutation. Furthermore, any specific instantiation will have a total
probability ascribed to it, which the sum of the products for all the refutation
that derive it.

Second, instead of SLD resolution, probabilistic labels can be used to affect
stochastic sampling. Where at each resolution step, we do not choose the first
matching clause, but from all matching clauses, we sample in proportion to
the relative value of the probabilistic labels. We term this Selective Stochastic
Definite clause resolution (SSD). So for instance if at a resolution step we have
three matching clauses with labels crystallised to values 1/2, 1/4 and 1/4 then



SSD will select the first clause twice as often as it will select any of the other
two clauses. In what follows, we show how these two types of enhancements
are implemented in parallel ways for Slps and Dlps in the Pepl and Bims packs
respectively.

We will use the two programs in Figure 1 to demonstrate the two type of
resolution supported in both packs. The clauses for coin/1 implement the sim-
plest of probabilistic programs, the flipping of an unbiased coin. This program
is extremely well behaved, as there no probability mass loss to failure. That is,
there is no matching clause that will later lead to a failure. There are only two
distinct instantiations to the query variable, each in a branch with probability of
0.5 with a total sum of 1. Program doubles/1 throws a dice twice, with success
only registering in the case where both coin tosses had the same result. Unlikely
the coin/1 predicate, this is less well behaved in terms of probabilistic inference,
as there is a probability mass loss equal to a half.

2.1 Probability of goals with SLD

Both Pepl and Bims transform the probabilistic clauses to standard logic clauses
that contain the probabilistic and path information in extra arguments. It is
then a matter of injecting extra code that allows backtrackable exploration of
the space. The path and label information can then be utilised to calculate the
probability of a branch and the probability of specific instantiations.

Pepl supports the SLD-based exploration of Slps via predicates scall/1,
scall/2 and scall/5.

% loads the Slp to memory

?= sload pe(coin).

?= scall(coin(Flip), Prb).

Flip = head,

Prb =0.5 ;

Flip = tail,

Prb =0.5.

scall/5 provides the more generic way to interact with the probability of
events:

scall(+Goal, +Eps, =Path, =Succ, =Prb).

where, Eps is the ϵ value. This provides a threshold, where paths whose prob-
ability is below that value are considered as failed refutations. A value of zero,
means that all paths are explored, with no threshold based branch pruning be-
ing applied. The rationale is that if we are interested in the high probability
derivations then we can safely ignore these paths while in the midst of resolu-
tion. Eps provides a convenient way of reducing the search space without losing
high probability branches. Path is a list of the indices of clauses used in the
derivation. The indices simply number the clauses in their position within the



program, from 1 upwards. Prb is the probability of the derivation branch, which
is the product of all the probability labels for the clauses used in the resolutions
steps. Finally, Succ, is either instantiated to fail if this is a failure branch and it
is a free variable otherwise. The reason for accounting for failure is because Pepl
implements the Failure Adjusted Maximisation algorithm which needs to know
about which branches lead to failure, along with the probabilities of each of the
branches. The benefit of having this information is that we can reconstruct the
whole of the probability space if so required.

To find the probability of a tail coin flip, the following can be used, where 0
means that there will be no pruning of any branches.

?= scall(coin(tail),0,Path,Succ,Prb).

Path = [2],

Succ = fail,

Prb =0.5 ;

Path = [3],

Prb =0.5.

To find the total probability of a goal in Pepl:

?= sload pe(doubles).

?= scall sum(doubles(head), Prb).

Prb =0.25.

?= scall sum(doubles(tail), Prb).

Prb =0.25.

?= scall sum(doubles(Side), Prb).

Prb =0.5.

Bims provides similar facilities for deriving the probabilities of events using stan-
dard SLD resolution. However, unlike Pepl, here there is no ϵ threshold or explicit
capture of failed branches.

?= dlp load(doubles).

?= dlp call(doubles(Side)).

Side = head ;

Side = tail ;

false.

?= dlp call(doubles(Side),Path,Prb).

Side = head,



Path = [3:1, 1/0.5, 1:0.5],

Prb =0.25 ;

Side = tail,

Path = [3:1, 2/0.5, 2:0.5],

Prb =0.25 ;

false.

?= dlp call sum(doubles(Side),Sum).

Sum =0.5.

?= dlp call sum(doubles(head),Sum).

Sum =0.25.

Note, that in the case of Bims, the Path is a list of term structures represent-
ing the derivation path. In the example above, (3:1) indicates the third clause
was used, that there was no other clause matching (:) and that the probability
of the clause was (1).

2.2 Sampling with SSD

Having enhanced definite clauses with arithmetic values that act as probabil-
ity labels, we can use this labels to replace the standard SLD resolution. The
intuitive operation is that the clauses are selected proportionally to the prob-
ability value of their label- namely, Selective Stochastic Definite clause resolu-
tion (SSD). Seeking a single branch at a time with such a strategy constitutes
stochastic sampling which will in the long run sample from the SLD tree pro-
portionally to the branch probabilities. This type of resolution can also be the
basis for other algorithms. For instance, Bims implements a stochastic resolution
and backtracking to enable model sampling in the context of Bayesian machine
learning Angelopoulos and Cussens (2017).

In Pepl predicates sample/1 and sample/5 can be used for sampling.

% sets the random seed

?= seed pe.

?= sample(coin(tail),0,Path,Succ,Prb).

Path = [1],

Succ = fail,

Prb =0.5.

?= seed pe.

?= sample(coin(head),0,Path,Succ,Prb).

Path = [1],

Prb =0.5



?= seed pe.

?= sample(coin(Flip),0,Path,Succ,Prb).

Flip = head,

Path = [1],

Prb =0.5.

Please note that in the cases above where the instantiation of Succ is not shown
it is because it is still an unbound variable (it only gets bound if it is a failure
branch which is a internal signal for the resolution to stop). The SWI-Prolog
interpreter does not show unbound variables in the set of instantiations. Succ
is a free variable if the sample corresponds to a successful derivation while the
bound to the atom fail.

Similar provisions have been recently added to Bims for sampling over Dlps.
The following example sets the seed so the sequence produces repeatable results,
before using SSD to sample doubles/1 thrice.

?= dlp seed.

?= dlp sample(doubles(Side)).

Side = tail.

?= dlp sample(doubles(Side)).

Side = tail.

?= dlp sample(doubles(Side)).

Side = head.

2.3 Emerging sampling properties

Sampling using SSD will in the long run sample branches of the SLD tree ac-
cording to the probability of the branches as this is calculated by multiplying
together all the probability labels attached to the refutation clauses. To illus-
trate sampling properties of the programs presented thus far we will lean on
some helper predicates from three other SWI-Prolog packs: mlu (machine learn-
ing utilities), b real (Real helper predicates) and Real (a low level bridge to the
R language (Angelopoulos et al., 2016)).

We sample 100 coin tosses using Pepl and Bims using the code below.

?= lib(mlu).

?= seed pe.

?= mlu sample(sample(coin(Side)), 100, Side, Freqs),

mlu frequency plot(Freqs, [interface(barplot),outputs([svg]),las=2]).

Freqs = [head=53, tail=47].
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Fig. 2. Top left, sampling 100 coin tosses with Pepl over Slps. Top right, sam-
pling 100 coin tosses with Bims. Bottom left, sampling 1000 draws for a single
member from an eight member list using Slp predicatemember3/2. Bottom right,
sampling 1000 draws for a single member from an eight member list with Dlp
predicate umember/2.



1/3 :: member3( H, [H|T] ).
2/3 :: member3( Elem, [ H|T] ) :=

member3( Elem, T ).

:= pvars( umember(L, E), [Len=length(L,Len)] ).

1/X :: X :: umember( [H| T], H ).

(1 = 1/X) :: X :: umember( [ H|T], El ) :=
[X = 1] :: umember( T, El ).

Fig. 3. Left, Slp which is tuned to cope with selecting uniformly from a 3 member
list, but is unable to work on arbitrary length inputs. Right, Dlp draws uniformly
an Element from List.

?= set random(seed(1010)).

?= mlu sample(dlp sample(coin(Side)), 100, Side, Freqs),

mlu frequency plot(Freqs, [interface(barplot),outputs([svg]),las=2]).

Freqs = [head=49, tail=51].

The top of Figure 2 includes the two plots generated via sampling and visu-
alised through R as svg output plots. In both cases 100 coin tosses will produce
a reasonably balanced set of head and tail.

3 Relative expressivity

Slps have similar expressivity to Prism and a similar focus in parameter estima-
tion. The labels are thus specific arithmetic values that are unable to express
complex probabilistic relations at the clausal level as they are unable to adapt to
the variety of different data structures the relations hold over. Slps were the first
modeling language used in Bims, but it soon became apparent that they were
unable to cope with defining rich priors over complex statistical models such as
classification trees and Bayesian networks which need to be held over compound
Prolog terms. Dlps were then introduced to allow modelling of such complex
relations (Angelopoulos and Cussens, 2005, 2008). The main difference is that
labels are computed at run time and there is a succinct syntax that connects the
labels to the relational data at that time.

The Dlp in Figure 3 draws uniformly an Element from List. The labels
are calculated on-the-fly and depend on the length of the input list. Predicate
pvars/1 defines the guard part. At runtime the length of the input list L is
computed into variable Len before it matched to clausal probabilistic variable
X. The recursive call to umember/2 passes the length of the tail (T ) into the
runtime environment so the length does not have to be re-calculated using the
guard (length/2 defined at top of the Dlp in Fig.3). A comprehensive discussion
on the syntax and expressive power of Dlps can be found in Angelopoulos and
Cussens (2017).



Unlike Slps the Dlp predicate umember/2 succinctly captures the probabilis-
tic intuition of uniform member selection that works on any input List. At the
bottom part of Figure 2 we show the two plots generated by Pepl and Bims for
the two membership programs of Figure 3 as generated by the following queries:

?= lib(mlu).

?= sload pe(member3).

?= seed pe.

?= mlu sample(scall(member3(X,[a,b,c,d,e,f,g,h)), 1000, X, Freqs),

mlu frequency plot(Freqs, [interface(barplot)]).

Freqs = [a=345,b=225,c=151,d=86,e=73,f=54,fail=27,g=24,h=15].

?= dlp load(umember).

?= dlp seed.

?= mlu sample(dlp sample(umember([a,b,c,d,e,f,g,h],X)), 1000, X, Freqs),

mlu frequency plot(Freqs, [interface(barplot),outputs(pdf)),las=2]).

Freqs = [a=130, b=122, c=133, d=126, e=120, f=105, g=145, h=119].

The bottom part of Figure 2 clearly shows that the Slp draws from a very skewed
distribution far away from the intentional uniform draw.

4 Conclusions

We have enhanced two probabilistic logic programming packs with facilities to
do high level sampling and probabilistic inference. We demonstrated stochastic
aspects emerging from sampling across Slps and Dlps. The ability to perform
such tasks are both beneficial both to the libraries but also enable researchers
in probabilistic logic programming to become more familiar and easier to exper-
iment with Slps and Dlps. There have been a number of different Probabilistic
Logic Programming formalisms over the years and our work contributes to this
ever enriching body of work (Riguzzi, 2023).

For future work we plan to add additional sampling for Dlps that account for
failure similarly to the facilites for Slps. The reason why this is integral to Pepl
is because it is central to the failure adjustment part of the FAM algorightm.

The software described here is available on github 1 2 and as easily installed
archived packs for the SWI-Prolog server 3. This is also the case for the auxiliary
packs we briefly used here to produce the sampling plots (packs mlu, b real and
Real).

1 https://github.com/nicos-angelopoulos/bims
2 https://github.com/nicos-angelopoulos/pepl
3 http://eu.swi-prolog.org/pack/list

https://github.com/nicos-angelopoulos/bims
https://github.com/nicos-angelopoulos/pepl
http://eu.swi-prolog.org/pack/list
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