
A Brief Discussion about the Credal Semantics for
Probabilistic Answer Set Programs
Damiano Azzolini1

1Dipartimento di Scienze dell’Ambiente e della Prevenzione – University of Ferrara

Abstract
Among the different logic-based programming languages, Answer Set Programming has emerged as an
effective paradigm to solve complex combinatorial tasks. Since most of the real-world data are uncertain,
several semantics have been proposed to extend Answer Set Programming to manage uncertainty, where
rules are associated with a weight, or a probability, expressing a degree of belief about the truth value of
certain atoms. In this paper, we focus on one of these semantics, the Credal Semantics, highlight some of
the differences with other proposals, and discuss some possible future works.

Keywords
Probabilistic Answer Set Programming, Inference, Uncertainty

1. Introduction

Logic-based languages [1], such as Prolog [2] and Answer Set Programming (ASP) [3], are
powerful formalisms to represent relational data and reason on them. ASP is particularly
effective in modelling complex combinatorial domains, thanks to several syntactic constructs
such as constraints and aggregates [4]. While with modern ASP solvers such as clingo [5] and
WASP [6] it is possible to associate weights to rules to guide the search of optimal answer sets,
they cannot natively model uncertain data described as probabilities attached to some of the
atoms.

In the context of Logic Programming, probabilistic reasoning has attracted a lot of research
interest in the past years, with several possible semantics [7, 8, 9, 10] and several probabilistic
reasoning tools [7, 11, 12]. To represent uncertainty in ASP, there are some proposals such as
P-log [13], LPMLN [14], and the Credal Semantics (CS) [15, 16]. In the first part of the paper,
we sketch the differences between the LPMLN and the Credal Semantics. Then, we discuss an
approach based on normalization to perform inference in programs where some worlds are
unsatisfiable, not allowed by the Credal Semantics, and compare it with two other proposals
(the L-Credal Semantics [17] and the SMProbLog semantics [18]) developed in the context of
argumentation. Through the paper, we also highlight several directions for future works.

The paper is structured as follows: in Section 2 we introduce the basic concepts involving
Probabilistic Logic Programming. In Section 3 we discuss the differences between the LPMLN

and the Credal Semantics and in Section 4 we focus on the inference task. Section 5 describes

PLP 2023: The Tenth Workshop on Probabilistic Logic Programming
$ damiano.azzolini@unife.it (D. Azzolini)
� 0000-0002-7133-2673 (D. Azzolini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:damiano.azzolini@unife.it
https://orcid.org/0000-0002-7133-2673
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

a possible solution to handle inconsistent worlds, Section 6 presents some related works, and
Section 7 concludes the paper.

2. Probabilistic Logic Programming under the Distribution
Semantics

Probabilistic Logic Programming under the Distribution Semantics (DS) [9] allows the definition
of probabilistic facts, i.e., facts that are true with a certain probability. By considering the
ProbLog [7] syntax, these can be defined with Π :: 𝑓𝑖 where 𝑓𝑖 is an atom and Π ∈ [0, 1] is its
probability. Probabilistic facts identify worlds, i.e., logic programs obtained by fixing the truth
values of the probabilistic facts1. With 𝑛 probabilistic facts there are 2𝑛 (since every fact can be
true or false) worlds. The probability of a world 𝜏 can be computed with the formula

𝑃 (𝜏) =
∏︁
𝑓𝑖∈𝜏

Π𝑖 ·
∏︁

¬𝑓𝑖∈𝜏
(1−Π𝑖). (1)

The probability of a query 𝑞, a conjunction of ground atoms, can be computed as the sum of the
probabilities of the worlds where the query is true, in formula: 𝑃 (𝑞) =

∑︀
𝜏 |=𝑞 𝑃 (𝜏).

Example 1. Consider the following ProbLog program:

0.4::pressure(carl).
0.3::high_sugar(carl).
faint(X):- pressure(X).
faint(X):- high_sugar(X).

The first two lines contain probabilistic facts: the first states that carl has a pressure problem
with probability 0.4 and the second states that he has a high blood sugar value with probability
0.3. The last two rules state that a person 𝑋 faints if it has a pressure problem or a high sugar
value. We have 22 = 4 possible worlds: {} with an associated probability of 0.6 · 0.7 = 0.42,
{𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑐𝑎𝑟𝑙)} with an associated probability of 0.4 · 0.7 = 0.28, {ℎ𝑖𝑔ℎ_𝑠𝑢𝑔𝑎𝑟(𝑐𝑎𝑟𝑙)} with
an associated probability of 0.6 · 0.3 = 0.18, and {𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑐𝑎𝑟𝑙) ℎ𝑖𝑔ℎ_𝑠𝑢𝑔𝑎𝑟(𝑐𝑎𝑟𝑙)} with an
associated probability of 0.4 · 0.3 = 0.12. If we consider the query 𝑞 = 𝑓𝑎𝑖𝑛𝑡(𝑐𝑎𝑟𝑙), we have
𝑃 (𝑞) = 0.12 + 0.18 + 0.28 = 0.58.

Probabilistic facts are considered independent, but this is usually not a limitation on their
expressivity since it is possible to encode any Bayesian network with ProbLog [19]. Note that
probabilistic rules can be represented by adding a new probabilistic fact in the body of a rule
with all the variables appearing in the head and body.

3. The LPMLN and the Credal Semantics

In this section, we focus on two of the possible semantics to represent uncertainty in answer
set programs, namely the LPMLN [14, 20] and the Credal Semantics [16].
1In the following, we use the Greek letter 𝜏 to indicate worlds, since these are also called total choices, to avoid
using the letter 𝑤, adopted to represent weights in the context of the LPMLN semantics.

3.1. The LPMLN Semantics

The authors of [14, 20] introduced the LPMLN language, with the goal to unify Markov Logic
Networks (MLN) [21] and logic programs under the stable model semantics [22]. Programs in
this language are composed of a set of weighted rules of the form 𝑤 : 𝑅 where 𝑅 is a logic
rule and 𝑤 is either a real number (soft rule) or the symbol 𝛼 (hard rule), that denotes infinite
weight. In the next part of the paper, we omit the 𝛼 symbol before hard rules for programs
following the LPMLN semantics. If we consider a ground LPMLN program 𝒫L, the weight of
an interpretation 𝐼 , 𝑊 (𝐼), is computed as

𝑊 (𝐼) =

{︃
𝑒𝑥𝑝(

∑︀
𝑤:𝑅∈𝒫L

I
𝑤) if I ∈ 𝐴𝑆(𝒫L

I)

0 otherwise

where 𝒫L
I is the set of rules 𝑅 of 𝒫L such that 𝐼 |= 𝑅 and 𝐴𝑆(𝒫L

I) is the set of its answer sets,
and its probability as

𝑃 (𝐼) = lim
𝛼→∞

𝑊 (𝐼)∑︀
𝐽∈𝐴𝑆(𝒫L

I)
𝑊 (𝐽)

.

The above definition is general. However, if we consider only stable models that satisfy all the
hard rules, the limit in the above formula can be ignored and the weight of an interpretation,
𝑊 (𝐼), can be computed by considering only the set of soft rules, as discussed in [20].

The possible worlds of a MLN program are the stable models of LPMLN programs, and
the probability of a query is a sharp probability value computed by considering a probability
distribution over these models. If the probability of an interpretation is not 0, it is called a
probabilistic stable model. If we consider a query 𝑞, its probability can be computed as the
sum of the probabilities of the probabilistic stable models of the programs where the query is
true [20], i.e.,

𝑃𝐿(𝑞) =
∑︁
𝐼|=𝑞

𝑃 (𝐼). (2)

3.2. The Credal Semantics

An alternative semantics to represent uncertainty within Answer Set Programming is the Credal
Semantics (CS) [16], that has been already applied in multiple scenarios [23, 24, 25]. The CS
allows the definition of probabilistic facts and assigns a probability range to a query 𝑞. We call
these programs “probabilistic answer set programs”. Differently from the LPMLN semantics,
the CS is similar to the Distribution Semantics [9], since it considers the possible worlds as
generated by the possible choices of the truth values for the probabilistic facts and define a
probability over these. The probability of a query 𝑞, 𝑃𝐶(𝑞), is specified via a probability range
[P(𝑞),P(𝑞)] where

P(𝑞) =
∑︁

𝜏𝑖|∃𝑚∈𝐴𝑆(𝜏𝑖), 𝑚|=𝑞

𝑃 (𝜏𝑖), P(𝑞) =
∑︁

𝜏𝑖|∀𝑚∈𝐴𝑆(𝜏𝑖), 𝑚|=𝑞

𝑃 (𝜏𝑖). (3)

One crucial point is that the Credal Semantics requires that every world has at least one stable
model, i.e., it is satisfiable. We call the programs satisfying this requirement consistent. This

may be strict since it is not satisfied for many of the possible programs that can be written.
Moreover, here we assume that probabilistic facts cannot appear as head atoms of any rule,
a property called disjoint condition [9], since the violation of this may lead to some issues, as
discussed in [26].

While the CS can directly represent ProbLog [7] programs, the LPMLN semantics requires
a conversion for the probabilistic facts: for every probabilistic fact Π𝑖 :: 𝑓𝑖, we need to add
𝑙𝑛(Π𝑖) : 𝑓𝑖 and 𝑙𝑛(1−Π𝑖) :← 𝑓𝑖 to the program, where 𝑙𝑛(Π𝑖) and 𝑙𝑛(1−Π𝑖) are the weigths
associated to the two rules. The other rules of a ProbLog program are considered as hard rules.
With this encoding, every well-defined ProbLog program and its LPMLN counterpart have the
same probability distribution over the interpretations [14].

Example 2. Example 1 is converted into:

-0.9162 pressure(carl).
-0.5108 :- pressure(carl).
-1.2039 high_sugar(carl).
-0.3567 :- high_sugar(carl).
faint(X):- pressure(X).
faint(X):- high_sugar(X).

where 𝑙𝑛(0.4) = −0.9162, 𝑙𝑛(0.6) = −0.5108, 𝑙𝑛(0.3) = −1.2039, and 𝑙𝑛(0.7) = −0.3567.
There are 4 probabilistic answer sets: {} with weight 0.42, {𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑐𝑎𝑟𝑙) 𝑓𝑎𝑖𝑛𝑡(𝑐𝑎𝑟𝑙)} with
weight 0.28, {ℎ𝑖𝑔ℎ_𝑠𝑢𝑔𝑎𝑟(𝑐𝑎𝑟𝑙) 𝑓𝑎𝑖𝑛𝑡(𝑐𝑎𝑟𝑙)}with weight 0.18, and {𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑐𝑎𝑟𝑙)ℎ𝑖𝑔ℎ_𝑠𝑢𝑔𝑎𝑟(𝑐𝑎𝑟𝑙) 𝑓𝑎𝑖𝑛𝑡(𝑐𝑎𝑟𝑙)}
with weight 0.12, which are exactly the worlds of Example 1. The query is true in the last three, so
its probability is 0.58. If we consider the CS, the computation of the probability follows the one of
Example 1, since every world has exactly one answer set, and the lower and upper probabilities
coincide.

Thus, in the case of a ProbLog program satisfying the disjoint condition, the CS and the LPMLN

semantics (after the conversion) define the same probability distribution, as stated in Theorem 1.

Theorem 1. Consider a ProbLog program 𝒫 and a query 𝑞. If every world of 𝒫 has exactly
one model and the disjoint property is satisfied, the probability of 𝑞 computed by considering the
Credal Semantics (𝑃𝐶(𝑞) = [P(𝑞),P(𝑞)]) and the LPMLN semantics (𝑃𝐿(𝑞)), after converting
the probabilistic facts as previously discussed, coincide, i.e., P(𝑞) = P(𝑞) = 𝑃𝐿(𝑞). Thus, in this
case, the two semantics define the same probability distribution.

Proof 1. The number of answer sets considered for theLPMLN semantics is the same as the number
of worlds (and so answer sets) for the CS. For the Credal Semantics, we get a sharp probability
value for the query, as with the DS. For the LPMLN semantics, as described in [14] and reported
in Example 2, every probabilistic fact is converted into two rules, with the correspondent weights,
which ensure the same distribution of a ProbLog program, that also follows the DS.

By adopting the just explained conversion, Theorem 1 does not hold for a general consistent
probabilistic answer set program, where some worlds may have more than one answer set. To
see this, consider the following example.

Example 3. Consider the following program:

0.4::bird(1..4).
{fly(X)} :- bird(X).
:- #count{X:fly(X),bird(X)} = FB, #count{X:bird(X)} = B, 10*FB<6*B.

with query 𝑞 = 𝑓𝑙𝑦(1). The last constraint imposes that at least 60% of the birds fly [24]. The
weights for the LPMLN semantics are respectively -0.91629 and -0.51082 for the probabilistic facts
true and false. 𝑃𝐶(𝑞) = [0.2592, 0.4] while 𝑃𝐿(𝑞) = 0.45459. So, by adopting the LPMLN with
the conversion proposed in [14], we possibly get a surprising result. Here, 𝑓𝑙𝑦(1) is only influenced
by 𝑏𝑖𝑟𝑑(1), whose probability is 0.4, so we may expect to get at most 0.4 as the probability of the
query. However, we get 0.4524, which is greater than 0.4. This since for the LPMLN the probability
is distributed over the answer sets, rather than over the worlds.

So, it is not guaranteed that 𝑃𝐿(𝑞) ∈ [P(𝑞),P(𝑞)], and the following holds.

Theorem 2. For a probabilistic answer set program satisfying the disjoint property and a query 𝑞,
the conversion of the probabilistic facts proposed in [14], the probability 𝑃𝐿(𝑞) may exceed the
upper bound P(𝑞) obtained by considering the Credal Semantics.

Consider a simplification of Example 3 with only one probabilistic fact 𝑏𝑖𝑟𝑑(1)with probability
0.4, two deterministic facts, 𝑏𝑖𝑟𝑑(2) and 𝑏𝑖𝑟𝑑(3), and query 𝑓𝑙𝑦(1) (the constraint remains the
same). We have 2 worlds, 𝜏1 and 𝜏2, 5 answer sets in total, 4 where 𝑏𝑖𝑟𝑑(1) is present (𝜏1) and
1 where is not (𝜏2). In 𝜏1, the query is true in only 3 answer sets, while for 𝜏2 we do not have
a contribution to the probability. 𝑃𝐿(𝑞) = 3 · 0.4/(4 · 0.4 + 1 · (1 − 0.4)) = 0.5454 while
P(𝑞) = 0.4. By parameterizing this formula with 𝑛𝑇 (the number of answer sets where the
query is true in 𝜏1), 𝑛𝐹 (the number of answer sets where the query is false in 𝜏1), 𝑛 (the total
number of answer sets of 𝜏2), we can compute the probability value such that 𝑃𝐿(𝑞) = P(𝑞).
By solving the equation, we get that when 𝑝 = (𝑛𝑇 − 𝑛)/(𝑛𝑇 + 𝑛𝐹 − 𝑛), 𝑃𝐿(𝑞) = P(𝑞). This
also shows that the 𝑃𝐿(𝑞) may be less than P(𝑞). In this example, if 𝑝 = 2/3, 𝑃𝐿(𝑞) = P(𝑞).

So, in the general case, to obtain the same probability value from both the LPMLN and the
Credal Semantics, we cannot directly provide a weight to associate to the rules, since this would
require knowing the number of answer sets for every world (by considering the CS).

4. Inference under the Credal Semantics

One of the major advances for inference in Probabilistic Logic Programming was the conversion
of a program into a compact form [7], operation called knowledge compilation [27]. In this new
form, inference can be performed in a faster way. Clearly, the complexity of the inference task
still remains in the #P-complete class [19, 28]. This representation is built starting from the
derivation of the query, so probabilistic facts not involved in it can be ignored, since they do
not contribute to the probability. Being ASP model driven (even if there are some proposal for a
query driven ASP language [29]) probabilistic facts that are not involved in the computation of
the probability of a query for a probabilistic answer set program under the Credal Semantics (so
every world has at least one answer set) are always considered, but can be ignored. One may
argue that the identification of these facts is a task that should be demanded to the programmer.

0.2::a. 0.3::b. 0.4::c. 0.5::d.
q ; nq:- a, b.
f:- c, d.

(a) Program.

𝑏 𝑞

𝑎

𝑓

𝑑

𝑐

(b) Dependency graph.

Figure 1: Program (left) and (part of) its dependency graph (right).

However, this is not always simple, for example when there are multiple clauses that share the
same literals. Moreover, in the context of parameter learning, usually we are given a knowledge
base of examples and a program, but often only a small part of the overall probabilistic facts is
involved in the computation of the probability for a given query. To solve this issue, we can
consider the dependency graph of an answer set program 𝒫 . We can convert the probabilistic
answer set program into an answer set program by translating every probabilistic fact Π :: 𝑓
into a choice rule {𝑓 } [24], ignoring the probability (since it does not influence the generation of
the stable models). The nodes of a dependency graph are the ones in the Herbrand base of 𝒫 ,
and it contains a directed edge (𝐴,𝐵) if and only if there exists a rule 𝑟 in the grounding of 𝒫
such that such that 𝐴 is in the head and 𝐵 is in the body. Here, we do not need to consider the
label (positive or negative) of the edges. 𝐴 depends on 𝐵 if there exists a path from 𝐴 to 𝐵 in
the graph built as just described. Computing the dependency graph from a probabilistic answer
set program is straightforward: after the conversion into an ASP version, we can obtain the
graph by, for example, computing its aspif format [30], converting the rules into terms that
represent connections with edges, and then finding the subgraphs that are not connected to the
node representing the query. This operation takes negligible time with respect to the probability
computation. If we want to compute the probability of a query 𝑞, we just need to consider
the probabilistic facts in the subgraph where the query is present. All the other probabilistic
facts can be ignored. For example, the probabilistic answer set program shown in Figure 1a
has the dependency graph shown in Figure 1b (we kept only some edges for clarity). There
are two subgraphs, one with the nodes 𝑎, 𝑏, and 𝑞, and one with 𝑐, 𝑑, and 𝑓 . These two are not
connected, so they not influence each other. Thus, for the computation of the probability of the
query 𝑞 we can consider only 𝑎 and 𝑏.

The generation of the dependency graph and the pruning of unused clauses and facts is
possible only if the program is consistent. To see this, consider the following program: 0.2::a.
q:- a. c:- not c.. The dependency graph has two subgraphs: one with 𝑎 and 𝑞 connected
and one with a single node, 𝑐. If we are interested in the probability of the query 𝑞, we remove
the clause c:- not c.. However, if we remove that clause, we get a program that is different
to the original one, since the new program has a Credal Semantics while the original one
does not have it (all the worlds are unsatisfiable). The answer set version (probabilistic fact
replaced with a choice rule) of the previous program is unsatisfiable, so one may argue that it is
devoid of meaning. This may be true, but it illustrates one of the possible issues that may arise
by considering the dependency graph. Interesting future works could consist in formalizing

this approach, precisely identifying the class of programs where this may work, and adopting
knowledge compilation techniques to speed up inference, as in [18].

5. Handling Inconsistent Worlds

If a world 𝜏 has no answer sets, 𝑃 (𝜏) neither contributes to the probability of the query 𝑞 nor
to the probability of the negation of the query. If this happens, P(𝑞) + P(𝑛𝑜𝑡 𝑞) < 1, and there
would be a loss of probability mass. If so, the correspondent program fails to have a Credal
Semantics. In the context of probabilistic answer set programs, meaningful answer set programs,
such as the one of Figure 2b, when integrated with probabilistic facts and considered under
the Credal Semantics, may fail to have at least one stable model for every world. However, we
would like to still compute the probability of a query in these. Clearly, we need to consider
in some way the probability lost. To handle this, in the context of Description Logics, the
authors of [31] proposed two possible solutions, that we discuss here for a possible adoption for
probabilistic answer set programs under the Credal Semantics: try to repair the program or try
to normalize the probability. For the first proposal [32, 33], the authors of [32] introduced the
generalized repair semantics that allows to split the database into a hard and a soft part. The
hard part is fixed while the soft part can be modified to try to repair the inconsistency. However,
it can be difficult to precisely identify these rules. Consider again the program 0.2::a. q:-
a. c:- not c.. If we convert the probabilistic fact into a choice rule, the program has no
answer sets. The inconsistency may be eventually identified using solutions such as the one
presented in [34]. The rule that causes the inconsistency is clearly the last one. Here, all the
worlds are unsatisfiable, since its answer set version is unsatisfiable. However, when only some
of the worlds are unsatisfiable, it is not easy to remove a particular rule to make them satisfiable,
without affecting the probability of the worlds.

Thus, we focus on the second solution, which consists in reintegrating back (by normalization)
the probability lost, as also adopted in cProbLog [35], an extension of ProbLog with constraints.

Example 4. Consider a graph coloring scenario, a standard answer set program, extended with
some probabilities on the edges connecting the nodes, as shown in Figure 2. There are 23 = 8
possible worlds. The last constraint prevents 𝑒𝑑𝑔𝑒(𝑎, 𝑏) and 𝑒𝑑𝑔𝑒(𝑏, 𝑐) to be true at the same time,
so it removes 2 worlds: 𝜏1 = {𝑒𝑑𝑔𝑒(𝑎, 𝑏) 𝑒𝑑𝑔𝑒(𝑏, 𝑐)} and 𝜏2 = {𝑒𝑑𝑔𝑒(𝑎, 𝑏) 𝑒𝑑𝑔𝑒(𝑏, 𝑐) 𝑒𝑑𝑔𝑒(𝑑, 𝑐)}.
However, it seems natural to try to assign a probability to a query such as 𝑔𝑟𝑒𝑒𝑛(𝑐) by, for example,
normalization, instead of trying to find a repair for the program (note again that here it is not clear
how to identify the parts that should be repaired).

We can assign a probability to programs such as the one described in Figure 2a by dividing
both the probability bounds of Equation 3 by a normalization constant 𝑍 where

𝑍 = 1−
∑︁

𝜏𝑖||𝐴𝑆(𝜏𝑖)|=0

𝑃 (𝜏𝑖) =
∑︁

𝜏𝑖||𝐴𝑆(𝜏𝑖)|>0

𝑃 (𝜏𝑖) (4)

That is, 𝑍 is 1 minus the probability of the worlds without answer sets. Equivalently, 𝑍 is the
sum of the probabilities of the worlds with at least one answer set. We ignore the corner case

node(a). node(b). node(c). node(d).
red(X) ; green(X) ; blue(X) :- node(X).
e(X,Y) :- edge(X,Y). e(Y,X) :- edge(Y,X).
blue(a). red(d).

:- e(X,Y), red(X), red(Y).
:- e(X,Y), green(X), green(Y).
:- e(X,Y), blue(X), blue(Y).

edge(a,d). edge(a,c).

0.4::edge(a,b). 0.4::edge(b,c). 0.4::edge(c,d).

:- edge(a,b), edge(b,c).

(a) Program.

𝑎 𝑑

𝑐

𝑏

(b) Graph representation.

Figure 2: Probabilistic answer set program encoding the graph coloring problem.

where all the worlds are inconsistent. Thus, the formulas for the upper and lower probabilities
became

P𝑛(𝑞) = P(𝑞)/𝑍, P𝑛(𝑞) = P(𝑞)/𝑍. (5)

With the normalization constant, we now have that P𝑛(𝑞) + P𝑛(¬𝑞) = 1. The probability of
the query 𝑞 = green(c) can be now computed as: 𝑍 = 1− (𝑃 (𝜏1) +𝑃 (𝜏2)) = 0.84, P𝑛(𝑞) = 1,
P𝑛(𝑞) = 0.4. If the query 𝑞 is a conjunction of atoms that cannot appear together in an
answer set, such as 𝑞 = 𝑒𝑑𝑔𝑒(𝑎, 𝑏), 𝑒𝑑𝑔𝑒(𝑏, 𝑐) in the previous program (Figure 2a), we get 0 as
probability, since none of the worlds 𝑤𝑖 with |𝐴𝑆(𝜏𝑖)| > 0 contain these two atoms.

There are two other semantics that manage worlds without answer sets: the L-Credal Seman-
tics [17] and the SMProbLog semantics [18]. The former, considers a variant of the commonly
adopted stable model semantics, namely the least undefined stable model semantics: a least
stable model (L-stable model, for short) is a partial stable model where the number of undefined
atoms is the lowest possible. In this way, the stable models of a program coincide with the
L-stable models but when a program does not have stable models, it may have some L-stable
models which contain undefined atoms. Thus, with this semantics, we still have a range as
probability for a query, but we need to consider three possible values for an atom: true, false, and
undefined. A three-valued semantics is also adopted in SMProbLog [18]. Within this framework,
differently from the L-Credal Semantics, the probability of a query is a sharp probability value
and, to compute it, also the number of stable models for every world are considered. The proba-
bility of the inconsistent worlds is associated with the value inconsistent, while the probability
of the consistent worlds contributes to the probability of the query. Differently from these
two semantics, the normalization approach does not require a three-valued semantics. Among
the three, SMProbLog and the normalization approach have a practical implementation2 while

2SMProbLog can be found at https://github.com/PietroTotis/smProblog while an approach based on normalization
at https://github.com/damianoazzolini/pasta

https://github.com/PietroTotis/smProblog
https://github.com/damianoazzolini/pasta

the L-Credal Semantics seems to not have one. An interesting future work could be further
analyzing the relationship between these two semantics and the normalization approach, with
a particular focus also on the computation of the conditional probability. Moreover, consider
this program: 0.4::a. :- not a.. If we ask for the probability of 𝑎, by using normalization
we obtain 1 (the world where 𝑎 is true has probability 0.4, and the world where it is false
is unsatisfiable, so the normalizing factor 𝑍 is 0.4), which is different from the probability
associated to it.

Efficiently identifying the worlds without answer sets, so programs that admit or not the
Credal Semantics, is a complicated task, since it may involve the generation of all the worlds and
the test of the satisfiability for each one. This is not scalable, since the worlds are exponential
in the number of probabilistic facts. There are other possible approaches to explore. We can
identify the possible MUSes [34], i.e., minimal (in terms of cardinality) subsets of variables
(probabilistic facts) which makes the ASP program unsatisfiable. However, this should be applied
on all the possible worlds and thus still intractable. Moreover, this supposes that the set of atoms
and the initial program, considered together, should be unsatisfiable. An alternative solution
consists in iteratively sampling a world and check whether it is satisfiable or not. In this way, we
may identify whether a program admits or not a Credal Semantics, but not necessarily identify
all the worlds that are unsatisfiable. Clearly, the effectiveness of this approach depends both on
the number of samples and on the ratio between the number of unsatisfiable and possible worlds.
Also the development of effective algorithms to spot inconsistent worlds can be a subject of a
future work.

6. Related Work

There are several approaches that manage uncertainty with ASP. In the previous sections we
discussed some frameworks to represent uncertainty in Answer Set Programming: P-log [13]
and LPMLN [14], that define a probability distribution on stable models, and SMProbLog [18],
the Credal Semantics [16] and the L-Credal Semantics [17] that are based on the definition of
world of the Distribution Semantics [9]. SMProbLog and the L-Credal Semantics have been
discussed in the context of argumentation and can also manage worlds with no answer sets. The
authors of cProbLog [35] proposed a formulation and a tool to perform inference in ProbLog
programs where some worlds have no models, due to the presence of constraints.

Diff-SAT [36] and PrASP [37] are two other proposals to handle uncertain rules. Differently
from the Credal Semantics, PrASP defines a probability distribution over answer sets and it is
not based on the Distribution Semantics. A PrASP program is a set of annotated formulas and
independence constraints (since it does not impose independence on the random variables). Each
formula can be associated with a pair of values [𝑙, 𝑢] representing its (imprecise) probability
(𝑙 and 𝑢 can coincide). To perform inference, a PrASP program is converted into an ASP
program called spanning program. Then, the goal is to find a solution to a set of equations
that define a parameterized probability distribution over answer sets. Both under PrASP and
CS the probability of the query is specified by a range, but they differ in how this range
is computed. Similar considerations hold for DiffSAT, where inference is considered as a
multi model optimization problem: in case of probabilistic inference, the solution of such a

problem approximates the probability distribution over the possible models. Also here, the
probability distribution is over answer sets, while the CS considers a probability distribution
over probabilistic facts.

PASOCS [38] and PASTA [24] are two frameworks to perform inference, both exact and
approximate [23], in probabilistic answer set programs under the Credal Semantics, and thus
they require that every world has at least one stable model. They have a similar approach for
the computation of the exact probability of a query: the first enumerates all the worlds and
then, for each one, computes the answer sets with an answer set solver. PASTA, on the contrary,
translates the probabilistic answer set program into an answer set program by converting
probabilistic facts into choice rules and then calls an answer set solver only once to compute the
projective solutions. Empirically [24], PASTA is slightly faster, but both solvers cannot manage
more than 30-32 probabilistic facts.

The authors of [39] introduced the plausibility reasoning task, which sits between cautious
reasoning and brave reasoning, by asking whether a query is present in at least 𝑘% of the
answer set of a program. This may be an interesting approach to extend to the Credal Semantics,
to relax, for example, the lower bound. Let us discuss this for a moment. For example, we may
propose the kp-Credal Semantics and the kn-Credal Semantics, where, instead of computing the
cautious consequences for the lower bound, we consider the worlds where the query is true in
at least k% (for the kp-Credal Semantics) of the answer sets (P𝑘

𝑘𝑝(𝑞)), or in n (for the kn-Credal
Semantics) answer sets (P𝑛

𝑘𝑝(𝑞)). However, for the kp-Credal Semantics as proposed, there may
be world that contribute to both the bounds, so P𝑘

𝑘𝑝(𝑞) + P(𝑛𝑜𝑡 𝑞) is not guaranteed to sum to
1 (and may exceed 1). Similarly for the kn-Credal Semantics. If instead of a probability range,
we define a sharp probability value for the two semantics, this still does not guarantee that
𝑃 (𝑞) + 𝑃 (𝑛𝑜𝑡 𝑞) = 1. A more in-depth study of this may be the subject of a future work.

7. Conclusions

In this paper, we conducted a brief discussion about the Credal Semantics and its main features.
First, we sketched the differences between it and the LPMLN semantics. Then, we considered
the problem of inference and argued that, in some cases, the generation of the dependency
graph may help identifying rules and facts not involved in the probability computation. Finally,
we discuss some possible approaches to handle worlds where some programs have no answer
sets.

References

[1] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer, 1987.
[2] L. Sterling, E. Shapiro, The Art of Prolog: Advanced Programming Techniques, Logic

programming, MIT Press, 1994.
[3] G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance, Communica-

tions of the ACM 54 (2011) 92–103. doi:10.1145/2043174.2043195.
[4] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive aggregates

http://dx.doi.org/10.1145/2043174.2043195

in answer set programming, Artificial Intelligence 175 (2011) 278–298. doi:10.1016/
j.artint.2010.04.002.

[5] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Multi-shot ASP solving with
clingo, Theory and Practice of Logic Programming 19 (2019) 27–82. doi:10.1017/
S1471068418000054.

[6] M. Alviano, C. Dodaro, N. Leone, F. Ricca, Advances in WASP, in: F. Calimeri, G. Ianni,
M. Truszczynski (Eds.), Logic Programming and Nonmonotonic Reasoning - 13th Inter-
national Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Pro-
ceedings, volume 9345 of Lecture Notes in Computer Science, Springer, 2015, pp. 40–54.
doi:10.1007/978-3-319-23264-5_5.

[7] L. De Raedt, A. Kimmig, H. Toivonen, ProbLog: A probabilistic Prolog and its application
in link discovery, in: M. M. Veloso (Ed.), 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), volume 7, AAAI Press, 2007, pp. 2462–2467.

[8] S. Muggleton, et al., Stochastic logic programs, Advances in inductive logic programming
32 (1996) 254–264.

[9] T. Sato, A statistical learning method for logic programs with distribution semantics, in:
L. Sterling (Ed.), Logic Programming, Proceedings of the Twelfth International Conference
on Logic Programming, Tokyo, Japan, June 13-16, 1995, MIT Press, 1995, pp. 715–729.
doi:10.7551/mitpress/4298.003.0069.

[10] D. Azzolini, F. Riguzzi, E. Lamma, A semantics for hybrid probabilistic logic pro-
grams with function symbols, Artificial Intelligence 294 (2021) 103452. doi:10.1016/
j.artint.2021.103452.

[11] F. Riguzzi, MCINTYRE: A Monte Carlo system for probabilistic logic programming,
Fundamenta Informaticae 124 (2013) 521–541. doi:10.3233/FI-2013-847.

[12] F. Riguzzi, T. Swift, The PITA system: Tabling and answer subsumption for reasoning
under uncertainty, Theory and Practice of Logic Programming 11 (2011) 433–449.

[13] C. Baral, M. Gelfond, N. Rushton, Probabilistic reasoning with answer sets, Theory and
Practice of Logic Programming 9 (2009) 57–144. doi:10.1017/S1471068408003645.

[14] J. Lee, Y. Wang, A probabilistic extension of the stable model semantics, in: AAAI Spring
Symposia, 2015.

[15] F. G. Cozman, D. D. Mauá, The structure and complexity of credal semantics, in: A. Hom-
mersom, S. A. Abdallah (Eds.), 3rd International Workshop on Probabilistic Logic Program-
ming (PLP 2016), volume 1661 of CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp.
3–14.

[16] F. G. Cozman, D. D. Mauá, On the semantics and complexity of probabilistic logic programs,
Journal of Artificial Intelligence Research 60 (2017) 221–262. doi:10.1613/jair.5482.

[17] V. H. N. Rocha, F. G. Cozman, A credal least undefined stable semantics for probabilistic
logic programs and probabilistic argumentation, in: G. Kern-Isberner, G. Lakemeyer,
T. Meyer (Eds.), Proceedings of the 19th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2022, 2022.

[18] P. Totis, L. De Raedt, A. Kimmig, smProbLog: Stable model semantics in problog for
probabilistic argumentation, Cambridge University Press, 2023, pp. 1–50. doi:10.1017/
S147106842300008X.

[19] F. Riguzzi, Foundations of Probabilistic Logic Programming: Languages, semantics, infer-

http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1016/j.artint.2010.04.002
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1007/978-3-319-23264-5_5
http://dx.doi.org/10.7551/mitpress/4298.003.0069
http://dx.doi.org/10.1016/j.artint.2021.103452
http://dx.doi.org/10.1016/j.artint.2021.103452
http://dx.doi.org/10.3233/FI-2013-847
http://dx.doi.org/10.1017/S1471068408003645
http://dx.doi.org/10.1613/jair.5482
http://dx.doi.org/10.1017/S147106842300008X
http://dx.doi.org/10.1017/S147106842300008X

ence and learning, River Publishers, Gistrup, Denmark, 2018.
[20] J. Lee, Y. Wang, Weighted rules under the stable model semantics, in: C. Baral, J. P.

Delgrande, F. Wolter (Eds.), Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fifteenth International Conference, KR 2016, Cape Town, South Africa,
April 25-29, 2016, AAAI Press, 2016, pp. 145–154.

[21] M. Richardson, P. Domingos, Markov logic networks, Machine Learning 62 (2006) 107–136.
[22] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming., volume 88,

MIT Press, 1988, pp. 1070–1080.
[23] D. Azzolini, E. Bellodi, F. Riguzzi, Approximate inference in probabilistic answer set

programming for statistical probabilities, in: A. Dovier, A. Montanari, A. Orlandini (Eds.),
AIxIA 2022 – Advances in Artificial Intelligence, Springer International Publishing, Cham,
2023, pp. 33–46. doi:10.1007/978-3-031-27181-6_3.

[24] D. Azzolini, E. Bellodi, F. Riguzzi, Statistical statements in probabilistic logic programming,
in: G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming and Nonmonotonic
Reasoning, Springer International Publishing, Cham, 2022, pp. 43–55. doi:10.1007/978-
3-031-15707-3_4.

[25] D. Azzolini, E. Bellodi, F. Riguzzi, MAP inference in probabilistic answer set programs,
in: A. Dovier, A. Montanari, A. Orlandini (Eds.), AIxIA 2022 – Advances in Artificial
Intelligence, Springer International Publishing, Cham, 2023, pp. 413–426. doi:10.1007/
978-3-031-27181-6_29.

[26] F. G. Cozman, D. D. Mauá, The joy of probabilistic answer set programming: Semantics,
complexity, expressivity, inference, International Journal of Approximate Reasoning 125
(2020) 218–239. doi:10.1016/j.ijar.2020.07.004.

[27] A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Artificial Intelligence
Research 17 (2002) 229–264. doi:10.1613/jair.989.

[28] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, Adaptive
computation and machine learning, MIT Press, Cambridge, MA, 2009.

[29] J. Arias, M. Carro, E. Salazar, K. Marple, G. Gupta, Constraint answer set program-
ming without grounding, Theory and Practice of Logic Programming 18 (2018) 337–354.
doi:10.1017/S1471068418000285.

[30] R. Kaminski, T. Schaub, P. Wanko, A Tutorial on Hybrid Answer Set Solving with clingo,
2017, pp. 167–203. doi:10.1007/978-3-319-61033-7∖_6.

[31] İ. İ. Ceylan, T. Lukasiewicz, R. Peñaloza, Complexity results for probabilistic datalog±,
in: G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van
Harmelen (Eds.), 22nd European Conference on Artificial Intelligence (ECAI 2016), volume
285 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2016, pp. 1414–1422.
doi:10.3233/978-1-61499-672-9-1414.

[32] T. Eiter, T. Lukasiewicz, L. Predoiu, Generalized consistent query answering under ex-
istential rules, in: Proceedings of the Fifteenth International Conference on Principles
of Knowledge Representation and Reasoning, KR’16, AAAI Press, 2016, pp. 359–368.
doi:10.5555/3032027.3032070.

[33] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant semantics for
description logics, in: P. Hitzler, T. Lukasiewicz (Eds.), Web Reasoning and Rule Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 103–117. doi:10.1007/978-3-

http://dx.doi.org/10.1007/978-3-031-27181-6_3
http://dx.doi.org/10.1007/978-3-031-15707-3_4
http://dx.doi.org/10.1007/978-3-031-15707-3_4
http://dx.doi.org/10.1007/978-3-031-27181-6_29
http://dx.doi.org/10.1007/978-3-031-27181-6_29
http://dx.doi.org/10.1016/j.ijar.2020.07.004
http://dx.doi.org/10.1613/jair.989
http://dx.doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1007/978-3-319-61033-7_6
http://dx.doi.org/10.3233/978-1-61499-672-9-1414
http://dx.doi.org/10.5555/3032027.3032070
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9

642-15918-3_9.
[34] M. Alviano, C. Dodaro, S. Fiorentino, A. Previti, F. Ricca, Enumeration of minimal models

and MUSes in WASP, in: G. Gottlob, D. Inclezan, M. Maratea (Eds.), Logic Programming
and Nonmonotonic Reasoning, Springer International Publishing, Cham, 2022, pp. 29–42.

[35] D. Fierens, G. V. den Broeck, M. Bruynooghe, L. D. Raedt, Constraints for probabilistic
logic programming, in: D. Roy, V. Mansinghka, N. Goodman (Eds.), Proceedings of the
NIPS Probabilistic Programming Workshop, 2012.

[36] M. Nickles, Differentiable SAT/ASP., in: PLP@ ILP, 2018, pp. 62–74.
[37] M. Nickles, A tool for probabilistic reasoning based on logic programming and first-

order theories under stable model semantics, in: L. Michael, A. Kakas (Eds.), Logics
in Artificial Intelligence, Springer International Publishing, Cham, 2016, pp. 369–384.
doi:doi.org/10.1007/978-3-319-48758-8_24.

[38] D. Tuckey, A. Russo, K. Broda, PASOCS: A parallel approximate solver for probabilistic
logic programs under the credal semantics, arXiv abs/2105.10908 (2021). doi:10.48550/
ARXIV.2105.10908.

[39] J. K. Fichte, M. Hecher, M. A. Nadeem, Plausibility reasoning via projected answer set
counting - A hybrid approach, in: L. D. Raedt (Ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022, ijcai, 2022, pp. 2620–2626. doi:10.24963/ijcai.2022/363.

http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/10.1007/978-3-642-15918-3_9
http://dx.doi.org/doi.org/10.1007/978-3-319-48758-8_24
http://dx.doi.org/10.48550/ARXIV.2105.10908
http://dx.doi.org/10.48550/ARXIV.2105.10908
http://dx.doi.org/10.24963/ijcai.2022/363

	1 Introduction
	2 Probabilistic Logic Programming under the Distribution Semantics
	3 The `3́9`42`"̇613A``45`47`"603ALPMLN and the Credal Semantics
	3.1 The `3́9`42`"̇613A``45`47`"603ALPMLN Semantics
	3.2 The Credal Semantics

	4 Inference under the Credal Semantics
	5 Handling Inconsistent Worlds
	6 Related Work
	7 Conclusions

