
Introducing ASP recipes and ASP Chef
Mario Alviano

*
, Davide Cirimele and Luis Angel Rodriguez Reiners

DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy

Abstract

Answer Set Programming (ASP) is gaining popularity in the Knowledge Representation and Reasoning

community thanks to its high-level modeling capabilities that ease the fast prototyping of systems

addressing complex tasks. On the other hand, ASP is not a general purpose programming language and

therefore it is usually employed for specific tasks of possibly long and articulated pipelines. This article

introduces the notion of ASP recipe, a chain of ingredients combining computational tasks typical of ASP

with other operations of data manipulation and visualization. ASP recipes are at the core of ASP Chef, a

simple, intuitive web app for analysing answer sets that is designed to ease the creation of pipelines of

operations over sequences of interpretations.

Keywords
answer set programming, modular programming, knowledge visualization, UX design

1. Introduction

Knowledge Representation and Reasoning applications are characterized by complex domains

whose features of interest are properly encoded in a computer-readable format so that auto-

matic manipulation, synthesis and sophisticated reasoning tasks can be addressed by efficient,

specialized engines [1]. In this context, Answer Set Programming (ASP) [2] is gaining popularity

among researchers and practitioners thanks to its declarative approach to problem solving that

combines linguistic high-level constructs typical of logic-based programming languages as well

as advanced solving algorithms for combinatorial search and optimization [3].

Despite its theoretical unrestricted computational capabilities, allowing to simulate any

Turing machine when uninterpreted function symbols are used [4], ASP is not designed or

intended to be a general programming language. As such, ASP must be employed to address

specific tasks of a broader pipeline, and therefore tasks addressed by ASP engines are expected

to receive their input from other modules of the pipeline, possibly implemented in a different

paradigm, and are as well expected to produce output that will be consumed by subsequent

modules of the pipeline, again possibly implemented in different paradigms. (For example, [5]

reports a framework for controlling articulated robots involving several modules, among them

several that are powered by ASP.)

ICLP Workshops 2023
*
Corresponding author.

$ mario.alviano@unical.it (M. Alviano); crmdvd98c05g975u@studenti.unical.it (D. Cirimele); luis.reiners@unical.it

(L. A. Rodriguez Reiners)

� https://alviano.net/ (M. Alviano)

� 0000-0002-2052-2063 (M. Alviano); 0009-0000-1808-9910 (L. A. Rodriguez Reiners)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mario.alviano@unical.it
mailto:crmdvd98c05g975u@studenti.unical.it
mailto:luis.reiners@unical.it
https://alviano.net/
https://orcid.org/0000-0002-2052-2063
https://orcid.org/0009-0000-1808-9910
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


connected(1,2). town(1..6).
connected(1,4). townsintravel(3).
connected(2,3).
connected(3,4).
connected(3,5).
connected(4,5).
connected(5,6).

Figure 1: An instance of Fighting with the gang of Billy the Kid encoded by facts (right) and shown as a
graph (left). All paths of 3 towns include at least one red node. An example path is shown in green.

1 connected(X,Y) :- connected(Y,X). % symmetric closure

2 {select(T)} :- town(T). % guess solution
3 :∼ select(T). [1@1, T] % minimize selected towns

4 % no path of length 𝑛 not including any selected town
5 :- townsintravel(N), path_length(_,N).
6 path_length((T,nil), 1) :- town(T), not select(T).
7 path_length((T',(T,X)), L+1) :- path_length((T,X), L), townsintravel(N), L < N, connected(T,T'),

not select(T'), not in_path(T',X).
8 in_path(T, (T,X)) :- path_length((T,X), _).
9 in_path(T',(T,X)) :- path_length((T,X), _), in_path(T',X).

Figure 2: A monolithic ASP solution for Fighting with the gang of Billy the Kid. Note that paths of distinct
towns not including those selected are materialized in the form (𝑡1, (𝑡2, (. . . , nil))) by lines 6–9.

As a matter of fact, experienced ASP practitioners are used to map data from one format to

the format accepted by ASP engines, and to map the output produced by ASP engines to some

other format that is suitable to be presented to the end-user or to be further processed in the

implemented pipeline. The problem of implementing such mapping procedures occurs at each

ASP module of the pipeline and therefore it represents a not negligible task for development

teams. On the one hand, the problem almost disappears if the pipeline is actually composed by

a single ASP module, essentially either in the unrealistic hypothesis that the input and output

format of ASP engines is suitable for the application to develop, or because there are only two

mapping procedures to implement. On the other hand, even in such cases pretending to use ASP

only in this way might severely limit its scope of application. In fact, without proper mechanisms

enabling the exchange of data between ASP modules and modules of different nature, ASP

practitioners, especially those at an early stage, may be tempted to use ASP as a single entity

and as such find it convenient only to address computationally complex combinatorial problems,

rather than as a solid formalism to be employed in broader pipelines.

This article introduces the notion of ASP recipe as a chain of ingredients that are essentially the

instantiation of different operations. An operation can be one of the typical computational tasks

for which ASP engines find a natural application, such as combinatorial search and optimization,

some data manipulation procedure, or also some data visualization procedure. The idea is to

provide a formalism in which the user can employ ASP directly by specifying a set of logic

rules, but also indirectly via the operations that are implemented using an ASP engine.



1 connected(X,Y) :- connected(Y,X).

2 {path(1,T) : town(T)} = 1.
3 {path(I+1,T') : connected(T,T')} = 1 :-

path(I,T), townsintravel(N), I < N.
4 :- path(I,T), path(J,T), I < J.

5 in_path(T) :- path(_,T).

1 {select(T)} :- town(T).
2 :∼ select(T). [1@1, T]

3 ok(P) :- in_path(P,T), select(T).
4 :- in_path(P,_), not ok(P).

Figure 3: An ASP program to enumerate paths (left) and an ASP program to select towns to monitor
(right). Note that the instances of in_path produced by the program on the left (line 5) must be
enriched with a path identifier before being processed by the program on the right (lines 3–4).

For example, consider Fighting with the gang of Billy the Kid, a problem from the LP/CP
Programming Contest series (https://github.com/lpcp-contest/). The input comprises a positive

integer 𝑛, and a graph representing towns and streets. The goal is to select a minimum number

of towns such that each path visiting 𝑛 distinct towns includes at least one of the selected towns.

Intuitively, the selected towns are those to monitor in order to catch bandits moving among 𝑛
towns for their illicit activities. An instance and its solution are shown in Figure 1. The problem

can be solved by a monolithic ASP encoding guessing (and minimizing) the selected towns, and

enforcing that no path of 𝑛 non-selected towns does exist; such a requirements can be enforced

relying on uninterpreted function symbols, as shown in Figure 2. Approaching the problem

with an ASP recipe may first rely on an ASP program whose answer sets are paths of 𝑛 towns,

enumerate all of them, then pack all paths as the input for another ASP program addressing the

required combinatorial optimization task. Figure 3 reports such ASP programs, and Section 6

further elaborates on this solution to the problem.

One of the difficulties to face in order to enable the composition of linear chains of ingredients

is the format to adopt for the input and output of each operation. Adopting different formats

leads to increased complexity in terms of design of the notion of ASP recipe as well as in their

composition, as essentially compatibility of formats must be taken into account at each chain

junction. Such a difficulty is circumvented by adopting a uniform format for input and output of

all operations, that is, sequences of interpretations. Additionally, operations can have parameters

to customize their behavior, and also have side output to enable inspection and visualization of

intermediate states of the evaluation of ASP recipes.

This work also introduces ASP Chef, a web app designed to implement possibly long pipelines

in which ASP is often used as a core engine to address several computational tasks and putting

in practice the notion of ASP recipe. We remark here that the main enabling mechanism adopted

by ASP Chef to ease the application of ASP in possibly long pipelines is a uniform format for

the input and output of each operation in the pipeline. Thanks to such a uniformity, the several

operations implemented in ASP Chef can be combined in any order, and new operations can be

accommodated easily in the future. Actually, among the operations already implemented in

ASP Chef, there are operations to ease the embedding of structured and semi-structured data,

so that the restriction to the format of sequences of interpretations becomes almost immaterial.

In fact, the restriction is bypassed by operations relying on Base64 encoding as Base64 strings

are valid terms for ASP engines, and they are conceived to encode any binary data. For example,

the ParseCSV operation maps a comma-separated values (CSV) content into a sequence of facts

https://github.com/lpcp-contest/


that is added to each interpretation in input to produce an output enabling the processing of

the CSV data (see Section 4.6). The ASP encoding itself can be composed and manipulated by

means of the Encode operation, which essentially encodes in Base64 an arbitrary content and

extends each interpretation in input with a new fact carrying such data (see Section 4.5). In

the next sections, after introducing some background (Section 2), we introduce the notions of

operation, ingredient and recipe (Section 3), and formalize some of the around 50 operations

currently implemented in ASP Chef (Section 4). Finally, a couple of examples are provided in

Section 6, related work is discussed in Section 7, and concluding remarks and future works are

given in Section 8.

2. Background

We assume that the reader is familiar with the language of ASP [6], and only introduce the

background notions to which ASP practitioners may be less accustomed.

Let Base64 be the function associating every binary string with a longer binary string that

can be interpreted as printable ASCII characters; the output string is obtained according to

RFC 4648 §4 (https://datatracker.ietf.org/doc/html/rfc4648#section-4). Let Base64−1
be the

inverse function of Base64 .

Example 1. Let 𝑡 be the following two-lines text:

hello world
1 2 3

Base64 (𝑡) is (the binary string associated with) the ASCII string aGVsbG8gd29ybGQKMSAyIDM=.

The two-lines text 𝑡 can be obtained by applying Base64−1
to aGVsbG8gd29ybGQKMSAyIDM=.

In the following the term object refers to any finite element of a fixed universe (comprising,

among other elements, strings, numbers, graphs, atoms, programs, and sequences). The notation

(𝑥1, . . . , 𝑥𝑛) is used to refer to a (finite) sequence of 𝑛 ≥ 0 objects, where each object 𝑥𝑖 is

associated with index 𝑖. Moreover, by space we refer to a (possibly infinite) set of objects. Finally,

the Boolean values are denoted by T and F.

3. ASP Recipes

Terms are defined as usual by inductively combining constants and functions of positive arity;

similarly, atoms combine predicates and terms. An interpretation is a (finite) sequence of distinct

atoms, that is, an interpretation is a set of atoms also associating each atom with an index

(starting from 1); among the interpretations we include the inconsistent interpretation ⊥ to

represent errors. Let ℐ be the set of all sequences of interpretations.

Example 2. ℐ includes, among others, the sequence ((hello), (hello), (hello,world)) of inter-

pretations. Note that atoms within the same interpretation must be distinct, while the same

interpretation may occur multiple times. Here, the last interpretation has index 3, and in that

interpretation atom hello has index 1 and atom world has index 2.

https://datatracker.ietf.org/doc/html/rfc4648#section-4


An operation 𝑂 is a function with signature 𝑂 : ℐ −→ ℐ , that is, a function receiving in

input a sequence of interpretations and producing in output a sequence of interpretations.

Example 3. Let Idx be the operation associating every atom in input with its index in the

interpretation it occurs. More formally, if the input contains an interpretation with index 𝑖 and

atom 𝛼 occurs at index 𝑗 in that interpretation, then the output contains an interpretation with

index 𝑖 and atom index (𝑗, 𝛼) at index 𝑗 in this interpretation.

An operation 𝑂 with side output space 𝒮 is a function with signature 𝑂 : ℐ −→ ℐ × 𝒮 . No

particular restriction is imposed to the side output space; common cases include the set of

strings, the set of graphs, and the set containing the empty set (to essentially have operations

with no side output as a special case); to lighten the notation, if the side output space is {∅}, we

simply omit it. Let 𝑂|ℐ denote the operation obtained from 𝑂 by discarding the side output.

Example 4. Let Table be the operation reproducing in output its input, and additionally having

as side output a sequence of tables, one for each interpretation in input, each one containing a

row for each atom in the interpretation and columns for predicates and arguments of atoms.

Note that Table|ℐ is essentially a NOP (an operation that does nothing).

A parameterized operation 𝑂 with parameter space 𝒫 and side output space 𝒮 is a function

with signature 𝒫 −→ (ℐ −→ ℐ × 𝒮), that is, 𝑂⟨𝑃 ⟩ is an operation with side output space 𝒮
for each parameter value 𝑃 ∈ 𝒫 (note that angle brackets are used to denote a parameterized
operation instantiation). No particular restriction is imposed to the parameter space; common

cases include the set of integers, the set of strings, sets of tuples, and the set containing the

empty set (to have non-parameterized operations as a special case); to lighten the notation, if

the parameter space is {∅}, we simply omit it.

Example 5. Let Index be the function associating every predicate name 𝑝 with the following

operation: if the input contains an interpretation with index 𝑖 and atom 𝛼 occurs at index 𝑗 in

that interpretation, then the output contains an interpretation with index 𝑖 and atom p(𝑗, 𝛼) at

index 𝑗 in this interpretation. Note that Index ⟨index ⟩ is the operation Idx from Example 3.

An ingredient is an instantiation of a parameterized operation with side output, that is,

if 𝑂 is a parameterized operation with parameter space 𝒫 and side output space 𝒮 , and

𝑃 ∈ 𝒫 is a parameter value, then 𝑂⟨𝑃 ⟩ is an ingredient. A recipe is a tuple of the form

(encode, Ingredients, decode), where Ingredients is a (finite) sequence of ingredients, and

encode and decode are Boolean values. Intuitively, the input of a recipe is either (the string

representation of) a sequence of interpretations in ℐ , or a string to be Base64 -encoded. The

input is processed by the pipeline of ingredients, possibly producing some side output along the

way. Finally, some encoded content is possibly decoded. Such an intuition is formalized below.

Let Ingredients comprise 𝑛 ≥ 0 ingredients 𝑂1⟨𝑃1⟩, . . . , 𝑂𝑛⟨𝑃𝑛⟩, and let 𝑠in be the string

in input. The output and side output of the recipe (encode, Ingredients, decode) given 𝑠in are

respectively 𝑠out and 𝑆1, . . . , 𝑆𝑛 defined as follows:

• 𝐼0 is one of (i) ((__base64__("𝑠"))), if encode is true, where 𝑠 = Base64 (𝑠in); (ii) the

sequence of interpretations represented by 𝑠in , where interpretations are separated by

the reserved character § and atoms are represented as facts, if 𝑠in conforms to this

specification; (iii) (⊥) otherwise, to report an error.



• For each 𝑖 = 1, . . . , 𝑛, let 𝐼𝑖 be 𝑂𝑖⟨𝑃𝑖⟩|ℐ(𝐼𝑖−1), and 𝑆𝑖 be the side output of 𝑂𝑖⟨𝑃𝑖⟩(𝐼𝑖−1).
Essentially, each ingredient of the recipe receives a sequence of interpretations from the

previous computational step, and produces in output a sequence of interpretations for

the next computational step. Possibly, a side output is also produced.

• Let 𝑠out be the string obtained by concatenating the atoms of 𝐼𝑛 represented as facts, one

per line, and using § as the separator for interpretations. If decode is true, 𝑠out is further

processed by replacing every occurrence of __base64__("s") with (the ASCII string

associated with) Base64−1(𝑠); in this case, if Base64−1(𝑠) produces an error, then 𝑠𝑜𝑢𝑡
is simply the string representation of (⊥).

Let 𝑅(𝑠in) = (𝑠out , 𝑆1, . . . , 𝑆𝑛) denote the fact that 𝑠out and 𝑆1, . . . , 𝑆𝑛 are the output and

side output of a recipe 𝑅 given an input string 𝑠in .

Example 6. Recall 𝑡 from Example 1, its Base64-encoding aGVsbG8gd29ybGQKMSAyIDM=,

and the operations Table and Index defined in Examples 4–5. Let 𝑅1, 𝑅2 be the recipes

(T, (Table),T) and (F, (Table, Index ⟨idx ⟩),T). Hence, 𝑅1(𝑡) = (𝑡, (table1)), where table1
has one row with two cells, namely __base64__ and "aGVsbG8gd29ybGQKMSAyIDM=". In fact,

𝑡 is first encoded, produced as table1, and finally decoded back to 𝑡. Similarly, for 𝑡′, 𝑡′′

being the strings __base64__("aGVsbG8gd29ybGQKMSAyIDM="). and idx(1,__base64__("

aGVsbG8gd29ybGQKMSAyIDM="))., it can be checked that 𝑅2(𝑡
′) = (𝑡′′, (table1), ∅).

4. Core Operations

This section introduces some operations by specifying how they process input. Parameter

spaces are usually intuitive and parameter values that do not influence the output are possibly

denoted with an underscore. Regarding side output spaces, if not stated otherwise, they are

assumed to be {∅}; empty side output is also usually omitted.

4.1. Searching

Let SearchModels⟨decode_predicate, echo, rules,number_of _models⟩ be the operation map-

ping (𝐼1, . . . , 𝐼𝑛) to (𝐼1,1, . . . , 𝐼1,𝑛1 , 𝐼2,1, . . . , 𝐼𝑛,𝑛𝑛), where each 𝐼𝑖,1, . . . , 𝐼𝑖,𝑛𝑖 is obtained by

enumerating up to number_of _models answer sets of the program rules ∪ {Base64−1(𝑐) |
decode_predicate(“𝑐”) ∈ 𝐼𝑖} ∪ {𝑝(𝑐). | 𝑝(𝑐) ∈ 𝐼𝑖, 𝑝 ̸= decode_predicate or echo = T}. As a

special case, number_of _models = 0 is used to enumerate all answer sets.

Example 7. Let 𝑠in be the fact

hello.

and 𝑅 be the recipe (F, (SearchModels(_, _, rules1, 0), (SearchModels(_, _, rules2, 0)),F),
where

rules1 : {world}.
rules2 : wonderful. world.

Hence, 𝑅(𝑠in) is the following text:



hello.
wonderful.
world.
S
hello.
world.
wonderful.

Note that after the application of the first ingredient there are essentially two answer sets,

namely {hello} and {hello, world}. Each of them is processed by the second ingredient,

which adds the facts wonderful and world.

Let Optimize be an operation with the same parameter space and behavior of SearchModels ,

but enumerating optimal answer sets (according to the objective function given in terms of

weak constraints, as usual in ASP).

4.2. Sorting and Removing Duplicates

Example 7 highlights that the order of interpretations and of atoms within them is not in general

under the control of all operations. In fact, the enumeration of answer sets does not follow a

specific order, and atoms within an answer set have no fixed order. Control over the order of

interpretations can be imposed by adding ingredients conceived for this purpose.

Let SortCanonical be the operation sorting atoms within each interpretation accord-

ing to their lexicographical ordering (predicate first, then the first argument, and so on).

The ordering of terms gives priority to number, then to constants, finally to functions.

Let SortByPredicateOrArgument⟨index , desc⟩ be the operation sorting atoms in each in-

terpretation according to their predicates (if index = 0) or their index -th arguments (if

index ̸= 0). The ordering is descending if desc = T, and ascending otherwise. Let

SortModelsCanonically⟨excluded_predicates⟩ be the operation sorting the interpretations

according to their string representation, obtained after removing all instances of predicates in

excluded_predicates . Let Unique⟨excluded_predicates⟩ be the operation producing in output

the first interpretation in input, and every other interpretation that is not immediately preceded

by a copy of itself, once all instances of predicates in excluded_predicates are removed; often

this operation is preceded by a sort operation to remove all duplicates from the input.

Example 8. If 𝑅 in Example 7 is extended with SortCanonical , the output will contain two

copies of the first interpretation. If 𝑅 is further extended with SortModelsCanonically⟨∅⟩ and

Unique⟨∅⟩, the output will contain only one copy of the first interpretation.

4.3. Filtering and Selecting

Let Filter⟨regex ⟩ be the operation preserving only atoms whose string representa-

tion matches the given regular expression regex , in each interpretation in input. Let

SelectPredicates⟨predicates⟩ be the operation preserving only instances of predicates in the

set predicates , for each interpretation in input. Let SelectModel⟨index ⟩ be the operation

preserving only the index -th interpreation in input.



4.4. Merging and Splitting

Let Merge⟨predicate⟩ be the operation mapping (𝐼1, . . . , 𝐼𝑛) to the interpretation containing

an atom predicate(𝑖) for each 𝑖 = 1, . . . , 𝑛 and an atom predicate(𝑖, 𝛼) for each 𝛼 ∈ 𝐼𝑖. Let

Split⟨predicate⟩ be the operation replacing every interpretation in input with the interpretations

encoded by instances of predicate , according to the schema defined by Merge ; that is, in each

model 𝐼 in input, each predicate(𝑖) ∈ 𝐼 leads to one model in output comprising 𝛼 for each

predicate(𝑖, 𝛼) ∈ 𝐼 .

4.5. Closures and Encoded Content

Let SymmetricClosure⟨input_predicate, closure_predicate, encode_predicate⟩ be the opera-

tion extending each interpretation in input with the rules

closure_predicate(X,Y) :- input_predicate(X,Y).
closure_predicate(X,Y) :- input_predicate(Y,X).

Actually, interpretations in input are extended with the atom encode_predicate(𝑐), where 𝑐 is

the Base64-encoding of the above rules.

Example 9. Let 𝑅 be the recipe (F, (SymmetricClosure⟨link, link, b64⟩,
SearchModels⟨b64,F, ∅, 1⟩),F). Let 𝑠in be link(a,b). Hence, 𝑅(𝑠in) produces in out-

put the interpretation consisting of link(a,b) and link(b,a).

Similarly, TransitiveClosure extends interpretations in input with the rules

closure_predicate(X,Y) :- input_predicate(X,Y).
closure_predicate(X,Z) :- closure_predicate(X,Y), input_predicate(Y,Z).

Finally, an arbitrary content can be Base64-encoded by Base64 ⟨encode_predicate, content⟩.

4.6. Working with Comma Separated Values

Let ParseCSV ⟨decode_predicate, echo, separator , output_predicate⟩ be the operation ex-

tending each interpretation 𝐼𝑖 in input with atoms representing a CSV content Base64−1(𝑐),
for each decode_predicate(“𝑐”) ∈ 𝐼𝑖. Each value occurring in cell (row , col) in the

CSV content is represented by an atom of the form output_predicate(row , col , value).
The instances of decode_predicate are removed from the output if echo = F, and

the separator used by CSV can be specified (e.g., TAB, SPACE, or a string). Let

GenerateCSV ⟨input_predicate, echo, encode_predicate, separator⟩ be the operation produc-

ing a CSV content from instances of input_predicate in input, following the schema used by

ParseCSV . The CSV content is Base64-encoded and stored as an instance of encode_predicate .

Instances of input_predicate are removed from the output if echo = F, and the separator to

use in the CSV content can be specified.

Example 10. Let 𝑡 be the two-lines text from Example 1. Let 𝑅 be the recipe

(T, (ParseCSV ⟨__base64__,F, SPACE, cell⟩),F). Hence, 𝑅(𝑡) produces in output the in-

terpretation consisting of the following facts:

cell(1, 1, "hello"). cell(1, 2, "world").
cell(2, 1, 1). cell(2, 2, 2). cell(2, 3, 3).



g(node(1),color(green),label(1)).
g(node(2),color(blue),label(2)).
g(node(3),color(red),label(3)).
g(link(1,2)).
g(link(1,3)).
g(link(2,3)).
g(defaults,undirected).

Figure 4: A graph and its 3-coloring (left), as well as its fact representation (right).

4.7. Visualizing Side Output

Let Table be the operation forwarding its input and having as side output a sequence of tables,

as described in Example 4. Let Output be the operation forwarding its input and having as side

output its input. Let OutputEncodedContent⟨predicate, echo⟩ be the operation forwarding its

input, possibly after removing instances of predicate if echo = F, and having as side output

the Base64-decoded content of all instances of predicate .

Let Graph⟨predicate, echo⟩ be the operation forwarding its input, possibly after removing

instances of predicate if echo = F, and having as side output a graph described by instances of

predicate . The first argument of such instances is one of node(ID), link(SOURCE,TARGET) and

defaults. The other arguments have the form property(VALUE ). Node properties include

color, label, fx, fy, radius, and shape. Link properties include color, label, directed, and

undirected. Default properties include node_color, node_radius, node_shape, link_color,

directed, and undirected.

Example 11. For an undirected graph encoded by predicate link and one of its 𝑘-coloring

encoded by predicate assign, the following program can be used to obtain the facts shown in

Figure 4 (right):

g(defaults, undirected).
g(node(X), color(C), label(X)) :- assign(X,C).
g(link(X,Y)) :- link(X,Y).

The above program can be used as a parameter for SearchModels , and the graph shown in

Figure 4 (left) can be obtained by adding the ingredient Graph⟨g,F⟩.

5. Implementation

The notion of ASP recipe is put in practice by ASP Chef, a web app powered by the JavaScript

framework Svelte (https://svelte.dev/) and by the ASP engine clingo-wasm (https://github.

com/domoritz/clingo-wasm), a WebAssembly version of clingo [7]. ASP Chef is freely available

at https://asp-chef.alviano.net/, and its source code can be downloaded from https://github.com/

alviano/asp-chef. The only requirement is a modern browser (Firefox is recommended).

Among the most interesting features of ASP Chef there is the representation of the recipe and

its input in the URL as a zipped JSON object. Such an object is placed in the hash fragment (the

https://svelte.dev/
https://github.com/domoritz/clingo-wasm
https://github.com/domoritz/clingo-wasm
https://asp-chef.alviano.net/
https://github.com/alviano/asp-chef
https://github.com/alviano/asp-chef


Figure 5: A screenshot of ASP Chef solving the instance of Fighting with the gang of Billy the Kid given
in the introduction.

portion following the character #) so that it is not transmitted to the server. In fact, once ASP
Chef is loaded in the browser, there is no further interaction with the server, which guarantees

that the server cannot essentially be overloaded, and also ensures that any sensitive data used
by programmers remains confidential.

Regarding the user interface of ASP Chef, it is inspired by CyberChef (https://github.com/

gchq/CyberChef), a web app for encryption, encoding, compression and data analysis. As such,

it splits the window in three columns, placing all operations on the left pane, input and output

on the right pane, and the recipe in the middle pane; see Figure 5. Operations can be added

to the recipe with their default parameter values, and different parameter values can be given

in the recipe itself. Ingredients can be hidden, skipped, set as a termination point, as well as

moved up and down in the recipe. A brief description of each operation is shown as a tool-tip

to smooth out the learning curve.

Another interesting feature of ASP Chef is its caching mechanism. Ingredients are applied

whenever the programmer changes something, taking advantage of the reactivity of SvelteKit.

However, ASP Chef is designed so that information flows only in one direction, namely from the

input to the first ingredient, and then from each ingredient to the next until the final output is

produced. Such a design choice enables a simple, yet powerful caching strategy: if an ingredient

in the recipe is changed, the output and side output of all ingredients occurring before it are

https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef


1 in_path(M,T) :- model(M, in_path(T)).
2 town(T) :- model(M, town(T)).
3 connected(X,Y) :- model(_, connected(X,Y)).

4 g(node(T), label(T)) :- town(T).
5 g(node(T), color(red)) :- select(T).
6 g(link(X,Y), undirected) :- connected(X,Y), X < Y.

Figure 6: ASP programs for the use case Fighting with the gang of Billy the Kid reported in Section 6.

1 size(S) :- c(3,1,S).
2 colors(C) :- c(3,2,C).
3 btn(X-3,Y,C) :- c(X,Y,C), X > 3.

4 {step(1..S*S/2)} :- size(S).
5 :- step(S), S > 1, not step(S-1).

6 btn(X,Y,C,0) :- btn(X,Y,C).

7 selector(0,1). selector(1,0). selector(1,1). selector(1,-1).
8 {pair((X,Y), (X+(D*SX),Y+(D*SY)), S)} :- selector(SX,SY), step(S);
9 btn(X,Y,C,S-1); size(SIZE), D = 1..SIZE-1, btn(X+(D*SX),Y+(D*SY),C,S-1);

10 #count{D' : D' = 1..D-1, btn(X+(D'*SX),Y+(D'*SY),C',S-1), C' != C} = 0.
11 :- step(S), #count{FROM, TO : pair(FROM, TO, S)} != 1.

12 cut(X,Y..Y',S) :- pair((X,Y), (X,Y'), S), Y < Y'.
13 cut(X..X',Y,S) :- pair((X,Y), (X',Y), S), X < X'.
14 cut(X+L,Y+L,S) :- pair((X,Y), (X',Y'), S), X < X', Y < Y', L=0..X'-X.
15 cut(X+L,Y-L,S) :- pair((X,Y), (X',Y'), S), X < X', Y > Y', L=0..X'-X.

16 btn(X,Y,C,S) :- btn(X,Y,C,S-1), step(S), not cut(X,Y,S).

17 :- btn(_,_,_,S), not step(S+1).

18 cell(1,1,S) :- S = #count{A,B,T : pair(A,B,T)}.
19 cell(T+1,1,X ) :- pair((X,Y), (X',Y'), T).
20 cell(T+1,2,Y ) :- pair((X,Y), (X',Y'), T).
21 cell(T+1,3,X') :- pair((X,Y), (X',Y'), T).
22 cell(T+1,4,Y') :- pair((X,Y), (X',Y'), T).

Figure 7: ASP programs for the use case Buttons and Scissors reported in Section 6.

those previously computed and recoverable from the cache.

Finally, ASP Chef takes inspiration from initial learning environments like Scratch [8] and

low-code development platforms [9] like Appian (https://appian.com/), which are essentially easy

to use visual environments for defining possibly complex procedures in terms of components

and their interactions. Within this respect, ASP Chef provides ingredients as the analogous

of components, and their interactions are simplified to the extreme in a single-direction linear

flow as done by CyberChef. All in all, a programmer is expected to write less code to define an

ASP recipe than an equivalent pipeline in a general purpose programming language, even if the

amount of ASP code to write in ASP recipes is not necessarily low.

6. Use Cases

Let us consider Fighting with the gang of Billy the Kid from Section 1, and the input 𝑠in shown

in Figure 1 (right). Below are the ingredients of an ASP recipe addressing this problem.

https://appian.com/


Figure 8: Graph visualization of a specific cut in the solution of Button and Scissors (left) and CSV
encoding of the input and output, a problem from LP/CP Programming Contest.

1. SymmetricClosure⟨connected, connected, b64⟩, to introduce the rules enforcing the

symmetric closure of connected, since the graph is undirected.

2. SearchModels⟨b64,F,Figure 3 (left), 0⟩, to enumerate all paths of interest.

3. SortCanonical , SortModelsCanonically⟨{path}⟩, and Unique⟨{path}⟩, to remove

paths associated with the same set of towns.

4. Merge⟨model⟩, and SearchModels⟨_, _, Figure 6 (lines 1–3), 1⟩, to pack all paths in a sin-

gle interpretation. Note that paths are assigned an identifier, which is the index of the

interpretation they occur in the input sequence of Merge .

5. Optimize⟨_, _, Figure 3 (right), 1⟩, to solve the combinatorial optimization subtask.

6. SearchModels⟨_, _, Figure 6 (lines 4–6), 1⟩, and Graph⟨g,F⟩, to show a graph.

A slightly extended recipe was used to obtain the screenshot shown in Figure 5.

Let us consider Buttons and Scissors from LP/CP Programming Contest: a grid of buttons of

different colors is given, and the goal is to detach all buttons with a sequence of straight cuts

involving buttons of the same color. The input is given in CSV, and the output is expected in

CSV, so both encode and decode flags are set to true. The ingredients are given below.

1. ParseCSV ⟨__base64__,F, SPACE, c⟩, and SearchModels⟨_, _, Figure 7 (lines 1–3), 1⟩,
to accommodate the input in a format suitable for ASP.

2. SearchModels⟨_, _, Figure 7 (lines 4–17), 1⟩, to address the combinatorial search subtask

of the problem. Without going into too much details, the sequence of cuts is guessed and

the grid is updated after each cut, requiring to have no buttons after the last cut.

3. SearchModels⟨_, _, Figure 7 (lines 18–22), 1⟩, to represent a CSV output: the first line is

the number of cuts, and the other lines give the coordinates of the starting and ending

point of each cut.



4. GenerateCSV ⟨cell,F,__base64__, SPACE⟩, and SelectPredicates⟨__base64__⟩, to

leave only the CSV content in the output.

The above recipe can be extended to produce the graph shown in Figure 8, where nodes are

given fixed positions by using the properties fx and fy. Figure 8 also shows a graph visualization

for another problem from LP/CP Programming Contest, where node labels use emoji to represent

walls (red squares) around points of interest (integers) and attacked cells (swords).

7. Related Work

Tools supporting the development of ASP programs were presented by many other works in

the literature. Many of them focused on the design of Integrated Development Environment

(IDE), like ASPIDE [10], SeaLion [11], and LoIDE [12]. While ASPIDE and SeaLion are desktop

applications, LoIDE is designed as a web application. Comparing to ASP Chef, which is not
intended to be an IDE, LoIDE requires a backend server to complete ASP computational tasks,

while ASP Chef can run everything in the browser thanks to clingo-wasm. Other works dealt

with simplifying the development of ASP modules and microservices [13, 14, 15, 16, 17], and

share with ASP Chef the goal of employing ASP in a non-monolithic way.

Visualization of ASP output was approached by many other works in the literature. Among

them, there are ASPViz [18], IDPD3 [19] and Kara [20], which are all based on the use of several

predicates to describe how to draw a graphical representation of the solution provided by an

answer set solver. The idea of easing the declarative specification of a graphical representation

for ASP was revived in an interesting teaching experiment [21], which however is restricted to

problems dealing with grids like Sudoku. On the same spirit, the more recent clingraph [22]

can produce high-quality graphs and images that can be exported in LATEX.

These works are related to the Graph operation introduced in Section 4.7, which is also

capable of producing a graphical representation by interpreting instances of one user-specified

predicate. At its current state, the Graph operation does not reach the richness of other

visualization tools for ASP, as for example it does not support the creation of animations. On

the other hand, ASP Chef is ready to use in the browser, without any additional software, and

the Graph operation produces interactive graphs with the possibility to search and highlight

node and link labels. Moreover, being a side output, the Graph operation can be introduced in

all points of interest within the same recipe, showing intermediate states of the pipeline.

8. Conclusion

ASP recipes aim at easing the development of broad pipelines involving ASP. Uniformity of input

and output format enables arbitrary combinations of operations, actually without limiting too

much the data that can be manipulated in the pipeline thanks to the support for Base64 content.

ASP Chef provides a ready-to-use framework to practice with ASP recipes, and employs the

ASP engine clingo-wasm not only to address combinatorial search and optimization, but also

to implement several operations.

The extensible design of ASP Chef leaves space for future work. First of all, there are several

other operations that are already implemented in ASP Chef and have not being formalized here.



Some of them possibly require a more sophisticated notion of recipe, as for example Store and

Restore operations, which require a notion of state. Moreover, the need for new operations is

expected to arise from different domains, as for example we are experiencing in the definition

of cyber ranges for digital twins defined in the Digital Twin Definition Language [23].

Finally, even if efficiency of computation is not the main goal of ASP Chef, an empirical

assessment is expected in the near future, to better understand the overhead due to running the

ASP engine in the browser. We do not expect a too severe overhead, but anyhow we already

implemented a Server operation that can lighten the computation addressed by the browser.

Acknowledgments

This work was partially supported by Italian Ministry of Research (MUR) under PNRR project

FAIR “Future AI Research”, CUP H23C22000860006, under PNRR project Tech4You “Technologies

for climate change adaptation and quality of life improvement”, CUP H23C22000370006, and

under PNRR project SERICS “SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001;

by Italian Ministry of Health (MSAL) under POS project RADIOAMICA, CUP H53C22000650006;

by the LAIA lab (part of the SILA labs) and by GNCS-INdAM.

References

[1] M. Balduccini, M. Barborak, D. A. Ferrucci, Pushing the limits of clingo’s incremental

grounding and solving capabilities in practical applications, Algorithms 16 (2023) 169.

[2] V. Lifschitz, Answer Set Programming, Springer, 2019.

[3] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37

(2016) 53–68.

[4] M. Alviano, W. Faber, N. Leone, Disjunctive ASP with functions: Decidable queries and

effective computation, Theory Pract. Log. Program. 10 (2010) 497–512.

[5] R. Bertolucci, A. Capitanelli, C. Dodaro, N. Leone, M. Maratea, F. Mastrogiovanni, M. Vallati,

Manipulation of articulated objects using dual-arm robots via answer set programming,

Theory Pract. Log. Program. 21 (2021) 372–401.

[6] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,

M. Maratea, F. Ricca, T. Schaub, ASP-Core-2 input language format, Theory Pract.

Log. Program. 20 (2020) 294–309.

[7] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to

practice, Artif. Intell. 187 (2012) 52–89.

[8] J. H. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch programming

language and environment, ACM Trans. Comput. Educ. 10 (2010) 16:1–16:15.

[9] A. Sahay, A. Indamutsa, D. D. Ruscio, A. Pierantonio, Supporting the understanding and

comparison of low-code development platforms, in: SEAA, IEEE, 2020, pp. 171–178.

[10] O. Febbraro, K. Reale, F. Ricca, ASPIDE: integrated development environment for answer

set programming, in: LPNMR, volume 6645 of Lecture Notes in Computer Science, Springer,

2011, pp. 317–330.



[11] P. Busoniu, J. Oetsch, J. Pührer, P. Skocovsky, H. Tompits, Sealion: An eclipse-based IDE for

answer-set programming with advanced debugging support, Theory Pract. Log. Program.

13 (2013) 657–673.

[12] F. Calimeri, S. Germano, E. Palermiti, K. Reale, F. Ricca, Developing ASP programs with

ASPIDE and LoIDE, Künstliche Intell. 32 (2018) 185–186.

[13] F. Calimeri, G. Ianni, Template programs for disjunctive logic programming: An operational

semantics, AI Commun. 19 (2006) 193–206.

[14] S. Costantini, G. D. Gasperis, Dynamic goal decomposition and planning in MAS for

highly changing environments, in: CILC, volume 2214 of CEUR Workshop Proceedings,
CEUR-WS.org, 2018, pp. 40–54.

[15] P. Cabalar, J. Fandinno, Y. Lierler, Modular answer set programming as a formal specifica-

tion language, Theory Pract. Log. Program. 20 (2020) 767–782.

[16] S. Costantini, G. D. Gasperis, L. D. Lauretis, An application of declarative languages in

distributed architectures: ASP and DALI microservices, Int. J. Interact. Multim. Artif. Intell.

6 (2021) 66–78.

[17] P. Cabalar, J. Fandinno, T. Schaub, P. Wanko, On the semantics of hybrid ASP systems

based on clingo, Algorithms 16 (2023) 185.

[18] O. Cliffe, M. D. Vos, M. Brain, J. A. Padget, ASPVIZ: declarative visualisation and animation

using answer set programming, in: ICLP, volume 5366 of Lecture Notes in Computer Science,

Springer, 2008, pp. 724–728.

[19] R. Lapauw, I. Dasseville, M. Denecker, Visualising interactive inferences with IDPD3,

CoRR abs/1511.00928 (2015).

[20] C. Kloimüllner, J. Oetsch, J. Pührer, H. Tompits, Kara: A system for visualising and visual

editing of interpretations for answer-set programs, in: INAP/WLP, volume 7773 of Lecture
Notes in Computer Science, Springer, 2011, pp. 325–344.

[21] A. Dovier, P. Benoli, M. C. Brocato, L. Dereani, F. Tabacco, Reasoning in high schools: Do

it with ASP!, in: CILC, volume 1645 of CEUR Workshop Proceedings, CEUR-WS.org, 2016,

pp. 205–213.

[22] S. Hahn, O. Sabuncu, T. Schaub, T. Stolzmann, Clingraph: ASP-based visualization, in:

LPNMR, volume 13416 of Lecture Notes in Computer Science, Springer, 2022, pp. 401–414.

[23] M. Platenius-Mohr, S. Malakuti, S. Grüner, J. Schmitt, T. Goldschmidt, File- and API-based

interoperability of digital twins by model transformation: An IIoT case study using asset

administration shell, Future Gener. Comput. Syst. 113 (2020) 94–105.


	1 Introduction
	2 Background
	3 ASP Recipes
	4 Core Operations
	4.1 Searching
	4.2 Sorting and Removing Duplicates
	4.3 Filtering and Selecting
	4.4 Merging and Splitting
	4.5 Closures and Encoded Content
	4.6 Working with Comma Separated Values
	4.7 Visualizing Side Output

	5 Implementation
	6 Use Cases
	7 Related Work
	8 Conclusion

