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Abstract
We present a novel neurosymbolic framework called NeSyFOLD to extract logic rules from a CNN and
create a NeSyFOLD model to classify images. NeSyFOLD’s learning pipeline is as follows: (i) We first
pre-train a CNN on the input image dataset and extract activations of the last layer kernels as binary
values; (ii) Next, we use the FOLD-SE-M rule-based machine learning algorithm to generate a logic
program that can classify an image—represented as a vector of binary activations corresponding to
each kernel—while producing a logical explanation. The rules generated by the FOLD-SE-M algorithm
have kernel numbers as predicates. We have devised a novel algorithm for automatically mapping the
CNN kernels to semantic concepts in the images. This mapping is used to replace predicate names
(kernel numbers) in the rule-set with corresponding semantic concept labels. The resulting rule-set is
interpretable, and can be intuitively understood by humans. We compare our NeSyFOLD framework
with the ERIC system that uses a decision-tree like algorithm to obtain the rules. Our framework has
the following advantages over ERIC: (i) In most cases, NeSyFOLD generates smaller rule-sets without
compromising on the accuracy and fidelity; (ii) NeSyFOLD generates the mapping of filter numbers to
semantic labels automatically.
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1. Introduction

Explainability in AI is an important issue that has resurfaced in recent years as deep learning
models have become larger and are applied to an increasing number of tasks. Some applications
such as autonomous vehicles, disease diagnosis, and natural disaster prevention are very sensi-
tive areas where a wrong prediction could be the difference between life and death. Motivated
by the need for explainability we introduce a neurosymbolic framework NeSyFOLD, that gives
a global explanation for the predictions made by a CNN.

The NeSyFOLD framework uses a Rule Based Machine Learning (RBML) algorithm called
FOLD-SE-M [1] for extracting a rule-set by using binarized outputs of the last layer kernels
of a trained CNN. The rule-set is a normal logic program, i.e., Prolog extended with negation-
as-failure, with the most important kernels, called significant kernels, appearing as predicates
in the rule body. We then create a model that uses the extracted rule-set in conjunction with
the CNN for inference tasks. We call this the NeSyFOLD model. We use the FOLD-SE-M rule
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interpreter to execute the rules against the binarized vector of an image instance for predicting
its class. The rule-set can be viewed as a stratified Answer Set Program (ASP) [2] and an ASP
solver such as s(CASP) [3] can be used to interpret the rules. Both s(CASP) and the FOLD-SE-M
rule interpreter can generate a justification for a given prediction task. The justification serves
as an explanation for the predictions made by the CNN.

We compare our NeSyFOLD framework with the ERIC system [4] which also generates global
explanations by extracting a rule-set in the form of a list of CNFs from the CNN through the use
of a decision-tree like algorithm. We introduce a novel algorithm for finding groups of similar
filters by calculating the cosine similarity between the feature maps generated by various filters.
Once such groups are identified each predicate in the rule-set then corresponds to a group of
similar filters identifying a particular concept. We call this model the NeSyFOLD-Group model.

We developed an algorithm for mapping the significant kernels extracted from the CNN to
the semantic concept(s) that they represent. We show in our experiments that the NeSyFOLD
model is able to either outperform or meet ERIC’s accuracy and fidelity while generating a
significantly smaller-sized rule-set. The NeSyFOLD-Group model is able to outperform the
NeSyFOLD model and generate an even smaller rule-set.

We use rule-set size as a metric of interpretability. We also propose a novel algorithm for
automatic semantic labeling of the predicates in the rule-set extracted by NeSyFOLD while
ERIC’s rule set has to be labeled manually. In addition to the accuracy, we also compare
NeSyFOLD’s fidelity with ERIC’s. There is always a trade-off between explainability and fidelity
due to some information loss caused by the discretization of continuous values which is seen in
both systems.

2. Background and Related Work

Default Rules: The FOLD-SE-M algorithm [1] that we employ in our system, learns a rule-
set from data as a default theory. Default logic is a non-monotonic logic used to formalize
commonsense reasoning. A default 𝐷 is expressed as:

𝐷 = 𝐴 : M𝐵

Γ
(1)

Equation 1 states that the conclusion Γ can be inferred if pre-requisite 𝐴 holds and 𝐵 is justified.
M𝐵 stands for “it is consistent to believe 𝐵". Normal logic programs can encode a default
theory quite elegantly [2]. A default of the form:

𝛼1 ∧ 𝛼2 ∧ · · · ∧ 𝛼𝑛 : M¬𝛽1,M¬𝛽2 . . .M¬𝛽𝑚
𝛾

can be formalized as the normal logic programming rule:

𝛾 :- 𝛼1, 𝛼2, . . . , 𝛼𝑛, not 𝛽1, not 𝛽2, . . . , not 𝛽𝑚.

where 𝛼’s and 𝛽’s are positive predicates and not represents negation-as-failure. We call such
rules default rules. Thus, the default



𝑏𝑖𝑟𝑑(𝑋) : 𝑀¬𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑋)

𝑓𝑙𝑖𝑒𝑠(𝑋)

will be represented as the following default rule in normal logic programming:
flies(X) :- bird(X), not penguin(X).

We call bird(X), the condition that allows us to jump to the default conclusion that X flies, the
default part of the rule, and not penguin(X) the exception part of the rule.

FOLD-SE-M [1] is a Rule Based Machine Learning (RBML) algorithm that builds on top of the
FOLD [5] algorithm. The FOLD algorithm learns a default theory with exceptions, represented
as a stratified normal logic program. The FOLD algorithm incrementally generates literals for
default rules that cover positive examples while avoiding covering negative examples. It then
swaps the positive and negative examples and calls itself recursively to learn exceptions to the
default when there are still negative examples falsely covered. The process is applied recursively
to learn exceptions to exceptions, exceptions to exceptions to exceptions, and so on. The
FOLD-SE-M algorithm has 2 tunable hyperparameters, 𝑟𝑎𝑡𝑖𝑜, and 𝑡𝑎𝑖𝑙. The 𝑟𝑎𝑡𝑖𝑜 controls the
upper bound on the number of false positive examples to the number of true positive examples
implied by the default part of a rule. The 𝑡𝑎𝑖𝑙 controls the limit of the minimum number of
training examples a rule can cover. In general increasing the value of 𝑡𝑎𝑖𝑙 decreases the number
of total rules and vice-versa. We use both the s(CASP) and the FOLD-SE-M interpreter in our
experiments.

There is a lot of past work which focuses on visualizing the outputs of the layers of the
CNN. These methods try to map the relationship between the input pixels and the output of the
neurons. Zeiler et al. [6] and Zhou et al. [7] use the output activation while others [8, 9, 10] use
gradients to find the mapping. Unlike NeSyFold, these visualization methods do not generate
any rule-set. Zeiler et al. [6] use similar ideas to analyze what specific kernels in the CNN are
invoked. There are fewer existing publications on methods for modelling relations between the
various important features and generating explanations from them.

Qi et al. [11] propose an Explanation Neural Network (XNN) which learns an embedding
in high-dimension space and maps it to a low-dimension explanation space to explain the
predictions of the network. A sentence-like explanation including the features is then generated
manually. No rules are generated and manual effort is needed. Chen et al. [12] introduce a
prototype layer in the network that learns to classify images in terms of various parts of the
image. They assume that there is a one to one mapping between the concepts and the filters.
We do not make such an assumption. Zhang et al. [13, 14] learn disentangled concepts from
the CNN and represent them in a hierarchical graph so that there is no assumption of a one
to one filter-concept mapping. However, no logical explanation is generated. Bologna et al.
Some popular methods for generating explanations are LIME [15] and its extended rule-based
version [16] which generate local explanations based on features. Our system generates global
explanations.



3. Methodology

We now proceed to explain the methodology behind the learning, inference, and semantic
labeling pipeline used in our NeSyFOLD framework. Our learning and inference pipelines are
similar to and inspired by the algorithm used by Townsend et al. for ERIC [4].

3.1. Learning

We start by training the CNN on the input images for the given classification dataset in the
conventional manner, namely, by using a loss function to get the loss and then propagating the
gradient w.r.t the loss through the CNN via backpropagation. Any optimization technique can
be used for updating the weights.
Quantization: Quantization is the process of binarization of the kernel outputs. The quantiza-
tion function is defined in eq. (3). 𝜃𝑘 is the threshold for a specific kernel 𝑘. Each kernel in the
last convolution layer produces a feature map 𝐴𝑖,𝑘 for a given image. We collect all such feature
maps from all kernels for all images. For each kernel 𝑘, an activation threshold 𝜃𝑘 is calculated
by using eq. (4) and eq. (5). 𝛼 and 𝛾 are hyperparameters. Once the 𝜃𝑘 is calculated for each
filter then using eq. (3) and eq. (2) we get the binarization 𝑏𝑖,𝑘 for each image and each kernel.
Iterating through all images we obtain a table of size 𝑛×𝑚 where 𝑛 is the number of images
in the training data and 𝑚 is the number of kernels. Each row represents the binarized output
of the CNN corresponding to each image. If the kernel grouping is true then for each kernel
the top 10 images that activate it are selected. Then the most similar kernels are identified by
calculating cosine similarity. Finally, the kernel groups are decided by using a hyperparameter
𝜃𝑠 which we call the “similarity threshold”. Each column in the table represents groups of
similar kernels in this case.

Rule Extraction: The FOLD-SE-M algorithm is used on the binarization table. It extracts the
rules that explain a target class in terms of the kernels/kernel-groups. Each predicate in the
body of the rules is a kernel in the CNN. An example rule could be:
target(X,‘2’) :- not 3(X), 54(X), not ab1(X).
This rule can be interpreted as “Image X belongs to class ‘2’ if kernel 3 is not activated and
kernel 54 is activated and the abnormal condition (exception) ab1 does not apply.

Semantic labeling : After the rules are generated we find the semantic labels corresponding to
the predicates/kernels in the rule-set for better interpretability. We use a dataset that provides
the corresponding semantic segmentation mask along with the training images. We take an
intersection of the semantic segmentation masks with the feature maps produced by each kernel
for each image and label that kernel as the majority concept which it is activated by in most
images. Note that we currently support labeling the rule-set used by the NeSyFOLD model,
where each predicate is a single kernel. The semantic labeling algorithm for the NeSyFOLD-
Group model’s rule-set is part of future work. The rules with filters replaced by semantic labels
are generated. The same example rule from above may now look like:
target(X,‘bathroom’) :- not bed(X), bathtub(X), not ab1(X).

𝑏𝑖,𝑘 =𝑄(𝐴𝑖,𝑘, 𝜃𝑘) (2)



𝑄(𝐴𝑖,𝑘, 𝜃𝑘) =

{︃
1, if 𝑎𝑖,𝑘 > 𝜃𝑘

0, otherwise
(3)

𝑎𝑖,𝑘 =||𝐴𝑖,𝑘||2 (4)

𝜃𝑘 =𝛼 · 𝑎𝑘 + 𝛾

√︂
1

𝑛

∑︁
(𝑎𝑖,𝑘 − 𝑎𝑘)2 (5)

3.2. Inference

The inference pipeline of NeSyFOLD is relatively straightforward. To classify a new image, we
feed it to the CNN and the kernel feature maps for each kernel in the last layer are obtained.
Then, as in the learning pipeline using Equations (2) and (3), we get the binarizations for each
kernel output and generate the binarization table as in the learning pipeline. Next, we run the
FOLD-SE-M toolkit’s built-in rule interpreter on the labeled/unlabelled rule-set.

4. Experiments and Results

First, we compare our NeSyFOLD and NeSyFOLD-Group models with the model generated by
the ERIC system and report the accuracy, fidelity, number of unique predicates/atoms in the
rule-set, number of rules generated and the size of the rule-set. For ERIC, the rules generated
are in the form of CNF formula where each atom is a binarized kernel output or its negation.
Size is calculated as the total number of antecedents for ERIC and the total number of predicates
in the bodies of the rules that constitute the logic program generated by NeSyFOLD.

We used a VGG16 CNN with pre-trained weights on the Imagenet dataset [17]. We trained for
100 epochs with a batch size of 32. We used the Adam [18] optimizer and applied class weights
for imbalanced data. We also used 𝐿2 regularization of 0.005 on all layers and a learning rate
of 5 × 10−7. We used a decay factor of 0.5 and patience of 10 epochs. Also, we resized all
images to 224× 224. We used an 𝛼 of 0.6 and 𝛾 of 0.7. We used almost the same parameters
as used by Townsend et al. in [19] for training so that we could do a fair comparison. For
this experiment, we used the German Traffic Sign Recognition Benchmark (GTSRB) [20], MNIST
[21] and the Places [22] dataset. We selected 5 classes from the Places dataset namely, {desert
road(de), driveway(dr), forest road(f), highway(h), street(s)}. In Table 4 and Table 2 we have
shown the “dedrf", “dedrh", “dedrs" and “defs" class combinations. We cite the performance
metrics of ERIC on these 4 class combinations from the paper [4]. ERIC’s fidelity for these
class combinations was not reported in the above paper so we leave it blank in the table. To
see the effect of varying the number of classes ∈ {2, 3, 5, 10} we train on the bathroom and
bedroom class (PLACES2) first. Then we add the kitchen class (PLACES3), then dining room,
living room (PLACES5) and finally home office, office, waiting room, conference room and hotel
room (PLACES10). For details on how each data was split, we refer the reader to [19]. The
comparison between NeSyFOLD and ERIC is shown in Table 4. The performance metrics of
NeSyFOLD-Group are shown in Table 2. Our NeSyFOLD model outperforms ERIC on most of
these datasets w.r.t accuracy and fidelity. Fewer distinct edges in the images in the PLACES10
dataset cause loss in accuracy. The GTSRB and MNIST datasets have well defined edges and
consequently the accuracy and fidelity of both ERIC and NeSyFOLD is high. The rules generated
by NeSyFOLD are 55% smaller in size on average. The NeSyFOLD-Group model outperforms or



NeSyFOLD ERIC

Dataset Fidelity Accuracy Predicates Rules Size Fidelity Accuracy Atoms Rules Size
dedrf 0.89± 0.0 0.86± 0.0 25± 4 20± 2 45± 4 - 0.82 50 31 171
dedrh 0.83± 0.01 0.79± 0.01 32± 5 23± 3 60± 11 - 0.75 44 32 176
dedrs 0.90± 0.0 0.88± 0.0 30± 6 21± 3 49± 11 - 0.76 44 34 183
defs 0.94± 0.0 0.92± 0.0 16± 4 13± 3 26± 7 - 0.90 33 25 127
PLACES2 0.93± 0.01 0.92± 0.01 16± 2 12± 2 28± 5 0.89± 0.01 0.89± 0.01 11± 1 12± 2 52± 8
PLACES3 0.85± 0.03 0.84± 0.03 28± 6 21± 4 49± 9 0.82± 0.01 0.81± 0.01 33± 4 25± 2 118± 13
PLACES5 0.67± 0.03 0.64± 0.03 56± 3 52± 4 131± 10 0.65± 0.01 0.63± 0.01 57± 4 36± 2 171± 10
PLACES10 0.23± 0.19 0.20± 0.17 33± 28 32± 27 78± 66 0.39± 0.01 0.36± 0.01 85± 6 42± 3 208± 16
GTSRB 0.75± 0.04 0.75± 0.04 206± 28 134± 26 418± 79 0.73± 0.01 0.73± 0.01 232± 3 125± 5 626± 28
MNIST 0.91± 0.01 0.91± 0.01 132± 9 90± 7 271± 25 0.93± 0.00 0.92± 0.00 147± 2 86± 4 413± 18

Table 1
Performance comparison: NeSyFOLD model vs ERIC model

NeSyFOLD-Group

Dataset Fidelity Accuracy Predicates Rules Size
dedrf 0.89± 0.01 0.86± 0.01 19± 4 17± 4 36± 10
dedrh 0.83± 0.01 0.80± 0.01 30± 2 21± 3 53± 6
dedrs 0.89± 0.01 0.88± 0.01 26± 4 19± 2 43± 6
defs 0.94± 0.01 0.92± 0.01 12± 3 10± 1 18± 3
PLACES2 0.93± 0.0 0.93± 0.0 8± 1 7± 1 11± 2
PLACES3 0.87± 0.01 0.86± 0.01 20± 7 15± 3 31± 9
PLACES5 0.68± 0.02 0.65± 0.02 41± 4 34± 6 83± 13
PLACES10 0.33± 0.17 0.30± 0.15 74± 39 73± 39 184± 97
GTSRB 0.76± 0.02 0.76± 0.02 176± 13 98± 11 320± 30
MNIST 0.90± 0.01 0.90± 0.01 103± 12 79± 10 216± 28

Table 2
Performace metrics of the NeSyFOLD-Group model. Boldened values are better than NeSyFOLD model.

equals the NeSyFOLD model w.r.t accuracy and w.r.t fidelity in all but one dataset where they
are comparable. The grouping of filters helps in generating better features for the binarization
table.
Second, we examine the effect of semantic labeling of the rule-set generated for the NeSy-

FOLD model. We use the ADE20k dataset for mapping the predicates in the rule-set obtained
by NeSyFOLD trained on 3 different classes of the Places dataset separately. These classes are
{bathroom, bedroom, kitchen} and {desert road, driveway, forest road}.

Below we show the labeled rule-set and the interpretation of the first rule for each class from
both rule-sets in English. The interpretation of the other rules can be done similarly. We used a
𝑟𝑎𝑡𝑖𝑜 of 0.5 and 𝑡𝑎𝑖𝑙 of 1𝑒−2.

{Rule-set 1: }
target(X,‘kitchen’) :- cabinet1(X), not ab1(X), not ab2(X), not ab3(X).
target(X,‘bedroom’) :- bed1(X).
target(X,‘bathroom’) :- countertop1_toilet1_sink1(X).
target(X,‘bathroom’) :- not cabinet3(X), not countertop1_toilet1_sink1(X), bathtub1(X).
target(X,‘bedroom’) :- bed2(X), not mirror1_countertop2(X).
target(X,‘kitchen’) :- cabinet7(X).



ab1(X) :- not cabinet4(X), not cabinet8(X).
ab2(X) :- not cabinet2(X), bed1(X).
ab3(X) :- not cabinet6(X), countertop1_toilet1_sink1(X),not cabinet5(X).

The interpretation of the first rule of the ‘kitchen’ class after expanding the ab1(X), ab2(X)
and ab3(X) predicates is the following: “Image X is a kitchen if it has cabinets and no countertop-
toilet-sink combination and no bed.” The same interpretations for the ‘bedroom’ and ‘bathroom’
classes are “Image X is a bedroom if there is a bed” and “Image X is a bathroom if there is a
combination of countertop, toilet, and sink”, respectively. This rule-set has 9 rules, 13 Unique
predicates and the total size is 19. It achieves 80% accuracy on the test set.
{Rule-set 2:}
target(X,‘forest_road’) :- trees2(X), not house4(X), not ab1(X).
target(X,‘driveway’) :- house5_building2(X).
target(X,‘desert_road’) :- not trees1(X), not ab2(X).
target(X,‘forest_road’) :- not house2(X), not trees2(X), trees3(X).
target(X,‘driveway’) :- not house5_building2(X), not road2(X).
target(X,‘forest_road’) :- not road2(X).
ab1(X) :- not trees3(X), house3_building1(X).
ab2(X) :- not ground1_road1(X), house1(X).

The interpretation of the first rule for the ‘forest road’ class after expanding the ab1(X) predicate
is the following: “Image X is a forest road if it has trees and no houses or buildings”. Likewise,
the first rule for ‘desert road’ and ‘driveway’ classes represents: “Image X is a desert road if
there are no trees and no houses” and “Image X is a driveway if there is a house/building”,
respectively. This rule-set has 8 rules, 10 Unique predicates and the total size is 16. It achieves
83% accuracy on the test set. For an example image classified as a “forest road”, the justification
can be obtained from s(CASP) querying target(img, ‘forest_road’) to Rule-set 2

JUSTIFICATION_TREE:
‘target’ holds (for img, and forest_road),because ‘trees2’ holds (for img),
and there is no evidence that ‘house4’ holds (for img), andthere is no evidence that
‘ab1’ holds (for img), because‘trees3’ holds (for img).
MODEL:
{target(img,forest_road), trees2(img), not ab1(img), trees3(img)}

From the justification, it can be clearly seen that the first rule was invoked. Notice that
the FOLD-SE-M algorithm orders the rules according to the number of images covered by the
rules in the form of a decision list. That is, the topmost rule will classify the most images, and
the bottommost the least. Hence the topmost rules make more sense as they capture all the
concepts that can make the sharpest distinction among the 3 classes. The bottom rules capture
the outliers that were not classified by the above rules. For example, the 6th rule in Rule-set 2
will be invoked only if all the other rules above it were not applicable. This intuitively suggests
that the image is a ‘forest_road’ image if there is not a particular type of road (not road2(X)),
but only if it does not fit in the more frequently seen bin of images of ‘forest_road’ which have
trees and no houses or buildings (as captured by rule 1). Note, the heavy biases in the data
that the CNN learns would get captured as defaults in the top rules. Also, both s(CASP) and
FOLD-SE-M rule interpreters can automatically generate a justification for each example that is
classified.



Third, since each predicate represents a kernel’s binarized output and for each predicate
its corresponding semantic concept(s) is known, there should be a way to utilize the kernels
present in the rules to form new rules. We ran an experiment where we trained a CNN on the
{desert, highway, lake} classes and generated the labeled rules using NeSyFOLD. We then wrote
a new rule target(X, ‘beach’):- sand(X), water(X). using the predicates associated
with water and sand from the existing rule-set. We used this rule only to classify images of the
‘beach’ class of the Places dataset. Out of the 1000 images, 690 (69%) were correctly classified
as ‘beach’ by the rule. This is an interesting insight as it shows that the CNN filters can be
individually used as concept/object detectors.

5. Conclusion and Future Work

In this paper we have shown that using FOLD-SE-M algorithm leads to a significant reduction
in the rule-set size without compromising on the accuracy in most cases. The kernel grouping
intuitively leads to better features in the binarization table and hence the FOLD-SE-M algo-
rithm is able to represent the information in fewer rules. The semantic labeling algorithm we
propose makes the NeSyFOLD model’s rule-set easier to understand. A natural direction for
future research is modifying the semantic labeling algorithm to accomodate the predicates that
represent groups of kernels generated by the grouping algorithm. We believe this will be an
important step for writing new rules to classify images of unseen classes during training.
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