CEUR-WS.org/Vol-3437/paper4LPLR.pdf

Legal Compliance Checking of Autonomous Driving
with Formalized Traffic Rule Exceptions

Kumar Manas®*, Adrian Paschke®?

TFreie Universitdt Berlin, Department of Computer Science and Mathematics
Fraunhofer FOKUS, Germany

Abstract

Autonomous driving (AD) systems need to obey traffic rules and sometimes execute critical maneuvers
that breach existing rules to ensure safe and rule-compliant driving. To endow such legal knowledge
to the AD module, we need to formalize rules considering expressiveness, decidability, scalability, and
adaptability. This paper critically examines possible formalization methods and demonstrates how we
can model traffic rule exceptions for compliance checking of AD models. This ensures that AD systems
are safe and can identify situations requiring more complex reasoning, such as exempting ongoing rule
processes. We formalize legal traffic rule exceptions hierarchically and modularly in temporal logic
and ground them to sensor data for assessing model compliance. Moreover, we introduce a parsed
tree structure that supports and aids neural network-based models with formal rules. We evaluate our
approach by monitoring vehicle trajectories against formalized traffic rules and handling rule exceptions
in various traffic scenarios. Our results show that our approach can effectively represent complex traffic
rules and monitor the safety and efficiency of AD systems against legal specifications. This paper
contributes to the field of legal reasoning and compliance checking by providing a methodology for
formalizing traffic rules from a rule-exception perspective in a machine-readable form based on sensor
data limitations.

Keywords

Traffic Rule Formalization, Formal Logic Representation, Autonomous Driving, Rule Monitoring

1. Introduction

Rule compliance is increasingly important in autonomous driving (AD). As we move closer
to fully automated driving, more focus is shifting to safety and rule compliance. Traffic rules,
regulations, and expert knowledge are vital in human driver decision-making. However, this
knowledge is very abstract and needs to be made machine-readable. Current state-of-the-art
models are benchmarked using metrics that do not prioritize safety, traffic rule compliance,
and emergency situation management. Additionally, traffic rule exceptions in the presence of
emergencies and exceptional situations are yet to receive critical attention from autonomous
driving researchers. Furthermore, the difference in traffic laws from a legal and technical
perspective in various countries poses challenges to existing AD models. Formal methods, such
as linear temporal logic (LTL) and metric temporal logic (MTL), can represent traffic rules for

Workshop on Logic Programming and Legal Reasoning in conjunction with 39th International Conference on Logic
Programming (ICLP), July 9-15, 2023, London, UK

*Corresponding author.

& kumar.manas@fu-berlin.de (K. Manas)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kumar.manas@fu-berlin.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

specific countries in a machine-readable and concrete form. However, creating formalized rules
for traffic scenarios takes time and requires domain and logic expertise. This formalization is
hierarchical, and we need to map the formalized traffic rules to the sensor data information.
This way, we can evaluate the system’s conformity to the rule using only the available data. This
limitation imposed by sensor data limits adapting the wide range of traffic rules in formalized
logical form.

Representing formalized rules is challenging in AD. However, rules can be easily added or
modified to account for the hierarchical nature of traffic rules, unlike the learning-based model of
prediction and planning in AD, where addition and modification are costly and time-consuming
due to the training process. This paper works toward the initial approach of formalizing traffic
rules from a rule-exception perspective. It uses the formalized rules for model compliance
checking and verification of trajectory against the specification. The trajectory is a path the
vehicle follows with respect to time. Additionally, we present a parse tree representation of
formalized rules for further adaptation and compatibility of formalized rules with the learning-
based model. This parse tree representation can be extended for the other temporal logic variant
in which the rule can be formalized.

This paper builds on existing work for rule formalization and contributes with the following:

« A systematic analysis of traffic and legal driving rule formalization in the state-of-the-art,
focusing on investigating the challenges of applying formal knowledge representation
methods to traffic rules.

« We formalize MTL as a parsed tree and a computation graph for extending our rules to
the neural network setting.

+ An initial approach of formalizing legal driving and traffic rules for rule exception and
grounding the rules to the automotive sensor data for trajectory monitoring.

The rest of this paper is organized as follows. Section 2 reviews the literature on the formalization
of traffic and driving rules. We also discuss the limitations of sensor data and the challenges of
developing predicates for automated driving systems. In section 3, we introduce concepts used
across the paper and our methodology behind the selection of formal logic. The methodology for
traffic rule modeling for rule exceptions, grounding traffic rules on sensor data, and parse tree
representation is discussed in Section 4. In Section 5, we show the results of our experiments
and extend our proof-of-concept, then we conclude the paper with a discussion about future
research directions.

2. Related Work

In the work of [1], ways of designing self-driving cars that follow the rules of the road were
explored. According to [1], a formal representation of traffic rules is essential for reliable
reasoning. They argue that traffic rules have a clear structure of conditions and obligations
and that the priority relations among the rules determine how to resolve conflicts. Previous
works [2], [3] have proposed several approaches to formalize traffic rules for automated driving
systems. Based on these works, the logical formalization of traffic rules can be categorized into

two general directions: First-order logic (FOL) and temporal logic (TL). In temporal logic, there
are variants in which rules can be formalized, as discussed later in this section.

Uncontrolled intersections and right-of-way traffic rules at intersections using FOL were
formalized in [2]. The rules were then implemented using the Clingo ASP (Answer Set Program-
ming) solver. This work introduces time as a parameter in the FOL formula. This means that
temporal aspects are not directly integrated, making complete temporal aspect integration in the
formula complex compared to temporal logic. FOL is ontologically committed to facts, objects,
and relations, not time. For this reason, FOL is not our choice for traffic rule representation.

TL is an appropriate choice for domains such as AD and robotics that require planning to
achieve their objectives. Planning involves imposing constraints on the timing, sequencing,
and duration of events to achieve the desired outcome, and these parameters are critical for
AD. Temporal logic allows operators to encode timing constraints directly. For example, in
[4], the rules for safe distance and overtaking on highway driving were formalized as LTL,
and initial attempts were made to analyze the legal aspects of these rules. Whereas, [5] used
LTL to formalize traffic rules and employed LTL rules as a model checker to ensure that the
model-generating trajectory satisfied the specifications. MTL is another variant of temporal
logic, an extension of LTL that introduces constraints over a time interval, as explained further
in Sec. 3.1. Computationally, MTL is more complex than LTL, but due to the timing constraints,
it is more suitable for trajectory prediction and planning in the AD domain. Many traffic rules
have constraints based on the time interval during which they will be enforced; therefore, MTL
is the preferred choice for our use case. Some research has used MTL for the AD domain,
as demonstrated by [3, 6]. Specifically, [3] focused on formalizing traffic rules for interstate
driving, while [6] addressed intersection driving rules for different types of intersections, such
as signalized and unregulated intersections.

Various application domains can benefit from traffic rules information. In their work, [7]
utilized a pre-ordered set of traffic regulations to aid decision-making in autonomous vehicles
through rule violation metrics. Formalized traffic rules were employed in [3], [8], and [9]
for rule compliance monitoring of trajectories. Furthermore, formalized rules can serve as a
control strategy in trajectory planners [10]. In [11], the authors integrated rules alongside
reinforcement learning-based planners and utilized rule-based planners as a backup in the case
of law-violation forecasting.

Another way to leverage formalized rules from a neuro-symbolic perspective is to use them as
STL in neural network-based trajectory prediction models [12]. Unlike the discrete signals used
in LTL and MTL, STL formulas operate on continuous real-valued signals. They are suitable
for our use case as they are close to MTL in terms of constraint over the time interval of the
rule but are more complex to process. STLs are a better choice for integration with neural
network-based systems due to their ability to handle continuous signals. However, they are
only preferred for trajectory monitoring and planning with a neural network-based approach.
Thus, in this paper, we chose MTL for our work.

In their work, [13] defined the terms scenario, situation, and scenes for testing and simulation
in autonomous driving. Lanelet [14] and OpenDrive [15] provided a methodology to describe
traffic situations and scenarios with the road network. This paper introduces a concept for
creating formal logic independent of road network format and reusable across various data
formats and logic choices.

Most previous research in traffic legal rule formalization focused on rule formalization without
considering rule exceptions. We define legal rule exceptions as cases where a rule does not
apply or is overridden by another rule, and legal rule violations as cases where a rule is broken
or disobeyed. Additionally, described previous works concentrated on manually crafting rules
in a logical language, with comparatively little emphasis on their expandability to facilitate
the use of rules with faster decision-making models (neural networks). In contrast, our work
demonstrates and evaluates an approach for representing formalized rules for rule exceptions
and representing them as a parsed tree structure, enhancing their expandability and ease of
modification.

Apart from FOL and TL, in [16] and [17], deontic logic modalities, namely obligation, prohibi-
tion, and permission, were used to model the Queensland overtaking traffic rules. However, only
explicit traffic norms are considered. Explicit traffic norms are the written rules and guidelines
that specify and regulate the behavior of road users through laws, signs, and markings in con-
trast to implicit, which are picked up from experience and local driving traditions and can not
be determined explicitly. Our concept extends to both implicit and explicit traffic rules. Other
methods of formalizing traffic rules are using an ontology [18] and propositional logic [19].
However, in these works notion of time was not directly integrated, or they used a workaround
to integrate time.

3. Preliminaries

In this section, we will explain concepts and definitions to understand the rest of the paper and
some choices we made in our work for traffic rule formalization and evaluation.

3.1. Formal Logic Representation

Our primary motivation behind traffic rule formalization is compliance checking of the trajectory
prediction model of AD. To achieve this, we transformed this problem into a monitoring problem,
where the trajectory generated by the model is monitored against the formalized traffic rule.
Such monitoring is an integral part of a safe AD experience and reduces the legal liability of
the manufacturers. Furthermore, autonomous driving systems are cyber-physical systems, and
their model’s properties can be verified with temporal logic, as shown in the domain of robotics
[20] [9] where temporal logic helps us to verify or monitor systems against the specification
over time.

STL, LTL, and MTL are the options explored when formulating temporal logic rules. LTL
deals with propositions and relations which change over time on a linear sequence of states.
Where state is the current condition of vehicles and their surrounding environment and provides
the necessary information for decision-making, state information of the vehicle can include
position, velocity, acceleration, and orientation. At the same time, MTL is an extension of LTL
by adding time constraints to the modal operators. For example, wait until 3 seconds; here,
the temporal operator until has the additional constraint of 3 seconds. Formalized traffic rules
based on temporal logic are more flexible than models based on neural networks. Formal rules
can be easily extended with new rules and regulations and modified to handle situations where
the current rules are overridden by new circumstances on the road. Neural networks, on the

other hand, rely on learning from data and require lengthy and costly training to adapt to new
scenarios, which limits their adoption of new rules to be integrated.

Additional considerations were placed on expressiveness and decidability based on previous
research in the logic community. We will focus more on the form of the temporal logic, MTL,
which extends the propositional logic with the notion of time. [21] showed that MTL could be
as expressive as FOL, and in terms of decidability, MTL is decidable when we have finite timed
trace length [22]. For our use case, trajectory information is sampled at a fixed rate, and we
always assume it to be a finite trace, so MTL provides a good combination of expressiveness
and model compliance checking ability for safety and real-time system. Additionally, MTL is
sufficiently expressive due to support for past and future with precise timing constraints over
the temporal operator. One possible problem with FOL is that three variable fragments of FOL
is not decidable [23]. If we integrate time in the FOL formula, which is needed for many traffic
situation resolutions, then formalization usually spans to three or more fragments as in [2].

In the following, we informally introduce the operators used in MTL based on [24] and our
assumptions. MTL specifications considered in this paper can be written with MTL grammar:

pi=plapleines|ove;

Where p € Pand Pis a set of possible atomic propositions; ¢ is the task specification, ¢; and ¢,
are MTL formula. We also have the following temporal operators that utilize time intervals.

@ = Glo) | g0z | Xi(@) | F(@) | o)

where G, U, X, F, and P are temporal operators, and the subscript ¢ represents an interval [ty, t,]
expressing time constraints when these operators are active.In addition, the logical connectives
negation (—), and (n), or (v) and implication (=) are used to write formulas. The future globally
operator G specifies that ¢ holds within a time interval for all future states. The until operator
U specifies that ¢; holds until ¢, becomes true within the time interval specified by . The next
state operator, X, specifies that ¢ holds for the next state within the time interval specified by t.
The future operator, F, specifies that ¢ holds within a time interval for some future state, and
the past operator, P, specifies that ¢ holds within a time interval for some past or previous state.
LTL formalization is similar to MTL but without the time subscript ¢ in temporal operators. MTL
operators are defined recursively, meaning temporal operators can be composed using each
other. MTL is a generalization of LTL and can satisfy more safety properties for cyber-physical
systems.

Assumption 1: The time steps are uniformly spaced and discrete.

Assumption 2: MTL is interpreted over finite traces of predicate, and atomic propositions
represent a Boolean statement.

Assumption 3: We restrict subscript ¢ a time interval to be either [t;,2;], where 0 < #; < 1y, or
omitted, in which case the operator applies until the end of the trace. This does not affect the
generality of the results.

Predicate, alongside parameters and arguments, is an important component of MTL specifica-
tions for trajectory monitoring. The predicates in the logical formula specify traffic conditions,
action, and static and dynamic features of the traffic scene and are used to make decisions about
how to drive safely in our AD use case. Action are maneuvers performed by ego or agent, such

as overtaking or crossing. Conditions are obtained from static or dynamic features, such as
at_intersection, front_of. Some dynamic predicates are event-based. Their boolean true or false
evaluation happens at a specific time or time interval. For dynamic predicate, the temporal
value is specified as a temporal operator in temporal logic or as a parameter in FOL. In our
MTL formalization, we can have meta predicates, which combine already defined predicates
and temporal operators to give the more compact meaning of complex traffic rules.

3.2. Traffic Scene Representation

In the context of traffic rules, evaluating the represented knowledge is a critical step that
requires identifying the scene and situation of the traffic. Formalized rules can only be applied
and evaluated when specific conditions hold in a traffic scene. Traffic scenes can be obtained
from state-of-the-art autonomous driving motion prediction datasets, such as those available in
[25], [26], and [27], or can be generated using scenario designer tools such as CommonRoad
scenario designer [28]. These tools and datasets provide semantic information, including map
data, automated vehicle trajectories, and other surrounding vehicles, known as agents. In this
discussion, the term “ego” vehicle denotes autonomous vehicles whose motion is of interest to
us. A “Traffic Scene” comprises stationary and moving elements, such as road segments and
traffic participants, including vehicles, pedestrians, and traffic control infrastructure [13].

4. Methodology

This section explains the methodology of formal logic modeling of traffic and driving rules
exception as an MTL formula. Then we ground the MTL formulas on sensor data via predicates
and functions so that we can evaluate the formula. This methodology can also be extended to
other forms of logic, such as FOL, STL, and LTL. The behavior of a vehicle is primarily influenced
by three factors: traffic rules, static road and traffic infrastructure (e.g., lane types, traffic signs),
and dynamic components (e.g., other agents’ behavior, changes in traffic lights, crossing STOP
line). Among these three factors, traffic rules and regulations comprise static, dynamic, and
temporal features depending on the rule’s requirements. Thus, we begin by exploring the
traffic rule book’s relevant rules for rule exceptions and explaining the rule’s semantics. We
then illustrate how to break down the textual traffic rules from the German traffic rulebook
Strafenverkehrsordnung (StVO)! into formal logic that can be evaluated later. Furthermore, we
define the semantics of the predicate.

4.1. Rule Formulation and Predicate Grounding

The formalization of traffic rules offers multiple options, as explained in Sec. 3.1. This paper
aims to create robust predicates that accurately convey the meaning of traffic rules. Building
upon the works of [3] and [6], we also used top-down approach to formalize traffic rules. This
approach involves defining rules at a higher level of abstraction using corresponding predicates
(or meta-predicate), which are then grounded to the sensor data using additional functions. In

'https://www.gesetze-im-internet.de/stvo_2013/

https://www.gesetze-im-internet.de/stvo_2013/

this way, additional functions maps the predicate to sensor data information, so that rules can
be directly evaluated based on limited set of sensor data. For example, to determine whether
a vehicle is overtaking another vehicle, we need to evaluate the formula using the predicate
“overtake”. However, we cannot directly obtain sensor data indicating the Boolean evaluation of
the predicate “overtake”. We need to ground this predicate on sensor data using functions. This
grounding can be achieved using sensor data such as vehicle occupancy, ego, agent orientation,
and speed comparisons along the testing time horizon.

Defining and formalizing terms and phrases from rule books like StVO is critical to traffic rule
formalization. These terms can be informal and assume basic world knowledge of users. For
instance, a rule like “Do not cross the solid line” is easily understandable for humans. However,
for an autonomous system, terms such as “crossing” must be precisely defined and formalized
in a machine-readable format.

We formalize traffic rules using MTL formulas comprising predicates, temporal operators,
and logical connectives. These formulas also use parameters and arguments. Some predicates
usually consist of facts and events directly extracted from sensor data so that they can be
evaluated directly. On the other hand, most predicates need to be expanded using additional
functions to make them evaluable. Formalized traffic rules need to be grounded in the traffic
scene to evaluate and apply these rules. We explain this concept and rule exception use for the
trajectory monitoring from German legal law, StVO, and Vienna Convention on Road Traffic
(VCoRT)? and later based on this we show our MTL rule evaluation result in Sec. 5. Based
on StVO § 37(1), § 37(2)(1), and traffic sign 294, which provides guidelines for stopping at the
intersection in the presence of red traffic light and these legal guidelines can be summarised as:
“if the vehicle is at an intersection and the traffic light is red, then the vehicle must stop before the
stop line”. In MTL, this legal rule can be formalized as in Eq. 1:

G((at_intersection(ego)/\at_tra f fic_light(ego,red)) = (in_front(stopLine, ego)/\stop(ego))) (1)

Eq. 1 shows that traffic rules usually apply to the driving scenario. However, in some driving
scenarios, rules need to be violated or suspended due to new situations arising during driving,.
One such permitted driving rule violation is giving way to priority vehicles such as ambulances
and other emergency services vehicles operating with indicating light or sound (VCoRT Arti-
cle.34, StVO §35(5)(a)). These situations are underrepresented or absent in the datasets because
they involve rule exceptions or rule suspensions for the time being in favor of another traffic
rule. To check the compliance of the AD model in these situations, our approach focusing on the
formalization of rule exceptions can be helpful in determining the fail-safe and secure behavior
of the AD model. Now we can modify the Eq. 1 based on rule exception as follows:

G((at_intersection(ego) A at_traf fic_light(ego, red)) =

(in_front(stopLine, ego) A stop(ego))v(in_behind(priorityVehicle, ego) A cross_stopLine(ego)))
(2)

Eq. 2 shows that by introducing logical OR in the implication part, even if the trajectory
generated by the model is violating the initial rule but due to the presence of rule exception, the

*https://unece.org/DAM/trans/conventn/crt1968e.pdf

https://unece.org/DAM/trans/conventn/crt1968e.pdf

trajectory will satisfy the specification for the compliance checking. To summarize, we assessed
the rule compliance of the AD trajectory model by using predicate evaluation. We did not need
to rank the rules hierarchically because we only used them to monitor the trajectory generation
module, not to generate trajectories directly. Also, it can be seen that violation or crossing
stopLine will only take place when the priority vehicle is behind the ego. For brevity, we skipped
additional details depending on the evaluation setup, where we might need to add a predicate to
evaluate if the blue light or siren is on, as this indicates an emergency operation. More details
about the evaluation of the predicate are in Sec. 4.2. Similarly, we can formulate formal rule
exceptions on top of the existing rule, which allows us to maintain the hierarchical nature of
decision-making in the formalized rule. Similarly, we can define rules for other exceptions,
such as not crossing crosswalks in the presence of pedestrians and green traffic lights, but we
skipped them for simplicity purposes.

4.2. Predicates and Functions

We introduce the predicates and functions needed to complete the formalization of legal traffic
rules from the exception point of view. For readers, we reference the MTL rule as shown in
Eq. 2. We acknowledge that different ways of formalizing the rules and predicates may have
advantages and disadvantages. Creating a reusable predicate with a modular structure can
facilitate the formalization process and enhance the real-time performance of the trajectory
monitoring system. One predicate evaluation can be reused for multiple rules to determine
their satisfaction.

at_intersection and at_traf fic_light predicate can be directly evaluated based on the current
lane occupancy of vehicle and sensor data information. Other predicates can be defined as
follows:
in_front(x,y) < (distance(x, y) < dypn(lane_id(x) = lane_id(y)))
dyp, is the user-defined parameter, and 1.0 meter in our case, and distance refers to the Euclidean
distance based on the chosen coordinate system. Predicate in_behind can be defined similarly.
stop(x) <= —vy, < velocity(x) < vy
Here, vy, is the user-defined threshold velocity parameter, and it is 0.1 m/s.
cross_stopLine(x) <= position(x) > position(stopLine)
Position can be directly extracted from querying sensor data of ego and stopLine. Here, we
want to show how the predicate formulation can be optimized. Instead of creating predicate
cross_stopLine, we can have a more modular and reusable predicate such as crossing, which takes
two parameters instead of one in cross_stopLine, and this predicate can be used to define any road
or traffic infrastructure crossing. By Boolean predicate evaluation, we can evaluate the legal
compliance of the AD model. We have seen how to manually create and map a formalized rule
to the sensor data information. It can be time-consuming, requiring selecting a predicate and
creating functions, parameters, and arguments. Next, we explain the parse tree representation
of MTL formulas and their creation.

= G((#2 1 82) = (43 1 84))
O\
i M
N\ 7\
i P2 d by

Figure 1: Parse tree representation of Stopping at intersection rule (Eq. 1). MTL rule of Eq. 1 is simplified
by replacing predicates and their entities with ¢, ... ¢,.

4.3. Parse Tree Representation and Rules

We use a parse tree representation of the MTL formula. Many traffic rules are hierarchical and
context-dependent, and their application over the traffic scene is based on evaluating lower-
hierarchy context evaluation. Context is also crucial in formalizing traffic rules, as it serves
as background information for evaluating vehicle behavior. As in our earlier introduced rule
exception in Sec. 4.1, in the presence of context such as priority vehicle in the current driving
lane. We may need to modify the rule to account for this context introduction in the traffic rule.

Furthermore, a parsed tree representation allows us to introduce new concepts, context,
or rules in the existing rule representation. Such representation is suitable for MTL, as MTL
formulas are defined recursively. The node in the parsed tree represents the operation, and
the leaves indicate the predicate. For trajectory monitoring purposes, the parsed tree is less
critical apart from visualization and easier modification rules. However, it is better leveraged
when we want our MTL or corresponding STL version of the formula to be used with neural
network-based models.

Definition 1: Let PT be the parse tree for MTL formula ¢ and operation over this parse tree be
denoted as Define Oy = {¢1, ¢y, ... ¢} as the post-order traversal of PT.

The more complex and hierarchical the rule, the deeper the tree structure. Higher abstractions
of rules can be represented by combinations of predicates (meta-predicates) and functions. Fig.1
illustrates a parse tree with post-order traversal for an MTL formula introduced in Eq. 1. The
order of operation of this PT is O = {¢1, 92, A, ¢3, ¢4, A, =, G}. Representing rules as a parse tree
provides us following advantages:

+ Integration with Neural Network: We can transform a parsed tree network into a
computation graph [29], which is suitable for backpropagation because it is differentiable.
Backpropagation enables us to combine formalized rules with a neural network model,
enhancing the neural network’s fast decision-making with rule-based reasoning, such as

handling rule exceptions. Formal rules in this form can improve the quality and safety
of trajectory planning. However, more research is needed to integrate formal rules into
sub-symbolic networks, creating a neuro-symbolic network. We can covert the MTL
into STL formalization and use the formal logic in a non-Boolean way to determine the
robustness of the degree of satisfaction of rules instead of complete satisfaction as needed
in our MTL formalization.

+ Hierarchy and Recursive: Parse tree enables us to represent traffic rules in a hierarchical
tree structure, reflecting traffic rules’ hierarchical nature. As a result, we can manage and
prioritize rules more efficiently for complex driving scenarios and recursively combine
them to create more complex rules. This also allows us to create predicate creations
efficiently by making them reusable.

Py-metric-temporal-logic® and LTLf2DFA* provides a tool for parsing temporal logic formulas
based on the MTL grammar introduced in Sec. 3.1. This parsing helps us create a tree structure
by providing predicates, temporal operators, logical connectives, and parameters from the MTL
formula. These parsed pieces of information constitute our tree structure’s nodes (including the
leaf nodes). Once we have all the values, we can connect the nodes based on the relationships
extracted from the formula, which is then used as discussed above.

5. Experimental Evaluation

To evaluate our rule exception and trajectory monitoring, we extracted and modified the traffic
scenario from commonroad [28]. Finding scenarios where rules are violated is difficult in most
publicly available datasets. However, we modified some handcrafted scenarios available in the
commonroad and performed trajectory monitoring against specifications written in MTL. For
our manual modification, we changed the position coordinate of the vehicle with respect to the
time in the XML file having the trajectory information. Each scenario consists of the start and
end goal points of the vehicles, the time limit to reach the goal, and the semantic information of
the environment. The scenarios are stored in a hierarchical XML file that simplifies the data
processing compared to working with raw automotive sensor data.

The trajectory monitoring and model compliance checking pipeline begins by extracting
trajectory information such as position, velocity, orientation, and acceleration, along with map
information that provides semantic details such as lane markings, traffic light information, and
lane speed limits. Once we have this information, we can evaluate the conformity of the vehicle
trajectory against our MTL traffic rules using monitors for each rule which we are evaluating.
In this way, if the trajectory provided to us conforms to the MTL formalization, it implies the
model complies with legal traffic rules and vice-versa. In this work, we assume trajectory is
provided to us by the underlying model or provided directly as a recorded scenario at each
pre-defined time step.

Fig. 5 shows one of the evaluated traffic scenes. As seen in Fig. 5, here, traffic rule exception
regarding crossing stopLine (Eq. 2) is successfully performed, as ego gives way to the emergency

*https://github.com/mvcisback/py-metric-temporal-logic
*https://github.com/whitemech/LTLf2DFA

https://github.com/mvcisback/py-metric-temporal-logic
https://github.com/whitemech/LTLf2DFA

vehicle. To create a negative sample, we modified the scenario file, such as shown in Fig. 5,
so that the ego vehicle stays behind the stop line even in the presence of the priority vehicle,
and we kept the trajectory of the priority vehicle as it is. Then in such a scenario, collision
will happen as ego did not cross the stop line, which signifies the model’s failure against the
specification. Such modification will be termed a rule violation scene as ego cars need to give

way to priority vehicles in the same lane.

lr’I

L,

|
— fl_l"'-‘

-

Ll

T

Hik

(@)

Figure 2: Example of traffic scene evaluated for trajectory monitoring. Traffic scene for three
different time steps in increasing order. Traffic lights and road networks are shown (better in color
version and zoom). Two vehicles are in the scene. a) Ego car is behind the stop line, the priority vehicle
(bigger in size) is behind the ego, and the traffic light is red. d) Ego crosses the stop line due to the
priority vehicle, and the traffic light is still red. c) Ego crossed, and the traffic light is green now. Adapted
from [28].

We tested the rule complaince of the generated trajectory with extracted and handcrafted
scenarios (with modifications to introduce exception situations). We used two scenario files for
every situation, one involving a trajectory accommodating the rule exception situation (directly
extracted from commonroad) and another following the trajectory without accounting for the
rule exception. For the scenario not following the rule exception, we modified the scenarios
obtained from the commonroad by changing the trajectory of the ego vehicle and keeping other
parameters intact as before. Since in the recorded dataset, we don’t have accident or violation
scenarios. We tested two exception situations: crossing the solid line as defined in Eq. 1 and
Eq. 2 and stopping at the pedestrian crossing even if the traffic light is green but a pedestrian is
present. Our method provided a trace in the form of Boolean evaluation against specification at
every one-second interval for each predicate in the MTL rule. This is achieved using monitors
for each rule which monitor the trajectory at specified time intervals. This time interval can
be changed to the user’s requirement. Based on predicate trace, we can infer the rule over the
trajectory at the discrete time and which gives model rule compliance ability and failure time
steps based on which model can be improved further based on diagnosis information provided
by trace and failure.

Our current approach relies on recorded data, where the detection of exception situations

is assumed to be correct, which may not always be true. Therefore, we need to evaluate our
approach on a driving simulator further. We also measured the time required for each rule
evaluation in the monitoring process and found that it takes approx 2.7 seconds on average.
This may be too long for real-time online monitoring, which involves perception, prediction,
and planning components apart from rule evaluation, so we suggest invoking the rule exception
monitoring only when certain conditions are met, such as the presence of priority vehicles or
pedestrians, which can reduce the computation time for our use case.

6. Conclusion and Future Work

This paper analyzes the state-of-the-art methods for formalizing traffic rules in formal logic
and identifies the challenges and limitations of existing approaches. Based on the trade-off
of expressivity and temporal-time constraints, we explain traffic rules’ metric temporal logic
formulation. We propose a methodology for formalizing traffic rules hierarchically and mod-
ularly using predicates grounded on limited sensor data extracted from automated driving
sensors. We explain how to break down the textual traffic rules into formal logic that can be
evaluated using parse tree structures. In the future, we want to research further how to automate
a human-in-loop system so that a meta predicate can be relatively grounded to the simpler
predicate and use rules in a neuro-symbolic for decision making. Furthermore, Semantic role
labeling [30] can extract predicates and arguments from natural language traffic rules by using
the context information in the text. Usually, this is achieved manually, requiring expertise in
logic and domain expertise. Our proposed methodology is promising for formalizing traffic rules
in formal logic. It addresses the challenges and limitations of existing approaches and is flexible
enough to represent complex rules. Our approach will be helpful in the development of safe
and efficient autonomous vehicles. By understanding the situation and the beliefs of automated
vehicles and other traffic participants, we can gain insight into how to choose scenarios and
rules for different traffic scenes. For such understanding, epistemic reasoning over the driving
situation might be needed.

Acknowledgments

This work has been partially funded by the German Federal Ministry for Economic Affairs and
Climate Action within the project “KI Wissen”. We sincerely thank Dr. Stefan Zwicklbauer for
his constant support and mentorship throughout the work.

References

[1] H. Prakken, On the problem of making autonomous vehicles conform to traffic
law, Artificial Intelligence and Law 25 (2017) 341-363. URL: https://doi.org/10.1007/
$10506-017-9210-0. d0i:10.1007/s10506-017-9210-0.

[2] A. Karimi, P. S. Duggirala, Formalizing traffic rules for uncontrolled intersections, in:
2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS), IEEE,

https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/s10506-017-9210-0
http://dx.doi.org/10.1007/s10506-017-9210-0

(8]

(9]

Sydney, Australia, 2020, pp. 41-50. URL: https://ieeexplore.ieee.org/document/9096003/.
doi:10.1109/1CCPS48487.2020.00012.

S. Maierhofer, A.-K. Rettinger, E. C. Mayer, M. Althoff, Formalization of Interstate Traffic
Rules in Temporal Logic, in: 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp.
752-759. doi:10.1109/1V47402.2020.9304549, iSSN: 2642-7214.

A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff, E. Hilgendorf, T. Nipkow,
Formalising and Monitoring Traffic Rules for Autonomous Vehicles in Isabelle/HOL, in:
N. Polikarpova, S. Schneider (Eds.), Integrated Formal Methods, volume 10510, Springer
International Publishing, Cham, 2017, pp. 50-66. URL: http://link.springer.com/10.1007/
978-3-319-66845-1 4. d0i:10.1007/978-3-319-66845-1_4, series Title: Lecture Notes in
Computer Science.

K. Esterle, V. Aravantinos, A. Knoll, From Specifications to Behavior: Maneuver Verification
in a Semantic State Space, in: 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp.
2140-2147. doi:10.1109/1IVS.2019.8814241, iSSN: 2642-7214.

S. Maierhofer, P. Moosbrugger, M. Althoff, Formalization of Intersection Traffic Rules in
Temporal Logic, 2022. d0i:10.1109/1V51971.2022.9827153, pages: 1144.

A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton, J. Fu, E. Frazzoli, Liability,
Ethics, and Culture-Aware Behavior Specification using Rulebooks, in: 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 8536-8542. doi:10.1109/ICRA.
2019.8794364, iSSN: 2577-087X.

M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B. Amor, A. Shrivastava, L. Karam,
G. Fainekos, Encoding and monitoring responsibility sensitive safety rules for auto-
mated vehicles in signal temporal logic, in: Proceedings of the 17th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design, MEMOCODE
’19, Association for Computing Machinery, New York, NY, USA, 2019, pp. 1-11. URL:
https://dl.acm.org/doi/10.1145/3359986.3361203. doi:10.1145/3359986.3361203.

N. Aréchiga, Specifying Safety of Autonomous Vehicles in Signal Temporal Logic, in:
2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 58-63. doi:10.1109/IVS.2019.
8813875, iSSN: 2642-7214.

[10] J. Karlsson,]J. Tumova, Intention-aware motion planning with road rules, in: 2020 IEEE

16th International Conference on Automation Science and Engineering (CASE), 2020, pp.
526-532. doi:10.1109/CASE48305.2020.9217037, iSSN: 2161-8089.

[11] J. Lin, W. Zhou, H. Wang, Z. Cao, W. Yu, C. Zhao, D. Zhao, D. Yang, J. Li, Road Traffic

[12]

[13]

Law Adaptive Decision-making for Self-Driving Vehicles, in: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 2034-2041. doi:10.
1109/1TSC55140.2022.9922208.

X.Li, G.Rosman, I. Gilitschenski, J. DeCastro, C.-I. Vasile, S. Karaman, D. Rus, Differentiable
Logic Layer for Rule Guided Trajectory Prediction, in: Proceedings of the 2020 Conference
on Robot Learning, PMLR, 2021, pp. 2178-2194. URL: https://proceedings.mlr.press/v155/
li21b.html, iSSN: 2640-3498.

S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, M. Maurer, Defining and Substantiating
the Terms Scene, Situation, and Scenario for Automated Driving, in: 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, 2015, pp. 982-988. doi:10.
1109/1TSC.2015. 164, iSSN: 2153-0017.

https://ieeexplore.ieee.org/document/9096003/
http://dx.doi.org/10.1109/ICCPS48487.2020.00012
http://dx.doi.org/10.1109/IV47402.2020.9304549
http://link.springer.com/10.1007/978-3-319-66845-1_4
http://link.springer.com/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1007/978-3-319-66845-1_4
http://dx.doi.org/10.1109/IVS.2019.8814241
http://dx.doi.org/10.1109/IV51971.2022.9827153
http://dx.doi.org/10.1109/ICRA.2019.8794364
http://dx.doi.org/10.1109/ICRA.2019.8794364
https://dl.acm.org/doi/10.1145/3359986.3361203
http://dx.doi.org/10.1145/3359986.3361203
http://dx.doi.org/10.1109/IVS.2019.8813875
http://dx.doi.org/10.1109/IVS.2019.8813875
http://dx.doi.org/10.1109/CASE48305.2020.9217037
http://dx.doi.org/10.1109/ITSC55140.2022.9922208
http://dx.doi.org/10.1109/ITSC55140.2022.9922208
https://proceedings.mlr.press/v155/li21b.html
https://proceedings.mlr.press/v155/li21b.html
http://dx.doi.org/10.1109/ITSC.2015.164
http://dx.doi.org/10.1109/ITSC.2015.164

[14]

[19]

[24]

[25]

P. Bender,]. Ziegler, C. Stiller, Lanelets: Efficient map representation for autonomous
driving, in: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 2014, pp. 420-425.
doi:10.1109/1VS.2014.6856487, iSSN: 1931-0587.

ASAM OpenDRIVE, 2019. URL: https://www.asam.net/standards/detail/opendrive/.

H. Bhuiyan, G. Governatori, A. Bond, S. Demmel, M. Badiul Islam, A. Rakotonirainy,
Traffic Rules Encoding Using Defeasible Deontic Logic, in: S. Villata, J. Harasta, P. Kfemen
(Eds.), Frontiers in Artificial Intelligence and Applications, IOS Press, 2020. URL: http:
//ebooks.iospress.nl/doi/10.3233/FAIA200844. doi:10.3233/FAIA200844.

H. Bhuiyan, G. Governatori, A. Rakotonirainy, M. W. Wong, A. Mahajan, Traffic rule formal-
ization for autonomous vehicle (2022). URL: https://ink.library.smu.edu.sg/cgi/viewcontent.
cgi?article=6124&context=sol_research.

M. Buechel, G. Hinz, F. Ruehl, H. Schroth, C. Gyoeri, A. Knoll, Ontology-based traffic
scene modeling, traffic regulations dependent situational awareness and decision-making
for automated vehicles, in: 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp.
1471-1476. doi:10.1109/1VS.2017.7995917.

Q. Zhang, D. K. Hong, Z. Zhang, Q. A. Chen, S. Mahlke, Z. M. Mao, A Systematic
Framework to Identify Violations of Scenario-dependent Driving Rules in Autonomous
Vehicle Software, Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5 (2021) 15:1-15:25. URL: https://dl.acm.org/doi/10.1145/3460082. doi:10.1145/
3460082.

M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, M. Fisher, Formal Specification and
Verification of Autonomous Robotic Systems: A Survey, ACM Computing Surveys 52
(2019) 100:1-100:41. URL: https://dl.acm.org/doi/10.1145/3342355. doi:10.1145/3342355.
P. Hunter, J. Ouaknine, J. Worrell, When is Metric Temporal Logic Expressively Complete?,
2013. URL: http://arxiv.org/abs/1209.0516, arXiv:1209.0516 [cs].

R. Alur, T. A. Henzinger, Logics and models of real time: A survey, in: J. W. de Bakker,
C. Huizing, W. P. de Roever, G. Rozenberg (Eds.), Real-Time: Theory in Practice, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1992, pp. 74-106.

Y. Gurevich, ON THE CLASSICAL DECISION PROBLEM, in: Current Trends in The-
oretical Computer Science, WORLD SCIENTIFIC, 1993, pp. 254-265. URL: http://www.
worldscientific.com/doi/abs/10.1142/9789812794499 0020. d0i:10.1142/9789812794499_
0020.

P. Thati, G. Rosu, Monitoring Algorithms for Metric Temporal Logic Specifications,
Electronic Notes in Theoretical Computer Science 113 (2005) 145-162. URL: https:
/Iwww.sciencedirect.com/science/article/pii/S1571066104052570. doi:10.1016/j . entcs.
2004.01.029.

S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou,
Z.Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, D. Anguelov,
Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open
Motion Dataset, 2021. URL: http://arxiv.org/abs/2104.10133. doi:10.48550/arXiv.2104.
10133, arXiv:2104.10133 [cs].

W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof,
C. Stiller, A. de La Fortelle, M. Tomizuka, INTERACTION Dataset: An INTERnational,
Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Seman-

http://dx.doi.org/10.1109/IVS.2014.6856487
https://www.asam.net/standards/detail/opendrive/
http://ebooks.iospress.nl/doi/10.3233/FAIA200844
http://ebooks.iospress.nl/doi/10.3233/FAIA200844
http://dx.doi.org/10.3233/FAIA200844
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=6124&context=sol_research
https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=6124&context=sol_research
http://dx.doi.org/10.1109/IVS.2017.7995917
https://dl.acm.org/doi/10.1145/3460082
http://dx.doi.org/10.1145/3460082
http://dx.doi.org/10.1145/3460082
https://dl.acm.org/doi/10.1145/3342355
http://dx.doi.org/10.1145/3342355
http://arxiv.org/abs/1209.0516
http://www.worldscientific.com/doi/abs/10.1142/9789812794499_0020
http://www.worldscientific.com/doi/abs/10.1142/9789812794499_0020
http://dx.doi.org/10.1142/9789812794499_0020
http://dx.doi.org/10.1142/9789812794499_0020
https://www.sciencedirect.com/science/article/pii/S1571066104052570
https://www.sciencedirect.com/science/article/pii/S1571066104052570
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://arxiv.org/abs/2104.10133
http://dx.doi.org/10.48550/arXiv.2104.10133
http://dx.doi.org/10.48550/arXiv.2104.10133

[27]

(28]

tic Maps, 2019. URL: http://arxiv.org/abs/1910.03088. doi:10.48550/arXiv.1910.03088,
arXiv:1910.03088 [cs, eess].

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
O. Beijbom, nuScenes: A multimodal dataset for autonomous driving, 2020. URL: http:
//arxiv.org/abs/1903.11027. doi:10.48550/arXiv.1903.11027, arXiv:1903.11027 [cs, stat].
S. Maierhofer, M. Klischat, M. Althoff, CommonRoad Scenario Designer: An Open-Source
Toolbox for Map Conversion and Scenario Creation for Autonomous Vehicles, in: 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC), 2021, pp. 3176-3182.
doi:10.1109/1TSC48978.2021.9564885.

K. Leung, N. Arechiga, M. Pavone, Backpropagation for Parametric STL, in: 2019 IEEE
Intelligent Vehicles Symposium (IV), IEEE, Paris, France, 2019, pp. 185-192. URL: https:
//ieeexplore.ieee.org/document/8814167/. doi:10.1109/1VS.2019.8814167.

S. Oliveira, D. Loureiro, A. Jorge, Improving Portuguese Semantic Role Labeling with
Transformers and Transfer Learning, in: 2021 IEEE 8th International Conference on Data
Science and Advanced Analytics (DSAA), 2021, pp. 1-9. URL: http://arxiv.org/abs/2101.
01213. doi:10.1109/DSAA53316.2021.9564238, arXiv:2101.01213 [cs].

http://arxiv.org/abs/1910.03088
http://dx.doi.org/10.48550/arXiv.1910.03088
http://arxiv.org/abs/1903.11027
http://arxiv.org/abs/1903.11027
http://dx.doi.org/10.48550/arXiv.1903.11027
http://dx.doi.org/10.1109/ITSC48978.2021.9564885
https://ieeexplore.ieee.org/document/8814167/
https://ieeexplore.ieee.org/document/8814167/
http://dx.doi.org/10.1109/IVS.2019.8814167
http://arxiv.org/abs/2101.01213
http://arxiv.org/abs/2101.01213
http://dx.doi.org/10.1109/DSAA53316.2021.9564238

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Formal Logic Representation
	3.2 Traffic Scene Representation

	4 Methodology
	4.1 Rule Formulation and Predicate Grounding
	4.2 Predicates and Functions
	4.3 Parse Tree Representation and Rules

	5 Experimental Evaluation
	6 Conclusion and Future Work

