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Abstract
Blawx was introduced as a user-friendly graphical environment for statutory legal knowledge repre-
sentation by non-programmers using goal-directed execution of constraint answer set programming at
GDE ’22.

Development of Blawx has continued, and this presentation will showcase significant changes made in
the last year, including: * a re-implementation of defeasibility, * a new event reasoningmethod, * a friendly
user interface for specifying open-world knowledge (and uncertainty) using user-defined predicates, *
improvements to natural language generation in explanations, * a constraint-based implementation of
dates, times, and durations, * lists and aggregates, * a revision to how boolean attributes are encoded, *
user-defined predicates of arity > 2, and * integration with LLM for summary of explanations.

The presentation will also briefly discuss the experience thus far of training non-programmers to
use Blawx inside the government of Canada, the challenges that have been faced in integrating Blawx
encodings with other systems, the types of encodings users are generating, and the uses to which those
encodings are being put.
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1. Blawx

Blawx is a prototypical open source web-based development environment for statutory knowl-
edge representation, designed for ease of use for non-programmers, and using the s(CASP)
goal-directed constraint answer set programming language1. The user interface is built using the
Blockly visual development environment library2, and is a drag-and-drop block-style interface,
with an associated web application.

Blawx3 is intended to serve as a learning tool for experiments into ”Rules as Code”4, which is
an approach to public service that calls for the encoding of the semantic content of statutory,
regulatory, and other normative texts as soon as possible in their life-cycle so as to get benefits
in policy design, legislative drafting, public administration, and compliance.
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Work to re-implement Blawx using the s(CASP) language began in late 2021, and since being
introduced in August of 20225 there have been significant changes to the tool’s reasoning
features and user interface. Blawx has also seen significant use inside the Canadian federal
government, which we report on briefly below.

2. Building Blawx’s Reasoning Features

Several improvements have been made the Blawx visual language, to take better advantages of
s(CASP)’s reasoning methods, or to add or re-implement higher-level reasoning features.

2.1. Booleans

The initial implementation of Blawx treated boolean attributes of objects as a binary predicate
over an object and a boolean value, with booleans treated as a separate data type in the coding
interface. This caused problems with allowing s(CASP) to predict when statements were
contradictory. Our experience also indicated that users had difficult ascertaining what the
difference was between saying that it was ”logically false that the value of an attribute was
true”, and saying ”the value of an attribute is false.” This also confused efforts to generate
user interfaces for specifying facts. Booleans in Blawx have therefore been re-implemented as
unary predicates on objects, so that logical negation is the only way to express falsehood, and
the boolean data type has been removed in favour of using predicate statements, and logical
negation.

Figure 1: The Revised User Interface for Boolean Attributes

2.2. Constraint Date Math

The initial implementation of date math in Blawx used a mathematical approach (using Pro-
log’s ”is” operator), which limited opportunity to take advantage of s(CASP)’s reasoning over
numerical constraints in the context of dates. That implementation has been replaced with an
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implementation in which dates are represented using timestamps, and date calculations are
performed using constraint math. This improves Blawx’s ability to reason over dates, but the
method in which it was implemented required sacrificing Blawx’s ability to deal with durations
of irregular size (i.e. months and years). Code generation takes data of those types and generates
numerical values in a term such as datetime(12345), and that term is reformatted for display
to the user in explanations.

2.3. Defeasibility

Ease of maintenance and explainability of encodings in Blawx are dependent on structural
isomorphism, a strong one-to-one relationship between the smallest possible sections of legal
text and corresponding sections of code. Maintaining structural isomorphism requires allowing
the sections of code to interact with one another in a way analogous to the manner in which
sections of law defeat one another in statutory text. The original implementation of defeasibility
was found to be computationally inefficient.

To address this problem, the defeasibility library was re-implemented in such a way as to flat-
ten the higher-order structure of the predicates that were used to describe the defeating relation-
ships. For example, whatwas previously encoded as according_to(section_1,plays(bob,baseball))
is now encoded as according_to(section_1,plays,bob,baseball), with onlyminimal changes
to the user interface.

The block language also has features to allow the user to attribute a conclusion to the current
section (by default), to exclude or include certain conclusions from checking for defeaters, and
to decide whether to check for ”applicability” for any objects defined as members of a category.
The exception option is a small sacrifice of structural isomorphism, as if the law is amended to
an an exception to a rule that previously did not have one, it may now be necessary to enable
defeasibility in the new defeated rule in order to implement that change.

2.4. Event Reasoning

Most recently, a simple version of event reasoning has been added to Blawx, taking advantage
of s(CASP)’s ability to do numerical constraint calculations over dates. The interface includes
three predicates which are used to specify events in time (”initially”, ”from”, and ”ultimately”),
and two predicates that are used to query the truth value of statements at a given point in time
(”as of” and ”between”). This feature is still under active development, and we hope to be able
to ascertain its effectiveness over the coming months.

2.5. Ternary+ Predicates

Blawx previously allowed only for the creation of unary predicates (which represented ”Cat-
egories”, and after modification, boolean attributes of objects), and binary predicates (which
represented attributes of an object). This limitation was originally intended to provide a limited
structure for navigation in user interfaces using the Blawx API. However, with the changes to
the Scenario Editor (described below) and corresponding changes to the API, this motivation
was no longer relevant. As such we have added the ability to declare predicates of between 3 and
10 parameters, referred to as ”relationships”. This has had the effect of making the modelling of



Figure 2: An example of event reasoning in Blawx

legal concepts much easier, as well as improving the natural language generated by Blawx in
those models.

It is anticipated that in future versions of Blawx, Attributes (both unary and binary) may be
deprecated in favour of ”relationships” of between 1 and 10 terms. The separate identification
of ”Categories” remains valuable for identifying valid responses in user interfaces.

Figure 3: A rule using ternary ”relationship” blocks



2.6. Lists and Aggregates

With the addition of access inside s(CASP) to the forall predicate, it became possible to give
the Blawx user access to the collection of bindings into list structures, and aggregation over
those list structures. As such list and aggregation elements have been added to the language.
The impure nature of the forall predicate means that rules which use aggregation cannot be
negated over, but the value of having access to numerical aggregates has thus far proved more
important in the usability of the tool.

Figure 4: A rule using lists and aggregation

3. Building Blawx’s Interface Features

In addition to significant changes to the Blawx language, we have made two notable changes
to the user interface: the addition of the scenario editor, a revised method of natural langauge
generation to improve explanations, and integration with LLM for explanation summaries.

3.1. Scenario Editor

A previous attempt at generating a friendly user-interface for generating and testing the out-
comes of fact scenarios used a chatbot style interface, but user testing revealed that the interface
was too slow and inflexible for practical use in exploring the meaning of Blawx encodings.
That work was abandoned in favour of a ”scenario editor” interface, which has gone through a
number of revisions to reach its current state.
The scenario editor is aimed at subject matter experts who are interested in validating that

the behaviour of an encoding of a rule is consistent with their own interpretation of the rule,
but who want to explore the behaviour by generating fact scenarios and reviewing explanations,
as opposed to reviewing code.
The scenario editor takes advantage of the ontological information kept in the predicates

defined by the user, offering only those suggestions for inputs that are of the correct category in



each parameter of the predicate. It also takes advantage of s(CASP)’s ability to allow the user to
specify known falsehoods, and to specify statements that s(CASP) should treat as abducible. It
also allows the user to create ungrounded fact statements, which use the types for the parameters
to generate natural langauge representations such as ”any person”.

Figure 5: The scenario editor user interface

3.2. Natural Language Generation for Explanations

In addition to improved interface for input, the scenario editor uses a revised method of generat-
ing natural langauge explanations from the answers received from the s(CASP) reasoner. Instead
of using the NLG provided by the s(CASP) reasoner, it uses the NLG information provided by the
user about their defined predicates, plus knowledge of the flattening of higher-order predicates
used by s(CASP) and Blawx, to provide a NLG system in which nested terms are recursively
translated into natural langauge, so that -according_to(section1,plays,bob,baseball)
will be converted into ”it is not the case that according to section 1 bob plays baseball”.

The secnario editor also provides the natural language explanation not as a single tree, but
as a series of linked paragraphs, allowing the user more control over which portions of the
explanation they want to examine in the user interface, and ensuring that each portion of the
explanation that is added is a natural language sentence.

3.3. Integration with LLM for Explanation Summarization

Most recently for interface changes, a configuration option has been created that allows the
user of Blawx to specify an OpenAI API key. If they do so, the scenario editor will take the text
of each explanation generated, and send it to a ChatGPT3.5 endpoint for summarization, and
the result will be displayed to the user in place of the explanation, with the option to expand
the original explanation for context.



Figure 6: An answer display in scenario editor

4. Usage

Blawx began seeing use inside the Canada School of Public Service in roughly August of 2022.
The school has been involved in Rules as Code experiments for several years, but experienced
some degree of frustration with the large amount of time and effort required by a large number
of people in order to generate encodings in their previous approaches.

A legally-trained staff person with CSPS was trained on how to use Blawx for legal knowledge
representation, and has been primarily responsible for generating code in several experimental
projects. Anecdotally, the experience has indicated that the cost and time required to generate
encodings of similar complexity has been significantly reduced. That user has begun training
users in other departments to do the same encoding work.



On the basis of these experiments, knowledge and interest in the Rules as Code approach
has reached several critical departments inside the Government of Canada responsible for the
drafting and maintenance of statutory and regulatory text. It is anticipated that experiments of
this type will continue to become more common.
The purpose of those projects have varied from generating a web application capable of

advising regulated entities on what procedural steps are required in certain situations based on
encodings of multiple statutes and regulations; to static analysis of proposed regulatory text
against typical fact scenarios to determine whether a regulatory enactment is valuable in that
context.
We anticipate that these experiments represent world-firsts in a number of categories, and

hope to publish in greater detail on them in the future.

5. Challenges

Our experiences over the last year have revealed challenges in using Blawx that we did not
anticipate. Primary among them aremisapprehensions of the nature of legislation and regulation,
and the purpose of statutory knowledge representation, and corresponding misapprehensions
of the capabilities of a tool which is limited to an encoding of statutory knowledge.
Both subject matter experts and software developers seem to occasionally be under the

impression that statutes contain procedural information about the ”order” in which factors are
considered in determining whether or not a legal conclusion can be reached. As such, they
presume this information can be used to guide the order of questions that appear in an expert
system built on that encoding. This may be a result of an apprehension that the ”numbering” in
laws relates to a sequence, as opposed to mere identification.
What Blawx can currently do is advise, using s(CASP)’s abducibility mechanisms, which

additional facts would be relevant to finding a concrete answer to the query sent to the Blawx
API. But it cannot use the encoding of the law itself to provide any rational reason to place one
of those questions before or after another in an interview.
Similarly, there has been difficulty in explaining to users of encodings that the natural

language generation capabilities of Blawx are designed to facilitate encoding and validation,
and not for the generation of user-facing expert systems in which the use of legal terminology
is likely to be counter-productive.

Among the problems we could possibly have, these are unobjectionable. The users of blawx
are satisfied with it, and want more. That is perceived as a sign of success.

There have also been some challenges implementing the new event reasoning system recently
added, and it is anticipated that this will require modification going forward to interact properly
with other of Blawx’s reasoning features, such as defeasibility.

6. Future Work

Development priorities continue to be set primarily by the work of the Canada School of Public
Service in it’s Rules as Code experimentation with various departments of the Canadian federal
government. We anticipate exploring the computational efficiency of Blawx encodings with



larger scale projects, and working to improve the ease of integration with other applications
and add features specifically for expert system development.
Preliminary work has begun on using LLM chat tools as a user interface to collect ground,

unground, positive, negative, and unknown facts and submit them to Blawx in the appropriate
format. These early experiments have been very promising.

We have also done preliminary experiments into the ability of LLM tools such as ChatGPT to
generate proposed Blawx encodings of statutory text. These early experiments have had mixed
results, but are promising enough to warrant further investigation.
We are also actively working on improving the user interface for specifying legislative text

from the markdown-like syntax currently used to a WYSIWYG statutory XML editor that
generates a sub-schema of AkomaNtoso6.

7. Conclusion

Significant improvements have been made to the reasoning and interface of Blawx over the
course of the last year, all allowing Blawx users to take better advantage of the reasoning
features provided by s(CASP). Blawx has also seen considerable use inside the Government
of Canada, with considerable success in experiments in both regulatory drafting and service
automation. Work remains to determine whether the encodings generated by Blawx are (or
can be made) computationally efficient for real-world use cases. We also need to continue to
explore whether advances in LLM technology can be leveraged to improve the user interface
and the cost of knowledge acquisition.
I look forward to reporting on progress in those directions in future GDE workshops.
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