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Abstract

Recently some new gradual argumentation semantics have been proposed inspired by a fuzzy multi-
preferential semantics for weighted conditional knowledge bases with typicality. In this paper we extend
these semantics to the finitely-valued case, and develop an ASP approach for conditional reasoning over a
weighted argumentation graph, through the verification of graded conditional implications over arguments
and over boolean combination of arguments. The semantics defined in the paper is enforced via a custom
propagator. The paper also develops a probabilistic semantics for gradual argumentation, which builds on
the many-valued conditional semantics.

1. Introduction

The relationships between preferential, conditional approaches to non-monotonic reasoning and
argumentation semantics are strong. In particular, for Dung-style argumentation semantics and
Abstract Dialectical Frameworks (ADFs) the relationships with conditional reasoning have been
deeply investigated [1, 2, 3, 4]. This is not the case for gradual argumentation, which has been
studied through many different approaches and frameworks [5, 6, 7, 8,9, 10, 11, 12, 13].

Some new gradual argumentation semantics [14, 15] have been recently proposed inspired
by the multi-preferential semantics for weighted conditional knowledge bases with typicality in
description logics [16, 17]. This suggests an approach to conditional reasoning over arguments in
an argumentation graph, as well as a probabilistic interpretation for an argumentation graph with
respect to a gradual semantics. The approach is a general one, and can be applied to different
gradual argumentation semantics (under some conditions on the domain of argument valuation),
but in this paper we will focus on some gradual argumentation semantics developed in [14, 15] for
weighted argumentation graphs, and on their finitely-valued variants we are going to introduce.
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As a motivation of the work, it has been shown that a multilayer neural network can be mapped
to a weighted conditional knowledge base [16, 17] and, hence, a weighted argumentation graph,
with positive and negative weights, under the (-coherent semantics [14, 15]. This is in agreement
with previous work on the relationship between argumentation frameworks and neural networks
[18, 13], see [15] for a comparison. This concrete application and the widespread interest in
neural networks strongly motivates the development of proof methods for weighted argumentation
graphs under the -coherent semantics.

The paper first introduces a finitely-valued variant of the ¢-coherent semantics [14, 15] for
weighted argumentation graphs, and develops an answer set programming (ASP) approach for
conditional reasoning over weighted argumentation graphs, through the verification of graded
(strict or defeasible) implications over arguments based on a many-valued conditional logic
with typicality. We consider conditional implications of the form T(A;) — Ag, meaning that
“normally argument A; implies argument A", in the sense that “in the typical situations where A4
holds, A also holds", where T is also inspired by typicality operator in Propositional Typicality
Logic (PTL) [19]. The truth degree of such implications can be determined with respect to the
preferential interpretation built from a set of ¢-coherent labellings of an argumentation graph.

More generally, we consider graded conditionals of the form T(«) — S > [ (“normally
argument « implies argument 3 with degree at least "), where « and § are boolean combination
of arguments. The satisfiability of such inclusions in a multi-preferential interpretation of an
argumentation graph G, exploits the preference relations < 4, over (-coherent labellings, which
depend on arguments.

The preferential interpretation associated to an argumentation graph, based on the ¢-coherent
semantic, is further exploited to develop a probabilistic interpretation of the ¢-coherent semantics.
More precisely, we propose a probabilistic argumentation semantics, inspired by Zadeh’s probabil-
ity of fuzzy events [20], to extend the classical epistemic approach to probabilistic argumentation
[21, 22] to the gradual case.

2. Many-valued Coherent, Faithful and o-coherent Semantics
for Weighted Argumentation Graphs

In this section, we generalize the gradual semantics for weighted argumentation graphs proposed
in [14, 15], which have been introduced adopting the real unit interval [0, 1] as the domain of
argument valuation. We include the finitely-valued case. As a proof of concept, the ¢-coherent
semantics will be used in Section 4 for conditional reasoning over an argumentation graph.

More precisely, we let the domain of argument valuation S to be either the real unit interval
[0, 1] or the finite set C,, = {0, %, ey %47 1}, for some integer n > 1. This allows to develop the
notions of many-valued coherent, faithful and p-coherent labellings for weighted argumentation
graphs, which include both the infinitely and the finitely-valued case.

Let a weighted argumentation graph be a triple G = (A, R, 7), where A is a set of arguments,
RCAx Aandm: R — R. An example is in Figure 1.

This definition of weighted argumentation graph is similar to that of weighted argument system
in [7], where only positive weights are allowed, representing the strength of attacks. Here, a pair
(B, A) € R is regarded as a support of argument B to argument A when the weight 7(B, A) is



Figure 1: Example weighted argumentation graph G

positive and as an atfack of argument B to argument A when 7(B, A) is negative. This leads to
bipolar argumentation, which is well-studied in the literature [23, 10, 24, 13]. The argumentation
semantics described below deals with positive and negative weights in a uniform way.

Given a weighted argumentation graph G = (A, R, 7), a many-valued labelling of G is a
function o : A — S which assigns to each argument an acceptability degree in the domain of
argument valuation S.

Let R~(A) ={B | (B,A) € R}. When R~ (A) = (), argument A has neither supports nor
attacks. For G = (A, R,7) and a labelling o, we introduce a weight W< on A as a partial
function W& : A — R, assigning a positive or negative support (relative to labelling o) to all
arguments A; € A such that R~ (A4;) # 0, as follows:

WE(A) = > w(Aj,A) o(4;) (1)
(A;,4,)ER

W& (A;) is left undefined when R~ (A;) = 0,
We exploit such a notion of weight of an argument with respect to a labelling to define some
argumentation semantics for a graph G, which generalize the semantics in [14, 15].

Definition 1. Given a weighted graph G = (A, R, m) and o : A — S a labelling, we say that:

* o is a coherent labelling of G if, for all arguments A,B € A s.t. R (A) # 0 and
R™(B) #0: 0(A) <o(B) <= WE(A) < W& (B);
* o is a faithful labelling of G if, for all arguments A,B € A s.t. R (A)# 0 and
R™(B) #0: 0(A) <o(B) = WF(A) < WE(B);
* given a function p : R — S, o is a p-coherent labelling of G if, for all arguments A € A,
s.t. R=(A) #0,
o(A) = p(Wg (4)) @)

Observe that the notion of (p-coherent labelling of G is defined through a set of equations,
as in Gabbay’s equational approach to argumentation networks [25]. The notions of coherent,
faithful and (-coherent labelling of a weighted argumentation graph G do not put constraints on
the labelling of arguments without incoming edges, provided the constraints on the labellings of
all other arguments can be satisfied, depending on the semantics considered. It can be proven that
also for the finitely-valued case there are strong relationships between the three semantics, as in
the fuzzy case [14].



Proposition 1. Given G = (A, R,7) and ¢ : R — S, with S = C,, (1) a coherent labelling
o: A— S of G is a faithful labelling of G, (2) if ¢ is a monotonically non-decreasing function,
a p-coherent labelling o of G is a faithful labelling of G, (3) if ¢ is monotonically increasing, a
p-coherent labelling o of G is a coherent labelling of G.

Restricting the domain of argument valuation to the finite number of values in C,, allows
considering finitely-valued labellings which approximate the fuzzy semantics considered in
[14, 15]. In the following, for S = [0, 1] we will assume function ¢ to be the logistic function
S(z) =1/(1+ e~ ") and, for S = C,, its pointwise approximation (i.e., S(x) is approximated to
the closest value in C,).

Example 1. For S = C,, withn = 5, the graph G in Figure 1 has 36 p-coherent labellings, while,
forn =9, G has 100 p-coherent labellings. For instance, o = (0,4/5,3/5,2/5,2/5,3/5)
(meaning that o(A1) = 0, 0(Az) = 4/5, and so on) is a labelling for n = 5. Consider; e.g., Ay;
the p-coherence condition indeed holds, i.e., 0(A4) = (WS (A4)) :

WS (Ay) =4/5-15%3/5=—-0.1;

S(WE(Ay)) = S(—0.1) = 0.475, then o(WE (A4)) = 2/5.

In [14, 15] it has been shown that, for labellings with values in [0, 1], the notion of ¢-coherent
labelling relates to the framework of gradual semantics studied by Amgoud and Doder [11], by
considering a slight extension of their gradual argumentation framework so to deal with both
positive and negative weights, to capture the strength of supports and attacks. The notion of
bipolar argumentation has been widely studied in the literature [23, 5, 10, 12, 13]. In particular,
an extension of the bipolar argumentation framework QBAFs by Baroni et al. [10] which includes
the strength of attacks and supports has been developed and studied by Potyka [13].

As observed in [14], since MultiLayer Perceptrons (MLPs) can be mapped to weighted
conditional knowledge bases, they can as well be seen as weighted argumentation graphs, with
positive and negative weights, under the proposed semantics. In this view, ¢-coherent labellings
correspond to stationary states [26] of the network, where each unit in the network is associated
to an argument, synaptic connections (with their weights) correspond to attacks/supports, and the
activation of units to values of the corresponding arguments in a labelling. This is in agreement
with previous work on the relationship between argumentation frameworks and neural networks
investigated by d’ Avila Garcez, Gabbay and Lamb [18] and recently by Potyka [13].

3. A Preferential Interpretation of Gradual Argumentation
Semantics

The strong relations between the notions of coherent, faithful and ¢-coherent labellings of a
gradual argumentation graph and the corresponding semantics of weighted conditional knowledge
bases have suggested an approach for defeasible reasoning over a weighted argumentation graph
[14, 15], which builds on the semantics of the argumentation graph.

In the following, we first consider a propositional language to represent boolean combinations
of arguments and a many-valued semantics for it on the domain of argument valuation. Then, we
extend the language with a typicality operator, to introduce defeasible implications over boolean



combinations of arguments and to define a (multi- )preferential interpretation associated with a
weighted argumentation graph G, for the semantics introduced in Section 2). A similar extension
with typicality of a propositional language has, for instance, been considered for the two-valued
case in the Propositional Typicality Logic [19].

Let us consider a weighted argumentation graph G = (A, R, ). We introduce a propositional
language £, whose set of propositional variables Prop is the set of arguments .4, and assume our
language £ contains the connectives A, V, = and —, and that formulas are defined inductively, as
usual. Formulas built from the propositional variables in .A correspond to boolean combination
of arguments considered, for instance, by Hunter, Polberg and Thimm [22]. Here we consider a
many-valued semantics for boolean combination of arguments, using «, 3, v to denote them, e.g.,
o= (A1 VAN —|A2) V As.

Let S be a truth degree set, equipped with a preorder relation <, a minimum and maximum
element (denoted 0 and 1, resp.). Let ®, &, > and © be the truth degree functions in S for the
connectives A, V, - and — (respectively). When S is [0, 1] or the finite set C,, as in our case
of study, ®, &, > and & can be chosen as a t-norm, s-norm, implication function, and negation
function in some system of many-valued logic [27].

Let S be the domain of argument valuation for a gradual semantics S. A labellingo : A — S
of graph G assigns to each argument A; € A a truth degree in S, that is, o is a many-valued
valuation. A valuation o can be inductively extended to all propositional formulas of L as follows:

o(anp)=o(a)®ao(B) o(aVp)=o(a)do(B)
ola— B) =oc(a)>o(p) o(-a) = oo(a)

Based on the choice of the combination functions, a labelling o uniquely assigns a truth degree to
any boolean combination of arguments. We will assume that the false argument L and the true
argument T are formulas of L and that (L) = 0 and o(T) = 1, for all labellings o.

Let X be a set of labellings of an argumentation graph G = (A, R, ), under some gradual
semantics S in Section 2, with domain of argument valuation S (both S = [0,1] and S = C,,
satisfy the conditions above and, actually, < is a strict total order on S).

Definition 2. Given a set of labellings Y., for each argument A; € A, we define a preference
relation <4, on %, as follows: for 0,0’ € %,

o <a, o iffo’(A;) < o(A;).

Labelling o is preferred to o’ with respect to argument A; (or o is more plausible than ¢’ for
argument A;), when the degree of truth of A; in o is greater than the degree of truth of A; in o’.
The preference relation < 4, is a strict modular partial order on ¥ (where, modularity means that,
forall o’,0”, 0" € ¥, 0/ <4, 0" implies (¢! <4, 0" or """ <4, ")).

Example 2. Referring to graph G in Figure 1, among the set X of 36 labellings of G for n = 5,
there are o and o' such that 0'(A1) = 0 < (A1) = 1/5, and 0'(A3) = 1 > o(A3z) = 4/5.
Hence 0 <4, 0’ and o' <y, o. Labelling o0 = (1,4/5,0,1,1/5, 1) is preferred to all other ones
with respect to < 4, being the only one with o(Ag) = 1.



The definition of preference wrt. arguments which is induced by a set of labellings > also
extends to boolean combination of arguments « in the obvious way, based on the choice of
combination functions. A set of labellings ¥ induces a preference relation <, on ¥, for each
boolean combination of arguments «, as follows: o <, ¢’ iff o'() < ().

When the set X is infinite, <4, (or some <, ) is not guaranteed to be well-founded, as there
may be infinitely-descending chains of labellings o2 <4, 01, 03 <4, 02, .. .. In the following,
we restrict our consideration to well-founded set of labellings ¥, i.e., to X such that both < 4, and
<-4, are well-founded for all arguments A;.

Example 3. Under Godel logic with standard involutive negation (i.e., with combination func-
tions: a ® b = min{a,b}, a ® b = max{a,b}, a>b = 1if a < b and b otherwise; and
©a = 1 — a) for the weighted graph G in Figure 1, with n = 5, the boolean combination of
arguments Ay N\ Az A\ —As has 4 maximally preferred labellings, with c(A1 N Ay N —As) = 4/5.

We can now define a notion of preferential interpretation over many-valued valuations, which
relates to preferential interpretations in KLM preferential logics [28]. Here preferences are
defined over many-valued labellings, rather than over two-valued propositional valuations. A
further difference with KLLM approach is that the semantics exploits multiple preferences (one for
each argument); it is a multi-preferential semantics. Other multi-preferential semantics for KLM
conditional logics have been considered in [29, 30] and, for ranked and weighted knowledge
bases in description logics, in [17, 16].

Definition 3. Given a weighted argumentation graph G = (A, R, r), a pair Ig =(§,Y)isa
preferential interpretation of G in a gradual semantics S in Section 2, if 3 the set of labellings of
G in S, and S is the domain of argument valuation.

The preference relations <, in . g are left implicit, as they are induced by the labellings in X.
Often, we will simply write I, rather than 7, g

We add a unary typicality operator T to the language L. The extended language is called LT,
and the associated many-valued logic with typicality £T. Intuitively, as in PTL, “a sentence
of the form T'(«) is understood to refer to the typical situations in which « holds" [19]. The
typicality operator allows the formulation of conditional implications (or defeasible implications)
of the form T(«) — [ whose meaning is that "normally, if « then 5". In the two-valued case
such implications correspond to conditional implications « 3 of KLM preferential logics [28].
As usual [19], we do not allow nesting of the typicality operator. When « and S do not contain
occurrences of the typicality operator, an implication o« — [ is called strict. In the following, we
do not restrict our consideration to strict or defeasible implications, but we allow in LT general
implications o« — (3, where « and 3 may contain occurrences of the typicality operator.

The interpretation of a typicality formula T(«) is defined with respect to a preferential
interpretation I = (S, ¥) with ¥ well-founded.

Definition 4. Given a preferential interpretation I = (S,Y), and a labelling o € %, the valuation
of a propositional formula T («) in o is defined as follows:

COIEE A

where min<(X) = {0 :0 € Land Po’ € ¥ s.t. 0/ <, 0}

3)



When (T(A))!(¢) > 0, o is a labelling assigning a maximal degree of acceptability to
argument A in I, i.e., it maximizes the acceptability of argument A, among all the labellings in /.

Example 4. Let us consider the interpretation I = (Cs, %), where X is the set of labellings
of graph G in Figure 1 in the p-coherent semantics with truth space Cs. For the (unique)
labelling o preferred for Ag (see Example 2), 0(T(Ag)) = 1. For all other labellings o' € %,
o'(T(Ag)) = 0. For the 4 labellings o1, . . . , 04 that are the preferred ones for Ay N As A —As
(see example 3), 0;(T(A1 AN Ay A —Ag)) = 4/5.

Given a preferential interpretation I = (S, 3), we can now define the satisfiability in I of a
graded implication, having foom o« — § > lora — [ < u, with [ and v in § and « and (3
boolean combination of arguments. We first define the truth degree of an implication o« — [ wrt
a preferential interpretation I.

Definition 5. Given a preferential interpretation I = (S, X)) of an argumentation graph G, the
truth degree of an implication o — 3 wrt. I is defined as: (o — B)! = infyex(o(a) > a(B)).

As a special case, for conditional implications, we have that: (T(a) — pB) =
infyex(o(T(a)) > o(f)). Note that the interpretation of an implication (and of a conditional
implication) is defined globally wrt a preferential interpretation I, as it is based on the whole set
of labellings ¥ in I = (S, ¥), in agreement with the interpretation of conditionals [31, 28].

We can now define the satisfiability of a graded implication in an interpretation I = (S, %).

Definition 6. Given a preferential interpretation I = (S, ) of an argumentation graph G, I
satisfies a graded implication o — 3 > [ (written I =« — B > 1) iff (a — B)! > I, I satisfies
a graded implication o — 3 < u (written I = o — 3 < u) iff (a — B)! <.

Example 5. As mentioned before, for the weighted argumentation graph in Figure 1, there
are 36 labellings in case n = 5. The following graded conditionals are among the ones
satisfied in the interpretation: T(Ay N Ay N = A3) — Ag > 1 (with 4 preferred labellings),
T (A1 AN Ag) — Ag > 4/5 (12 preferred labellings), T(Ag) — A1 N Ay > 4/5 (I preferred
labelling). On the other hand, for instance, the strict implication Ag — Ay N\ A > 1/5 does not
hold.

Notice that the valuation of a graded implication (e.g., « — 8 > [) in a preferential interpreta-
tion I is two-valued, that is, either the graded implication is satisfied in [ (i.e., [ = a — 8 > 1)
oritisnot (i.e., I = v — [ > [). Hence, it is natural to consider boolean combinations of graded
implications, such as (T(A;) — Aa AN Az < 0.7) A (T(A3) — Asg) > 0.6) = (T(A41) —
Ay) > 0.6), and define their satisfiability in an interpretation I in the obvious way, based on the
semantics of classical propositional logic.

When the preferential interpretation J g is finite (contains a finite set of labellings), the satisfia-
bility of graded implications (or their boolean combinations) can be verified by model checking
over the preferential interpretation I, g In the next section, we develop an ASP approach for
defeasible reasoning over an argumentation graph for the -coherent semantics.

It can be shown that one can reformulate the KLLM properties of a preferential consequence
relation in the many-valued setting, following the approach for weighted conditional DLs in [32].



It can be proven that (for the choice of combination functions as in Godel logic) such properties
are satisfied by the set of graded conditionals of the form T'(a/) — /3 > 1, which hold in a given
interpretation I° = (S, X°). A detailed description and the proof will be included in an extended
version of the paper.

4. An ASP Approach for Conditional Reasoning in the
Finitely-valued Case

In this section, we consider the yp-coherent finitely-valued semantics of a weighted argumentation
graph G introduced in Section 2, with domain of argument valuation C,,, for some integer n > 1,
and we describe an ASP approach for reasoning about argumentation graphs. The idea is to
represent a many-valued labelling in ASP as an answer set that encodes the assignment of a value
in C,, to each argument A;. The labelling is encoded by a set of atoms of the form val(a, v),
meaning that - € C), is the acceptability degree of argument a in the labelling.

Answer set candidates are generated by the rule

1{wal(A, V) :val(V)}1 < arg(A).
where facts val(a, v) and arg(a) are given forall v s.t. > € C, and a € A.

Boolean combinations of interest are determined at groundmg time and collected in predicate

arg_comb by means of the rules

arg_comb(impl(Alpha, Beta)) « query(typ(Alpha), Beta, L)

arg_comb(A) < arg_comb(neg(A))

arg_comb(A) < arg_comb(opz (A, B))
where opy stands for and, or, and impl, and the fact query(typ(alpha), beta,l) is used to
represent the query T'(«r) — 8 > -, with alpha and beta given in the form of nested applications
of neg, and, or, and impl.

The valuation of boolean combinations B of arguments is encoded as a predicate eval(B, V).
A rule is introduced for each connective to encode its semantics, based, e.g., on Godel logic with
standard involutive negation (see Example 3), but other choices of combination functions can as
well be considered. Then we have:

eval(A, V') < arg(A),val(A, V).

eval(neg(A),n — V) < arg_comb(neg(A)), eval(A, V).

eval(and(A, B), Qmin(V1, V2)) < arg_comb(and(A, B)), eval(A, V1), eval(B, V2).

eval(or(A, B), Qmaz(V1, V2)) < arg_comb(or(A, B)), eval(A, V1), eval(B, V2).

eval(zmpl(A B),n) < arg_comb(impl(A, B)), eval(A, V1), eval(B, V2), V1 < V2.

eval(impl(A, B), V2) < arg_comb(impl(A, B)), eval(A, V1), eval(B, V2), V1 > V2.
where @min and @max are @-terms respectively returning the minimum and maximum of their
arguments.

To enforce the p-coherent semantics we need to encode condition (2). Even if the computation
of the weighted sum and of ¢ is expressible in terms of ASP rules, the evaluation of such rules
would eventually materialize all combinations of truth degrees for all attacker arguments, which is
practically feasible only if the maximum in-degree is bounded by a small number. Moreover, such
ASP rules would require to represent weights on the graph in terms of integers, hence introducing



an approximation. We opted for an alternative approach powered by the Propagator interface of
the clingo API [33]. In a nutshell, we defined a custom propagator that enforces the condition

L <« arg(A),eval(A, V),V # @o(V/n).
for all arguments A € A s.t. R~ (A) # (. The propagator takes as input the argument A, and
is initialized after the grounding phase, when it can identify all attackers/supporters of A, the
associated weights, and set watches for the boolean variables that clingo associates to the instances
of predicate eval. After that, whenever a watched boolean variable is assigned true or unrolled to
undefined, the propagator is notified and keeps track of the change. If all attackers/supporters
of A have been assigned a truth degree, then the propagator can infer the truth degree of A, and
provide an explanation to clingo for such an inference in terms of a clause. Similarly, if A has
already a truth degree and all attackers/supporters of A have been assigned a truth degree which is
incompatible with that of A, then the propagator can report a conflict, and provide an explanation
to clingo for such a conflict in terms of a clause.

The preferential interpretation I3, = (Cy, ) which is built over the (finite) set 3. of all the -
coherent labellings of the argumentation graph G in the finitely-valued semantics, is represented
by all resulting answer sets.

Regarding the evaluation of the query T(«a) — 8 > %, it is satisfied over the preferential
interpretation /, é if in all the labellings o that maximize the value of o(«) wrt all labellings in
¥, it holds that o(T(«)) > o(5) > % That is, one has to verify that in all the answer sets M
that maximize the value of V' such that eval(a, V') € M, if eval(a, v1), eval(B,v2) € M, then
vl < w2 orwv2 > [ also hold in M. Equivalently, one can search for a counterexample, i.e. an
answer set that maximizes the evaluation v1 of «, and such that, if v2 is the evaluation of [,
vl > v2 and v2 < [. The following weak constraints are used:

i~ query(typ(Alpha), _, ), eval(Alpha, V). [-1QV + 2, Alpha, V]

:~ query(typ(Alpha), Beta, L), eval(impl( Alpha, Beta), V'), V < L.

[-1@1, Alpha, Beta, V, L]
The first weak constraint expresses a strong preference for answer sets where the evaluation of «
is maximal, given that the presence of eval(Alpha, V') has priority V' + 2, then increasing with
V. Among such answer sets, the second weak constraint expresses a preference for a witness
that the query is not satisfied. Note that also in such answer sets the evaluation of T'(a) —
coincides with the one for & — 3 (because the evaluation of T(«) and « coincide for typical «
labellings), and the second weak constraint can therefore use eval(impl(Alpha, Beta), V).

Our implementation is available at https://github.com/alviano/valphi, and it can be installed
and used in a Python 3.10 environment by running the following commands:

pip install valphi
python -m valphi -t file.graph -v file.valphi solve
python -m valphi -t file.graph -v file.valphi query "query"

where file.graph and file.valphi are files encoding a weighted argumentation graph G and the
activation thresholds for ¢ (where the value of ¢ changes from some % to HTl), and query is
a string encoding a gradual implication. Graph files start with the preamble #graph, and then
list the attack relation as space-separated triples of the form attacker attacked weight, where
attacker and attacked are argument indices (starting by 1) and weight is a real number. The
graph shown in Figure 1 is encoded as


https://github.com/alviano/valphi

~ Input

#4.Graph n 9 o "
1 attack(al,a4,"1.5").
Height 600 o  Predicate g m 2 | attack(a2,ad,"1.0").
3 attack(a3,a4,"-1.5").
4 attack(a4,a5,"-1.6").
5 attack(a4,a6,"2.5").
6 attack(a5,a6,"0.8").
7 attack(a6,a2,"1.5").
8 eval(al,5,5).
9 eval(a2,4,5).

10 eval(a3,o,5).
11 eval(a4,5,5).
12 eval(as,1,5).
13 eval(a6,5,5).

Output

al
a2
a3
ad
a5
a6

AU A WwN R
[CISNE I N
[CIV U IC IRV IV |

Figure 2: The weighted argumentation graph from Figure 1 and one of its ¢-coherent labelling
shown by the VALPHI system via a shareable ASP Chef link (https://github.com/alviano/asp-chef).
Arguments are colored according to their value: blue if 1, red if 0, and intermediate shades for
intermediate values. Attacks are shown in red, and supports in blue, with shades corresponding
to magnitudes.
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Thresholds files are sequences of real numbers, one per line. A query T(«) — 3 > [ is encoded
by the string o/ #'# >= #1, where o/ and [ are the terms representing « and 3. For example,
T(A; N Ay A —A3) — Ag > 1 is encoded as and (al,and (a2, neg(a3))) #a6#>=#1.0.
Finally, solutions can be shown in an interactive graph visualization by adding the command-line
flag -—show-in-asp-chef; an example is shown in Figure 2.

5. Towards a Probabilistic Semantics for Gradual
Argumentation

When the domain of argument valuation is the interval [0, 1], the definition of a preferential
interpretation I° associated to the gradual semantics S of a weighted argumentation graph also
suggests a probabilistic interpretation of the weighted graph, inspired by Zadeh’s probability
of fuzzy events [20]. The approach has been previously considered in [34] for providing a
probabilistic interpretation of Self-Organising Maps [35] after training, by exploiting a recent
characterization of the continuous t-norms compatible with Zadeh’s probability of fuzzy events


https://github.com/alviano/asp-chef

(Pz-compatible t-norms) by Montes et al. [36]. In this section we explore this approach for
weighted argumentation graphs, showing that it relates to the probabilistic semantics presented
by Thimm [21]. We discuss some advantages and drawbacks of the approach.

Let X be the set of labellings of G in a gradual argumentation semantics S with domain of
argument valuation in [0, 1], and /, (S; an associated preferential interpretation. The probabilistic
semantics we propose is inspired by Zadeh’s probability of fuzzy events [20], as one can regard
an argument A € A as a fuzzy event, with membership function ps : ¥ — [0,1], where
ua(o) = o(A). Similarly, any boolean combination of arguments « can as well be regarded as
a fuzzy event, with membership function p,(0) = o(«), where the extension of labellings to
boolean combinations of arguments and to typicality formulas has been defined in Section 3.

We restrict ourselves to a Pz-compatible t-norm ® [36], with associated t-conorm & and
the negation function ©x = 1 — x. For instance, one can take the minimum t-norm, product
t-norm, or Lukasiewicz t-norm. Given 1, g = (S, X), we assume a discrete probability distribution
p: X — [0, 1] over X, and define the probability of a boolean combination of arguments « as

follows:
P(a) =Y o(a) p(o) )
o€y

For a single argument A € A, when labellings are two-valued (that is, o(A) is 0 or 1), the
definition above becomes the following: P(A) = }_ .5 5(4)=1 P(c), Which relates to the
probability of an argument in the probabilistic semantics by Thimm in [21]. Indeed, in [21]
the probability of an argument A in Arg is “the degree of belief that A is in an extension",
defined as the sum of the probabilities of all possible extensions e that contain argument A,
ie, P(A) =3 scccarg P(€), where an extension e € 2479 is a set of arguments in Arg, and
p(e) is the probability of extension e. Here, on the other hand, we are considering many-valued
labellings o assigning an acceptability degree o(A) to each argument A, so it is not the case that
an argument either belongs to an extension (a labelling) or it does not.

Following Smets [37], we let the conditional probability of o given 3, where o and [ are
boolean combinations of arguments, to be defined as

P(alB) = P(aAp)/P(B)

(provided P(/3) > 0). As observed by Dubois and Prade [38], this generalizes both conditional
probability and the fuzzy inclusion index advocated by Kosko [39].

Let us extend the language LT by introducing a new proposition {c}, for each o € ¥, and the
valuations o to such propositions by letting: o({c}) = 1 and o/({c}) = 0, for any ¢’ € X such
that o’ # o. It can be proven (see [34]) that

P(A[{o}) = o(A).

The result holds when the t-norm is chosen as in Godel, Lukasiewicz or Product logic. In
such cases, o(A) can be interpreted as the conditional probability that argument A holds, given
labelling o, which can be regarded as a subjective probability (i.e., the degree of belief we put
into A when we are in the state represented by labelling o).

Under the assumption that the probability distribution p is uniform over the set 3 of labellings,
it holds that P(a|f) = M(a A 3)/M(B) (provided M () > 0), where M (o) = > 5 0(A)



is the size of the fuzzy event o. For a finite set of labellings ¥° = {01,...,0,,} wrt. a given
semantics .S, assuming a uniform probability distribution, we have that P(«a) = M (a)/m =
(o1(a) + ...+ om(@))/m.

Example 6. Reconsidering the example in Figure 1, for the p-coherent semantics with truth
degree set Cs, assuming a uniform probability distribution, we get: P(A;) = 0.5, P(A2) = 0.777,
P(A3) =0.483, P(A4) = 0.644, P(A5) = 0.222, P(Ag) = 0.755.

Furthermore, P(Al VAN AQ’AG) = 0.618 and P(A1 A Ao A —\A3‘A6) = 0.397, while P(Al A\
A2|T(A6)) = 0.8 and P(Al A Ag A —|A3‘T(A6)) =0.8.

While the notion of probability P defined by equation (4) satisfies Kolmogorov’s axioms for
any Pz-compatible t-norm, with associated t-conorm, and the negation function 8z =1 — =
[36], there are properties of classical probability which do not hold (depending on the choice of
t-norm), as a consequence of the fact that not all classical logic equivalences hold in a fuzzy logic.

For instance, the truth degree of A A —A in a labelling o may be different from 0 depending on
the t-norm (e.g., with Godel and Product t-norms). Hence, it may be the case that P(A A —A) is
different from 0. Similarly, it may be the case that P(AV—A) is different from 1 (e.g., with Goedel
t-norm) and that P(A|A) = P(A A A)/P(A) is different from 1 (e.g., with Product t-norm).
While P(A) + P(—A) = 1 holds (due to the choice of negation function), P(A|B) + P(—A|B)
may be different from 1.

In spite of the simplicity of this approach, on the negative side, some properties of classical
probability are lost. Hence, we can consider the proposal in this section as a first step towards a
probabilistic semantics for gradual argumentation.

6. Conclusions

In this paper we have developed an approach to define a many-valued preferential interpretation
of a weighted argumentation graph, based on some gradual argumentation semantics. The
approach allows for graded (strict or conditional) implications involving arguments and boolean
combination of arguments (with typicality) to be evaluated in the preferential interpretation I°
of the argumentation graph, in a given gradual argumentation semantics .S. It can be proven
that the set of graded conditionals of the form T(a) — (# > 1, which are satisfied in I°,
satisfy the KLLM postulates of a preferential consequence relation [31]. We have considered a
finitely-valued version of the (-coherent argumentation semantics in [14], for which an Answer
set Programming approach can be used for the verification of graded conditionals. For the
gradual semantics with domain of argument valuation in the unit real interval [0, 1], the paper
also proposes a probabilistic argumentation semantics, which builds on a gradual semantics S
and on the preferential interpretation . g

Concerning the relationships between argumentation semantics and conditional reasoning,
Weydert [1] has proposed one of the first approaches for combining abstract argumentation with
a conditional semantics. He has studied “how to interpret abstract argumentation frameworks
by instantiating the arguments and characterizing the attacks with suitable sets of conditionals
describing constraints over ranking models". In doing this, he has exploited the JZ-evaluation



semantics, which is based on system JZ [40]. Our approach aims to provide a preferential and
conditional interpretation for some gradual argumentation semantics.

A correspondence between Abstract Dialectical Frameworks [2] and Nonmonotonic Condi-
tional Logics has been studied in [3], with respect to the two-valued models, the stable, the
preferred semantics and the grounded semantics of ADFs. Whether our approach can be extended
to ADFs will be subject of future investigation.

In [4] Ordinal Conditional Functions (OCFs) are interpreted and formalized for Abstract
Argumentation, by developing a framework that allows to rank sets of arguments wrt. their
plausibility. An attack from argument a to argument b is interpreted as the conditional relationship,
“if a is acceptable then b should not be acceptable”. Based on this interpretation, an OCF inspired
by System Z ranking function is defined. In this paper we focus on the gradual case, based on a
many-valued logic.

In Section 5, we have proposed a probabilistic semantics for weighted argumentation graphs,
which builds on the gradual argumentation semantics in Section 2 and on their preferential
interpretation, and is inspired by Zadeh’s probability of fuzzy events [20]. We have seen that the
proposed approach relates to the probabilistic semantics by Thimm [21] and it allows the truth
degree o(A) of an argument A in a labelling o to be regarded as the conditional probability of A
given 0. On the one hand, our approach does not require to introduce a notion of p-justifiable
probability function, as we define the probability of an argument with respect to the set of
labellings ¥ of the weighted graph G in a given gradual semantics. On the other hand, as we
have seen, some classical equivalences may not hold (depending on the choice of combination
functions), and some properties of classical probability may be lost. This requests for further
investigation. Alternative approaches for combining conditionals and probabilities, such as the
one proposed recently by Flaminio et al. [41], might suggest alternative ways of defining a
probabilistic semantics for gradual argumentation.

In the paper, we have adopted an epistemic approach to probabilistic argumentation, and we
refer to [42] for a general survey on probabilistic argumentation. As a generalization of the
epistemic approach to probabilistic argumentation, epistemic graphs [22] allow for epistemic
constraints, that is, for boolean combinations of inequalities, involving statements about prob-
abilities of formulae built out of arguments. While so far we only allow for combining graded
conditionals, this is a possible direction to extend the probabilistic semantics in Section 5.
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