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Abstract
Argumentation is used to make important decisions based on the information available. We tackle the
question of whether it is possible to automatically extract argumentation from a given set of documents
to justify a given claim. We propose a framework that (i) extracts an argumentation structure from a
given set of documents using Large Language Models (LLMs), (ii) represents it as an answer set program,
(iii) and then uses the answer set program to prove the claim. We use a semantics-guided approach that
leverages the FrameNet lexical database to generate sub-claims that are anchored to the concepts related
to the claim. We demonstrate the efficacy of our method with an example.

1. Introduction

In argumentation, premises (i.e. evidence or assumptions) along with arguments allow us to
prove asserted claims [1, 2, 3, 4]. Arguments help connect premises to the claim. Justifying
claims is fundamental to philosophy, rhetoric, and sciences. Argumentation is also crucial for
decision-making in areas such as systems assurance. Recent progress in AI raises the question:
how well can we automate such decision-making by analyzing argumentation?

Argumentation has been an active area of research in many research communities, including
Natural Language Processing (NLP), knowledge representation, and system assurance. Previous
works on argument mining [2] and argument generation [5] typically focus on extracting or
generating argument structures from documents where an argument has a claim and several
premises. Each premise can be linked together in different ways to ultimately support or attack
the claim. A common method that has been used in prior research to produce premises has
been by searching through supporting documents. However, such a search for information is
not motivated by any specific direction. Hence, the arguments tend to be only as strong as the
evidence found. The domain for arguments considered also tended to be limited in previous
research since there was a need to procure and train the machine learning models on enough
data. Recent advances in LLMs provide a unique opportunity to develop better solutions to
these problems.

Argumentation structures can potentially be complex [2]. Given a claim, several premises
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may support or attack it. Each of these premises may be either supported or attacked by other
premises, in turn. The relations between these premises and claims might be of several types
(linked, divergent, convergent, etc.). This chain of reasoning may extend to multiple levels and
the entire argumentation structure needs to be processed accurately to determine if the claim
holds.

Let’s consider how a human expert would go about analyzing the argumentation in a report.
The person would first extract the main claim in the report and think of ways or ideas that
can make the claim either true or false (false meaning erroneous). Based on these ideas, the
expert would then go through supporting documents to search for evidence, counter-evidence,
inferences, assumptions, etc. Based on this exploration, he/she might go through deeper levels
of similar examination. The expert finally reasons using all the information found to assess if
the claim holds.

Inspired by this observation, we propose a methodology for automated argument analysis.
Given a report and its supporting documents, our approach extracts the argumentation structure
using a semantics-guided approach. We employ Large Language Models (LLM) [6] for sub-
claim generation and evidence extraction. We anchor the sub-claims generated to the relevant
concepts using frame elements extracted from FrameNet [7]. This ensures that the LLM covers
all the different aspects related to the claim. The resulting argumentation structure is encoded
as an answer set program [8] that can be processed to reliably return the truth value of the
claim in the argumentation. We demonstrate our method using a well-known controversy:
‘Culpability of Russia in the downing of MH17 Malaysian Airlines flight’.

2. Background

2.1. Argumentation Structure

As mentioned earlier, argumentation research spans many areas. Different areas use different
terminology. In this paper, we follow the terminology used in the Claim-Assurance-Evidence
(CAE) framework as realized in Bloomfield and Rusbhy’s Assurance 2.0 methodology [4]: a
claim is a conclusion we wish to draw given arguments and premises. Arguments correspond to
rules (conditional truths) and premises correspond to facts (unconditional truths) or assumptions.
Counter evidence is called a defeater. A defeater can also be thought of as an exception to a default
[9, 10]. An argument decomposes a claim into a series of subclaims and defeaters. Note that a
subclaim or a defeater may have its own underlying logic similar to a claim. The argumentation
terminology of Assurance 2.0 has close correspondence to answer set programming [8]: a
claim corresponds to a query goal, an argument to a rule, premise to a fact or an abducible
(assumption) [10], and a defeater to a negation-as-failure goal.

2.2. Large Language Models

Until recently, deep learning models have been applied to NLP tasks by fine-tuning them on
task-specific datasets [11]. This fine-tuning process involves providing a model with a large
number of input-output examples so that it learns to generate the correct output when given
a new input at test time. In 2020, Brown et al. introduced a Large Language Model (LLM)



called GPT-3 [6] with approximately 175 billion parameters and trained on a massive corpus
of filtered text from the internet. During training, the model learns to predict the next token
given a sequence of input tokens. In order to perform this task correctly, it needs to learn the
underlying language, and also the commonsense knowledge involved. This arms the model to
generate human-like text. With the advent of Large Language Models, the training paradigm
changed to teaching a language model any arbitrary task using just a few demonstrations, called
in-context learning. GPT-3 is such an LLM that is able to perform competitively on several tasks
such as question-answering, semantic parsing [12], and machine translation.

When further trained using reinforcement learning to align model outputs to human pref-
erences, such models are able to follow instructions and perform natural language tasks even
without any demonstrations [13]. This is the basis for the well-known chatbot, ChatGPT [14].

2.3. FrameNet

FrameNet is a lexical database of English that focuses on certain semantic concepts called ‘frames’
and the corresponding words (lexical units) and semantic roles (frame elements) involved. For
example, the verb ‘arrest’ has two frames: Arrest and Cause_to_end. The 𝐴𝑟𝑟𝑒𝑠𝑡 frame has
elements such as Suspect (the person taken into custody), Authorities (the ones taking the suspect
into custody), Charge (the category in the legal system under which the person is charged), and
Offense (the reason for which the suspect is arrested). Hence, knowing the frames a sentence
uses, helps to understand and connect the different concepts involved. Each frame element also
contains an annotated sentence describing how it is used. In total, FrameNet contains 1,200
semantic frames, 13,000 word senses, and around 200,000 manually annotated sentences [7].

In our work, we use FrameNet to gather all the concepts in a sentence. The frame elements
of the lexical units in a sentence tell us what aspects of the event we should look for. For
example from the frame ‘shoot down’ that is extracted from the sentence ‘Russia is responsible
for shooting down the flight MH17’, we can gather the frame elements ‘Agent’, ‘Patient’,
‘Instrument’, etc. Using these elements we can direct the search to look for evidence linking the
group that launched the attack with Russia (Agent), evidence to show that the flight was indeed
MH17 (Patient) and also that the missile used in the attack can be linked to Russia (Instrument).

2.4. Answer Set Programming

ASP is a logic-based paradigm for knowledge representation and reasoning. Answer set pro-
gramming (ASP) [8, 9], a paradigm based on logic programming, incorporates reasoning with
incomplete information, assumption-based reasoning, as well as integrity constraints. ASP
extends logic programming with negation-as-failure based on the stable model semantics [15].
Negation-as-failure (NAF) allows ASP to perform non-monotonic reasoning. Non-monotonic
reasoning is essential for modeling commonsense reasoning since as our knowledge changes,
i.e., as more things become known from being unknown, the conclusions we can draw may
change. For example, a conclusion that could have been drawn earlier may have to be retracted.
ASP is a highly expressive paradigm that can elegantly express complex reasoning methods used
by humans such as default reasoning, deductive and abductive reasoning, counterfactual rea-
soning, and constraint satisfaction [16, 9]. As mentioned earlier, there is a one-to-one mapping



between argumentation structures and ASP: a claim corresponds to a query, a premise to a fact
or assumption, an argument to an ASP rule, and a defeater to a NAF goal. Assumption-based
arguments can also be represented in ASP since ASP naturally supports abductive reasoning.

We use the s(CASP) goal-directed ASP engine [17] for executing answer set programs. The
justification tree [18] generated by s(CASP) is crucial to our efforts.

3. Related Work

There is significant prior research in mining arguments in text data [2]. It has been applied
to domains ranging from student essays [19] to law [20] documents. The typical method to
extract the argumentation structure employed is to identify the text span corresponding to the
argument components and then link them together using a classifier that determines if each pair
of these components are related and by which type of relation (support/attack). Our method
differs entirely since we use a semantics-guided approach for generating sub-claims. The next
step used to extract evidence using the sub-claims is also different since we use an LLM that is
able to identify complex premises that may not even be contiguous in the document.

The line of research in generating arguments is also relevant to our work. Argument gen-
eration models usually use an LSTM [5] for argument component generation which may also
make use of an additional content planning model aided by external knowledge (fetched from a
database such as Wikipedia). In a closer approach, Schiller et al.[21] use a pre-trained language
model called CTRL to generate arguments, controlled using control codes (this set of codes is
limited and learned beforehand). Our approach for sub-claim generation uses an LLM that can
be applied to any domain and is capable of using instruction directly to guide generation.

Our final step of using ASP to analyze arguments has precedent. ASP-based methods have
been developed to implement arbitrary argument structures [1]. Since we use semantics-guided
sub-claim generation, the ASP-based argumentation structure processing we employ is much
simpler.

4. Methodology and Experiments

Our methodology has primarily two components:

1. Extracting the argument structure from the documents.
2. Encode the argument structure into an ASP program.

For extracting the argument structure (step 1), we use LLMs. This extraction is guided by
the semantics of the concepts involved in the claim. An LLM is then used to generate sub-
claims using these concepts. Using these, we use the LLM again for extracting evidence and
defeaters from supporting documents. We use the s(CASP) system to process the argumentation
constructed (step 2).

4.1. Creating the Argument Structure

Our approach works as follows. We first extract a claim from the document. Then we generate
sub-claims that would support a given claim. We next find supporting evidence for these sub-



claims from the documents. Similarly, we also generate defeaters (exceptions) to the sub-claims
using an LLM. Given all the supporting evidence found for sub-claims, we repeat the process for
a few more levels (generating sub-sub-claims, etc., and finding supporting evidence for them).
Likewise, we find a defeater to the defeater using an LLM. The entire process is also repeated
for the negated claim to check if the counterclaim holds. Each evidence found to support the
counterclaim is essentially a defeater for the main claim. Each of these steps is explained below
in more detail. We conduct experiments on articles on the topic of Malaysian Airlines flight
MH17 being shot down.

4.1.1. Claim Extraction

The claim can be extracted using an LLM from the document. We simply use the prompt: What
is the single main claim of the following article? Using this prompt, we get the following claim :

Russia is responsible for shooting down Malaysian Air Flight MH17 since the missile
debris had a Russian signature on them.

4.1.2. Sub-claim Generation

Using the claim extracted, we need to generate sub-claims. Our experiments revealed that using
LLMs directly for this task is difficult to control and might miss out on important directions
to generate such sub-claims. Hence, we use FrameNet, a human-curated lexical database, to
anchor the sub-claim to the concepts in the claim. The steps involved in support sub-claim
generation are as follows:

1. Identify the main verbs in the claim. Here we use NLTK to identify all the verbs in the
claim and remove stop verbs. Stop verbs are a pre-defined set of verbs, such as ‘be’, ‘might’,
‘did’, etc., which we believe are too general and do not carry much information.

2. The main verbs are then lemmatized and matched with verbs available on FrameNet.
3. Each verb on FrameNet has multiple frames. Each frame denotes a different way the verb

may be used. Hence we need to identify which frame is the correct frame for the verb in
the claim. Using the claim sentence and the set of frames, we use an LLM to determine
the correct frame. Our experiments reveal that LLMs identify the correct frame with high
accuracy.

4. Once we have the frame, we have multiple frame elements that represent all the semantic
roles in the frame. We use these elements along with the original claim to generate the
sub-claims.

For the flight example, the main verb extracted is ‘shoot down’ and the frame is ‘Downing’.
The different frame elements involved are:

• Agent: The Agent forces the Patient to come to the ground.
• Patient: The Patient is the entity that is being forced to the ground.
• Depictive: Depictive phrase describing the actor of an action.
• Result: The Result of causing the Patient to come to the ground.



• Means: An act performed by an Agent that enables them to force the Patient to the
ground.

• Place: The location at which the event takes place.
• Result: The Result of causing the Patient to come to the ground.
• Time: The time at which the event takes place.

Using these frame elements, we prompt the LLM to generate the following sub-claims below. To
establish the claim, these sub-claims relating to agent, patient, depictive, etc., must be proved.

Agent: Evidence connecting Russian military or government officials to the ordering or execu-
tion of the missile strike, such as intercepted communications or witness testimony.

Patient: Evidence linking the missile debris to the downed aircraft, including forensic analysis
of the wreckage and comparisons to other known missile fragments.

Depictive: Evidence of the type and model of missile used in the attack, and whether it matches
any known Russian missile systems.

Result: Evidence of the damage caused by the missile strike, including autopsy reports and
analysis of the debris field.

Means: Evidence of how the missile was transported to the launch site, such as satellite imagery
or eyewitness accounts.

Manner: Evidence of any specific instructions or tactics used in the attack, which could point
to a specific military unit or command structure.

Time_and_Place: Evidence of the exact time and location of the missile launch, including
satellite imagery, radar data, and eyewitness testimony.

Cause: Evidence of the motive behind the attack, such as political tensions between Russia
and Ukraine or revenge for previous incidents.

Instrument: Further analysis of the missile debris, including its manufacturing and main-
tenance history, to determine its origin and any connections to Russian military or
government agencies.

4.1.3. Evidence Extraction for Sub-claims

Once we have the sub-claims, we simply use LLM to find if any evidence exists to support each
one of them in the supporting documents. If such a match exists, we extract it. If not, the LLM
returns the response that there is no close match. Testing this approach for the ‘Agent’ frame
element sub-claim above returns the match:

The article provides evidence connecting Russian military officials to the missile
strike, such as intercepted mobile-phone conversations allegedly between two of
the defendants and senior Russian officials.

Supporting evidence for other frame elements can be similarly generated.



4.1.4. Sub-claim Defeater Generation

Sub-claims can be generated for what might be defeaters or exceptions to the claim and sub-
claims in a similar way. For this task, we use LLM by asking it to generate an exception that
makes the claim false for a given support sub-claims. For the support sub-claim given above,
we get the following exception sub-claim:

However, the intercepted communications or witness testimony could provide
evidence that suggests the involvement of higher-ups in the Russian government
or military, even if the missile strike was carried out by a rogue faction or third
party.

In a similar fashion, we can find evidence for the exception to the exception in the documents.

4.2. Converting Argument Structure to ASP

The argument structure is now put together as an ASP program. Each of the supporting sub-
claim generated is a term in the program. The truth value of each term depends on if evidence
has been found to corroborate it. After determining the truth value of each term, the program
can be run to determine if the claim is true.

The general structure of the program is explained here.
claim(T) :- d1(D1), d2(D2), .., d𝑚(D𝑚), not -claim(Tnot).

where claim(T) represents the claim (T represents the text corresponding to the claim), each
d𝑖 represents a subclaim (D𝑖. We may be able to prove the counterclaim (-claim), in which
case our positive claim cannot hold. Therefore, we must include not -claim(Tnot) in the
body of the argument, where Tnot represents the text supporting the counterclaim. Next, we
will recursively check the sub-claims pertaining to these frame elements. These sub-claims
about the frame elements correspond to the d𝑖’s. For each such sub-claim d𝑖, we will first find
support for it (supporting evidence), then exceptions to it (contrary evidence), then, finally, we
will find exceptions to the exceptions to it (evidence contradicting the contrary evidence). The
exceptions to d𝑖’s and exceptions to exceptions to d𝑖’s will produce multiple pieces of additional
evidence. In other words, we refine d𝑖’s as follows:
d𝑖(D𝑖) :- subclaim_frame_element𝑖(D𝑖).
subclaim_frame_element𝑖(D𝑖) :- subclaim_support𝑖(D𝑖), not

exception𝑖(E𝑖).
exception𝑖(E𝑖) :- support_exception(E𝑖), not exception_to_-

exception(X𝑖).
Note that we can think of the rule for sub-claim as a default rule [9], since subclaim_-
support𝑖(D𝑖) can be viewed as the default supporting-justification for the sub-claim and
support_exception𝑖(E𝑖) as the exception to the default.

Finally, we determine if the counterclaim (represented as -claim(Tnot)) holds, where Tnot
is the text corresponding to the counterclaim. The counterclaim is defined as:
-claim(Tnot) :- dc1, dc2, ..., dc𝑝.



The counterclaim will be established in a manner similar to the claim. For extracting the text
corresponding to support for the sub-claim, the exception to the sub-claim, the exception to the
exception to the sub-claim, and the counterclaim, we make use of a large language model [22].

Once all the available evidence has been found, we can run the program to determine
if the claim (or the counterclaim) is true. If the claim is true, then s(CASP)’s justification
facility can be used to generate the whole argumentation case for proving the claim. If the
counterclaim is true, then s(CASP)’s justification facility can be similarly used to generate
the whole counter-argument case. If neither the claim, nor the counterclaim is provable, then
the claim is unsupported, and proof of the lack of support for the claim can be generated by
generating the justification for the negated claim as well as the negated counterclaim. We show
a fragment of the argument generated to prove the claim “Russia is responsible for shooting
down Malaysian Airline MH17 over Ukraine." We only show the argument development for one
frame element (agent) due to lack of space. The document used for generating this argument
fragment consists of an Economist magazine article about the downing of Malaysian Airlines
flight MH17 (Mar 8th, 2020 issue). The argument contains the supporting premise, the exception
to the premise, and the exception to the exception. Arguments for other frame elements can be
likewise automatically generated.

The main action is shoot, which in this case means downing. Downing has the
following semantic concepts associated with it: Agent, Patient, Depictive, Result,
Means, Place, Result, Time, Cause, and Instrument.

Agent: Is there evidence connecting Russian military or government officials to
the ordering or execution of the missile strike, such as intercepted communications
or witness testimony? The article provides evidence connecting Russian military
officials to the missile strike, such as intercepted mobile-phone conversations
allegedly between two of the defendants and senior Russian officials. It is possible
that a third party or a rogue faction within the Russian military or government was
responsible for shooting down the plane without the knowledge or authorization of
higher-ups in the Russian government. However, the intercepted communications
or witness testimony could provide evidence that suggests the involvement of
higher-ups in the Russian government or military, even if the missile strike was
carried out by a rogue faction or third party.

5. Conclusion

In this paper, we propose a method to automatically prove claims where the claim and the
arguments for proving the claim are embedded in natural language documents. Our approach
uses LLMs to extract both the claim and the argument structure from these documents. We use
a semantics-guided process to achieve this goal. Once the argument structure is extracted, it is
represented using ASP. The ASP code can then be run under the s(CASP) system to generate
the whole proof (in a natural language) for establishing the claim. We demonstrate our method
using an example related to the downing of flight MH17 over Ukraine. Our experiment shows
that the approach works reasonably well for such problems. Our future plan is to apply our



method to more complex examples, as well as develop a tool to automatically generate the
argumentation case for a claim, if it is proved or, for the counterclaim if it is disproved.
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