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Abstract

Extensions of Answer Set Programming with language constructs from temporal logics, such as temporal

equilibrium logic over finite traces (TEL𝑓 ), provide an expressive computational framework for modeling

dynamic applications. In this paper, we study the so-called past-present syntactic subclass, which consists

of a set of logic programming rules whose body references to the past and head to the present. Such

restriction ensures that the past remains independent of the future, which is the case in most dynamic

domains. We extend the definitions of completion and loop formulas to the case of past-present formulas,

which allows capturing the temporal stable models of a set of past-present temporal programs by means

of an LTL𝑓expression.

1. Introduction

The representation and reasoning on dynamic scenarios is considered a central problem in

the areas of Knowledge Representation [1] (KR) and Artificial Intelligence (AI). Several formal

approaches and systems have emerged in order to introduce non-monotonic reasoning features

in scenarios where the formalisation of time is fundamental. Such variety of approaches goes

from (non-monotonic) temporal logics [2, 3, 4], to a calculi for reasoning about actions and

change [5] or a combination of both approaches [6].

In the area of Answer Set Programming [7] (ASP), former approaches to temporal reasoning

use first-order encodings [8] where the time is represented by means of a variable whose value

comes from a finite domain. The main advantage of those approaches is that the computation

of the answer sets of the previous approaches can be achieved via incremental solving [9].

Their downside is that they require an explicit representation of time points. However, their

pragmatic advantages, such as a rich (static) modeling language and readily available solvers,

so far seem to often outweigh the firm logical foundations of temporal reasoning via modal

temporal logics [10].

In order to extend the ASP syntax with connectives from modal temporal logics, more

precisely Linear Time Temporal Logic [11] (LTL), Temporal Equilibrium Logic [12, 13] (TEL)

was proposed as a temporal extension of Equilibrium Logic [14, 15], the best-known logical

characterisation of the stable models semantics for logic programming [16]. Built upon the
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product of the logic of here-and-there (HT for short) and LTL, TEL is, to the best our knowledge,

the first temporal non-monotonic logic which does not impose any syntactic restriction on the

input language.

In the last years, research on TEL shed lights on several of its properties such as complex-

ity [17], expressiveness [18] or computational methods [19, 20].

Due to the computational complexity of its satisfiability problem (ExpSpace), the problem

of finding tractable fragments of TEL𝑓 with good computational properties have also been a

topic in the literature. Within this context, the so-called splittable temporal logic programs [21]

have been proved to be a syntactic fragment of TEL that allows a reduction to LTL via the use

of Loop Formulas [22].

When focusing on the relation between TEL and incremental solving, temporal logics on

finite traces [23] (LTL𝑓 ) have been shown to be a suitable semantics for incremental solving

of temporal representations. The resulting logic, called Temporal Equilibrium Logic on Finite
traces [24], became the foundations of the temporal ASP solver telingo [25].

In this paper we study a new syntactic fragment of TEL𝑓 , named past-present temporal logic

programs. Inspired by Gabbay’s seminal paper [26], where the declarative character of past

temporal operators is emphasized, the language studied in this paper consists of a set of logic

programming rules whose formulas in the head are disjunctions of atoms that reference the

present, while in its body we allow any arbitrary temporal formula without the use of future

operators.

The use of only past operators in the body has the advantage that, when using incremental

solving, the body of each rule can be seen as a query whose satisfiability can be checked on

the (partial) incremental computation at each step. This advantage allows us to exploit the

advantages of telingo’s API in order to reuse partial computations during the solving in order

increase its performance.

As a contribution, we study the Lin-Zhao theorem [27] within the context of past-present

temporal logic programs. More precisely we show that when the program is tight [28], extending

Clark’s completion [29, 30] to the temporal case suffices to capture the answer sets of a finite

past-present program Π as the LTL𝑓 -models of a temporal formula 𝜙.

We also show that, when the program is not tight, the use of loop formulas is necessary. To

this purpose, we extend the definition of loop formulas to the case of past-present programs

and we prove the Lin-Zhao theorem in our setting. Finally, we also prove the generalisation of

Lin-Zhao theorem in the sense of [22], where the computation of the completion is be replaced

by the consideration of unitary loops.

The paper is organised as follows: in Section 2 we introduce the logic of temporal here and

there over finite traces and its equilibrium counterpart. In Section 3 we introduce the concept

of past-present temporal programs while, in Section 4 we extend the completion property to

the temporal case and we prove that, for the case of tight programs, computing the temporal

completion suffices to characterise the temporal answer sets of a past-present programs in terms

of LTL𝑓 formulas. The non-tight case is studied in Section 5, where we introduce our temporal

extension of loop formulas and extend the results presented in Section 4 to the case of non-tight

programs. Our last contribution, presented in Section 6, shows that temporal completion can

be captured in the general theory of loop formulas by considering unitary cycles. Finally, in

Section 7 we present the conclusions of the paper an we outline some future research lines.



2. Background

For this paper to be self-contained, we first recall the definitions of THT and TEL as in [13]. All

logics treated in this paper share the common syntax of LTL with past operators [2]. We start

from a given set 𝒜 of atoms which we call the alphabet. Then, temporal formulas 𝜙 are defined

by the grammar:

𝜙 ::= 𝑎 | ⊥ | 𝜙1 ⊗ 𝜙2 | •𝜙 | 𝜙1 S 𝜙2 | 𝜙1 T 𝜙2 | ◦𝜙 | 𝜙1 U 𝜙2 | 𝜙1 R 𝜙2

where 𝑎 ∈ 𝒜 is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}. The last six

cases correspond to the temporal connectives whose names are listed below:

Past • for previous
S for since
T for trigger

Future ◦ for next
U for until
R for release

the intended meaning of the previous temporal operators is the following: •𝜙 (resp. ◦𝜙)

means that 𝜙 is true at the previous (resp. next) time point. 𝜙U 𝜓 means that 𝜙 is true until 𝜓
is true, while 𝜙 S𝜓 can be read as 𝜙 is true since 𝜓 was true. For 𝜙R𝜓 and 𝜙T𝜓 the meaning

is not as direct as for the previous operators. 𝜙 R 𝜓 means that 𝜓 is true until both 𝜙 and 𝜓
become true simultaneously or 𝜓 is true forever. 𝜙T𝜓 means that 𝜓 is true since both 𝜙 and 𝜓
became true simultaneously or 𝜓 has been true from the beginning.

We also define several common derived operators like the Boolean connectives ⊤ def
= ¬⊥,

¬𝜙 def
= 𝜙→ ⊥, 𝜙↔ 𝜓

def
= (𝜙→ 𝜓) ∧ (𝜓 → 𝜙), and the following temporal operators:

■𝜙 def
= ⊥ T 𝜙 always before

♦𝜙 def
= ⊤ S 𝜙 eventually before

I
def
= ¬•⊤ initial̂︀•𝜙 def
= •𝜙 ∨ I weak previous

□𝜙 def
= ⊥ R 𝜙 always afterward

♢𝜙 def
= ⊤U 𝜙 eventually afterward

F
def
= ¬◦⊤ final̂︀◦𝜙 def
= ◦𝜙 ∨ F weak next

A (temporal) theory is a (possibly infinite) set of temporal formulas.

Given 𝑎 ∈ N and 𝑏 ∈ N ∪ {𝜔}, we let [𝑎..𝑏] stand for the set {𝑖 ∈ N | 𝑎 ≤ 𝑖 ≤ 𝑏}, [𝑎..𝑏) for

{𝑖 ∈ N | 𝑎 ≤ 𝑖 < 𝑏} and (𝑎..𝑏] for {𝑖 ∈ N | 𝑎 < 𝑖 ≤ 𝑏}. A trace T of length 𝜆 over alphabet

𝒜 is a sequence T = (𝑇𝑖)𝑖∈[0..𝜆) of sets 𝑇𝑖 ⊆ 𝒜. We say that T is infinite if 𝜆 = 𝜔 and finite
otherwise. To represent a given trace, we write a sequence of sets of atoms concatenated with

‘·’. For instance, the finite trace {𝑎} · ∅ · {𝑎} · ∅ has length 4 and makes 𝑎 true at even time

points and false at odd ones.

A Here-and-There trace (for short HT-trace) of length 𝜆 over alphabet𝒜 is a sequence of pairs

(⟨𝐻𝑖, 𝑇𝑖⟩)𝑖∈[0..𝜆) with𝐻𝑖 ⊆ 𝑇𝑖 for any 𝑖 ∈ [0..𝜆). For convenience, we usually represent the HT-

trace as the pair ⟨H,T⟩ of traces H = (𝐻𝑖)𝑖∈[0..𝜆) and T = (𝑇𝑖)𝑖∈[0..𝜆). Given M = ⟨H,T⟩,
we also denote its length as |M| def= |H| = |T| = 𝜆. Note that the two traces H, T must satisfy

a kind of order relation, since 𝐻𝑖 ⊆ 𝑇𝑖 for each time point 𝑖. Formally, we define the ordering

H ≤ T between two traces of the same length 𝜆 as 𝐻𝑖 ⊆ 𝑇𝑖 for each 𝑖 ∈ [0..𝜆). Furthermore,

we define H < T as both H ≤ T and H ̸= T. Thus, an HT-trace can also be defined as any

pair ⟨H,T⟩ of traces such that H ≤ T. The particular type of HT-traces satisfying H = T are

called total.



Definition 1 (THT-satisfaction; [31, 24]). An HT-trace M = ⟨H,T⟩ of length 𝜆 over alpha-
bet 𝒜 satisfies a temporal formula 𝜙 at time point 𝑘 ∈ [0..𝜆), written M, 𝑘 |= 𝜙, if the following
conditions hold:

1. M, 𝑘 |= ⊤ and M, 𝑘 ̸|= ⊥
2. M, 𝑘 |= 𝑝 if 𝑝 ∈ 𝐻𝑘 for any atom 𝑝 ∈ 𝒜
3. M, 𝑘 |= 𝜙 ∧ 𝜓 iff M, 𝑘 |= 𝜙 and M, 𝑘 |= 𝜓

4. M, 𝑘 |= 𝜙 ∨ 𝜓 iff M, 𝑘 |= 𝜙 or M, 𝑘 |= 𝜓

5. M, 𝑘 |= 𝜙→ 𝜓 iff ⟨H′,T⟩, 𝑘 ̸|= 𝜙 or ⟨H′,T⟩, 𝑘 |= 𝜓, for all H′ ∈ {H,T}
6. M, 𝑘 |= •𝜙 iff 𝑘 > 0 and M, 𝑘−1 |= 𝜙

7. M, 𝑘 |= 𝜙 S 𝜓 iff for some 𝑗 ∈ [0..𝑘], we have M, 𝑗 |= 𝜓 and M, 𝑖 |= 𝜙 for all 𝑖 ∈ (𝑗..𝑘]

8. M, 𝑘 |= 𝜙 T 𝜓 iff for all 𝑗 ∈ [0..𝑘], we have M, 𝑗 |= 𝜓 or M, 𝑖 |= 𝜙 for some 𝑖 ∈ (𝑗..𝑘]

9. M, 𝑘 |= ◦𝜙 iff 𝑘 + 1 < 𝜆 and M, 𝑘+1 |= 𝜙

10. M, 𝑘 |= 𝜙U 𝜓 iff for some 𝑗 ∈ [𝑘..𝜆), we have M, 𝑗 |= 𝜓 and M, 𝑖 |= 𝜙 for all 𝑖 ∈ [𝑘..𝑗)

11. M, 𝑘 |= 𝜙 R 𝜓 iff for all 𝑗 ∈ [𝑘..𝜆), we have M, 𝑗 |= 𝜓 or M, 𝑖 |= 𝜙 for some 𝑖 ∈ [𝑘..𝑗)

□

An HT-trace M is a model of a temporal theory Γ if M, 0 |= 𝜙 for all 𝜙 ∈ Γ. We omit

specifying LTL satisfaction since it coincides with THT when HT-traces are total.

Proposition 1 ([31, 24]). Let T be a trace of length 𝜆, 𝜙 a temporal formula, and 𝑘 ∈ [0..𝜆) a
time point.

Then, T, 𝑘 |= 𝜙 in LTL iff ⟨T,T⟩, 𝑘 |= 𝜙. □

Satisfaction of derived operators can be easily deduced, as shown next.

Proposition 2 ([31, 24]). Let M = ⟨H,T⟩ be an HT-trace of length 𝜆 over 𝒜. Given the
respective definitions of derived operators, we get the following satisfaction conditions:

12. M, 𝑘 |= I iff 𝑘 = 0

13. M, 𝑘 |= ̂︀•𝜙 iff 𝑘 = 0 or M, 𝑘−1 |= 𝜙

14. M, 𝑘 |= ♦𝜙 iff M, 𝑖 |= 𝜙 for some 𝑖 ∈ [0..𝑘]

15. M, 𝑘 |= ■𝜙 iff M, 𝑖 |= 𝜙 for all 𝑖 ∈ [0..𝑘]

16. M, 𝑘 |= F iff 𝑘 + 1 = 𝜆

17. M, 𝑘 |= ̂︀◦𝜙 iff 𝑘 + 1 = 𝜆 or M, 𝑘+1 |= 𝜙

18. M, 𝑘 |= ♢𝜙 iff M, 𝑖 |= 𝜙 for some 𝑖 ∈ [𝑘..𝜆)

19. M, 𝑘 |= □𝜙 iff M, 𝑖 |= 𝜙 for all 𝑖 ∈ [𝑘..𝜆)

□

A formula 𝜙 is a tautology (or is valid), written |= 𝜙, iff M, 𝑘 |= 𝜙 for any HT-trace M
and any 𝑘 ∈ [0..𝜆). We call the logic induced by the set of all tautologies Temporal logic of
Here-and-There (THT for short).



Proposition 3 (Persistence). Let ⟨H,T⟩ be an HT-trace of length 𝜆 and 𝜙 be a temporal for-
mula. Then, for any 𝑘 ∈ [0..𝜆), 𝑘 ̸= 𝜔, if ⟨H,T⟩, 𝑘 |= 𝜙 then ⟨T,T⟩, 𝑘 |= 𝜙 (or, if preferred,
T, 𝑘 |= 𝜙). □

As a corollary, we have that ⟨H,T⟩ |= ¬𝜙 iff T ̸|= 𝜙 in LTL.

Given a set of THT-models, we define the ones in equilibrium as follows.

Definition 2 (Temporal Equilibrium/Stable Model). Let S be some set of HT-traces.
A total HT-trace ⟨T,T⟩ ∈ S is a temporal equilibrium model of S iff there is no other H < T

such that ⟨H,T⟩ ∈ S.
The trace T is called a temporal stable model (TS-model) of S. □

3. Past-present programs

Given alphabet 𝒜, a pure past formula 𝜙 is defined by the grammar:

𝜙 ::= 𝑎 | ⊥ | ¬𝜙 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 | •𝜙 | 𝜙1 S 𝜙2 | 𝜙1 T 𝜙2.

where 𝑎 ∈ 𝒜.

Definition 3 (Past-present Program). Given alphabet𝒜, the set of temporal literals is defined
as {𝑎,¬𝑎, •𝑎,¬•𝑎 | 𝑎 ∈ 𝒜}. We refer to its subset {𝑎,¬𝑎 | 𝑎 ∈ 𝒜} as regular literals, and
{•𝑎,¬•𝑎 | 𝑎 ∈ 𝒜} as past literals.

A past-present rule is either:
• an initial rule of form 𝐻 ← 𝐵
• a dynamic rule of form ̂︀◦□(𝐻 ← 𝐵)
• a final rule of form □(F→ (⊥ ← 𝐵) )

where 𝐵 is an pure past formula for dynamic rules and 𝐵 = 𝑏1 ∧ · · · ∧ 𝑏𝑛 with 𝑛 ≥ 0 for
initial and final rules, the 𝑏𝑖 are regular literals, 𝐻 = 𝑎1 ∨ · · · ∨ 𝑎𝑚 with 𝑚 ≥ 0 and 𝑎𝑗 ∈ 𝒜. A
past-present program is a set of past-present rules.

We let I (𝑃 ), D(𝑃 ), and F (𝑃 ) stand for the set of all initial, dynamic, and final rules in a

temporal program 𝑃 , respectively. Additionally we refer to 𝐻 as the head of a rule 𝑟 and to 𝐵
as the body of 𝑟. We let B(𝑟) = 𝐵 and H (𝑟) = 𝐻 for all types of rules above.

For example, let consider the following past-present program 𝑃1:

𝑙𝑜𝑎𝑑← (1)̂︀◦□(𝑠ℎ𝑜𝑜𝑡 ∨ 𝑙𝑜𝑎𝑑 ∨ 𝑢𝑛𝑙𝑜𝑎𝑑← ) (2)̂︀◦□(𝑑𝑒𝑎𝑑← 𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑) (3)̂︀◦□(𝑠ℎ𝑜𝑜𝑡← 𝑑𝑒𝑎𝑑) (4)

□(F→ (⊥ ← ¬𝑑𝑒𝑎𝑑)) (5)

We get I (𝑃1) = {(1)}, D(𝑃1) = {(2), (3), (4)}, and F (𝑃1) = {(3)}. Rule (1) states that

the gun is initially loaded. Rule (2) give the choice to shoot, load, or unload the gun. Rule (3)

states that if the gun is shot while it has been loaded, and not unloaded since, the target is dead.

Rule (4) states that if the target is dead, we shoot it again. Rule (5) ensure that the target is dead

at the end of the trace. For length 𝜆 = 0, 𝑃1 has a unique TS-model {𝑙𝑜𝑎𝑑} · {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}.



4. Temporal completion

Definition 4 (Positive occurence). An occurrence of an atom in a formula is positive if it is in
the antecedent of an even number of implications, negative otherwise.

Definition 5 (Present occurence). An occurrence of an atom in a formula is present if it is not
in the scope of • (previous).

Definition 6 (Dependency graph). Given a past-present program 𝑃 over𝒜, we define its (pos-
itive) dependency graph G(𝑃 ) as (𝒜, 𝐸) such that (𝑎, 𝑏) ∈ 𝐸 if there is a rule 𝑟 ∈ 𝑃 such that
𝑎 ∈ H (𝑟)∩𝒜 and 𝑏 has positive and present occurence in B(𝑟) that is not in the scope of negation.

Definition 7 (Loop). A nonempty set 𝐿 ⊆ 𝒜 of atoms is called loop of 𝑃 if, for every pair 𝑎, 𝑏
of atoms in 𝐿, there exists a path of length > 0 from 𝑎 to 𝑏 in G(𝑃 ) such that all vertices in the
path belong to 𝐿.

We let L(𝑃 ) denote the set of loops of 𝑃 . Due to the structure of past-present programs,

dependencies from the future to the past cannot happen, and therefore there can only be loops

within a same time point. To reflect this, the definitions above only consider atoms with present

occurences. For example, rule 𝑎← 𝑏 ∧ •𝑐 generate the edge (𝑎, 𝑏) but not (𝑎, 𝑐).

Definition 8 (Tight program). A past-present program 𝑃 is said to be tight if I (𝑃 ) and D(𝑃 )
do not contain any loop.

For 𝑃1, we get for the initial rules

G(I (𝑃1)) = ({𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑, 𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, ∅)
L(I (𝑃1)) = ∅

and for the dynamic rules,

G(D(𝑃1)) = ({𝑙𝑜𝑎𝑑, 𝑢𝑛𝑙𝑜𝑎𝑑, 𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, {(𝑑𝑒𝑎𝑑, 𝑠ℎ𝑜𝑜𝑡), (𝑑𝑒𝑎𝑑, 𝑙𝑜𝑎𝑑), (𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑)})
L(D(𝑃1)) = {{𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}}

Definition 9 (Temporal completion). We define the temporal completion formula of an atom
𝑎 in a past-present program 𝑃 over 𝒜, denoted 𝐶𝐹𝑃 (𝑎) as:

□
(︀
𝑎↔

⋁︁
𝑟∈I (𝑃 ),𝑎∈H (𝑟)

(I ∧ 𝑆(𝑟, 𝑎)) ∨
⋁︁

𝑟∈D(𝑃 ),𝑎∈H (𝑟)

(¬I ∧ 𝑆(𝑟, 𝑎))
)︀

where 𝑆(𝑟, 𝑎) = B(𝑟) ∧
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝.

The temporal completion formula of 𝑃 , denoted 𝐶𝐹 (𝑃 ) is

{𝐶𝐹𝑃 (𝑎) | 𝑎 ∈ 𝒜} ∪ {𝑟 | 𝑟 ∈ I (𝑃 ) ∪D(𝑃 ),H (𝑟) = ⊥} ∪ F (𝑃 )



Theorem 1. Lets 𝑃 be a tight past-present program and T a trace of length 𝜆. Then, T is a
TS-model of 𝑃 iff T is a LTL𝑓 -model of 𝐶𝐹 (𝑃 ).

The completion of 𝑃1, 𝐶𝐹 (𝑃1) is

□(𝑙𝑜𝑎𝑑↔ I ∨ (¬I ∧ ¬𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑))
□(𝑠ℎ𝑜𝑜𝑡↔ (¬I ∧ ¬𝑙𝑜𝑎𝑑 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑)) ∨ (¬I ∧ 𝑑𝑒𝑎𝑑))
□(𝑢𝑛𝑙𝑜𝑎𝑑↔ (¬I ∧ ¬𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑙𝑜𝑎𝑑))
□(𝑑𝑒𝑎𝑑↔ (¬I ∧ 𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑))
□(F→ (⊥ ← ¬𝑑𝑒𝑎𝑑))

For 𝜆 = 2, 𝐶𝐹 (𝑃1) has a unique LTL𝑓 -model {𝑙𝑜𝑎𝑑} · {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, which is identical to

the TS-model of 𝑃1. Notice that for this example, the TS-models of the program match the

LTL𝑓 -models of its completion despite the program not being tight. It is generally not the case.

Let 𝑃2 be the program made of the rules (1), (3), (4) and (5). The completion of 𝑃2, 𝐶𝐹 (𝑃2) is

□(𝑙𝑜𝑎𝑑↔ I)

□(𝑠ℎ𝑜𝑜𝑡↔ (¬I ∧ 𝑑𝑒𝑎𝑑))
□(𝑢𝑛𝑙𝑜𝑎𝑑↔ ⊥)
□(𝑑𝑒𝑎𝑑↔ (¬I ∧ 𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑))
□(F→ (⊥ ← ¬𝑑𝑒𝑎𝑑))

𝑃2 does not have any TS-model, but {𝑙𝑜𝑎𝑑} · {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑} is a LTL𝑓 -model of 𝐶𝐹 (𝑃2). Under

ASP semantic, it is impossible to derive any element of the loop {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, as deriving

𝑑𝑒𝑎𝑑 requires 𝑠ℎ𝑜𝑜𝑡 to be true, and deriving 𝑠ℎ𝑜𝑜𝑡 requires 𝑑𝑒𝑎𝑑 to be true. The completion

does not restrict this kind of circular derivation and therefore is insufficient to fully capture

ASP semantic.

5. Temporal loop formulas

Lin and Zhao [27] introduced the concept of loop formulas to restrict circular derivations. In

this section, we extend the notion of loop formula to past-present programs.

Definition 10. Let 𝜙 be a implication-free past-present formula and 𝐿 a loop. We define the
supporting transformation of 𝜙 with respect to 𝐿 as

S⊥(𝐿)
def
= ⊥

S𝑝(𝐿)
def
=

{︃
⊥ if 𝑝 ∈ 𝐿
𝑝 otherwise

for any atom 𝑝 ∈ 𝒜

S¬𝜙(𝐿)
def
= ¬𝜙

S𝜙∧𝜓(𝐿)
def
= S𝜙(𝐿) ∧ S𝜓(𝐿)



S𝜙∨𝜓(𝐿)
def
= S𝜙(𝐿) ∨ S𝜓(𝐿)

S•𝜙(𝐿)
def
= •𝜙

S𝜙T𝜓(𝐿)
def
= S𝜓(𝐿) ∧ (S𝜙(𝐿) ∨ •(𝜙 T 𝜓))

S𝜙S𝜓(𝐿)
def
= S𝜓(𝐿) ∨ (S𝜙(𝐿) ∧ •(𝜙 S 𝜓))

Definition 11 (External support). Given a past-present program 𝑃 , the external support for-
mula of a set of atoms 𝐿 ⊆ 𝒜 wrt 𝑃 , is defined as

ES𝑃 (𝐿) =
⋁︁

𝑟∈𝑃,H (𝑟)∩𝐿 ̸=∅

(︀
SB(𝑟)(𝐿) ∧

⋀︁
𝑎∈H (𝑟)∖𝐿

¬𝑎
)︀

For our examples 𝑃1 and 𝑃2, and 𝐿 = {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, we have

ES𝑃2(𝐿) = S𝑑𝑒𝑎𝑑(𝐿) ∨ S𝑠ℎ𝑜𝑜𝑡∧¬𝑢𝑛𝑙𝑜𝑎𝑑S𝑙𝑜𝑎𝑑(𝐿)

= S𝑑𝑒𝑎𝑑(𝐿) ∨ (S𝑠ℎ𝑜𝑜𝑡(𝐿) ∧ S¬𝑢𝑛𝑙𝑜𝑎𝑑S𝑙𝑜𝑎𝑑(𝐿))

= S𝑑𝑒𝑎𝑑(𝐿) ∨ (S𝑠ℎ𝑜𝑜𝑡(𝐿) ∧ S¬𝑢𝑛𝑙𝑜𝑎𝑑(𝐿) ∨ •(¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑))
= ⊥ ∨ (⊥ ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑 ∨ •(¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑))
= ⊥

and

ES𝑃1(𝐿) = S𝑑𝑒𝑎𝑑(𝐿) ∨ S𝑠ℎ𝑜𝑜𝑡∧¬𝑢𝑛𝑙𝑜𝑎𝑑S𝑙𝑜𝑎𝑑(𝐿) ∨ (¬𝑙𝑜𝑎𝑑 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑)
= ¬𝑙𝑜𝑎𝑑 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑

Rule (2) provide an external support for 𝐿. The body 𝑑𝑒𝑎𝑑 of rule (4) is also a support for

𝐿, but not external as 𝑑𝑒𝑎𝑑 belongs to 𝐿. The supporting transformation only keeps external

supports by removing from the body any positive and present occurence of element of 𝐿.

Definition 12 (Loop formulas). We define the set of loop formulas of a past-present program
𝑃 over 𝒜, denoted LF (𝑃 ), as:⋁︁

𝑎∈𝐿
𝑎→ ES I (𝑃 )(𝐿) for any loop 𝐿 in I (𝑃 ) (6)

̂︀◦□(︁ ⋁︁
𝑎∈𝐿

𝑎→ ESD(𝑃 )(𝐿)
)︁

for any loop 𝐿 in D(𝑃 ) (7)

Theorem 2. Let 𝑃 be a past-present program and T a trace of length 𝜆. Then, T is a TS-model
of 𝑃 iff T is a LTL𝑓 -model of 𝐶𝐹 (𝑃 ) ∪ LF (𝑃 ).

For our examples, we have

LF (𝑃1) = ̂︀◦□(𝑠ℎ𝑜𝑜𝑡 ∨ 𝑑𝑒𝑎𝑑→ ¬𝑙𝑜𝑎𝑑 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑)

and

LF (𝑃2) = ̂︀◦□(𝑠ℎ𝑜𝑜𝑡 ∨ 𝑑𝑒𝑎𝑑→ ⊥)
{𝑙𝑜𝑎𝑑}·{𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑} satisfies LF (𝑃1), but not LF (𝑃2). So, we have that𝐶𝐹 (𝑃1)∪LF (𝑃1)

has a unique LTL𝑓 -model {𝑙𝑜𝑎𝑑} · {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, while 𝐶𝐹 (𝑃2)∪LF (𝑃2) has no LTL𝑓 -model,

matching the TS-models of the respective programs.



6. Temporal loop formulas with unitary cycles

Ferraris et al. [22] proposed an approach where the computation of the completion can be

avoided by considering unitary cycles. In this section, we extend such results for past-present

programs. We first redefine loops so that unitary cycles are included.

Definition 13 (Unitary cycle). A nonempty set 𝐿 ⊆ 𝒜 of atoms is called loop of 𝑃 if, for every
pair 𝑎, 𝑏 of atoms in 𝐿, there exists a path (possibly of length 0) from 𝑎 to 𝑏 in 𝐺(𝑃 ) such that all
vertices in the path belong to 𝐿.

With this definition, it is clear that any set consisting of a single atom is a loop. For example,

L(D(𝑃1)) = {{𝑙𝑜𝑎𝑑}, {𝑢𝑛𝑙𝑜𝑎𝑑}, {𝑠ℎ𝑜𝑜𝑡}, {𝑑𝑒𝑎𝑑}, {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}}.

Theorem 3. Let 𝑃 be a past-present program and T a trace of length 𝜆. Then, T is a TS-model
of 𝑃 iff T is a LTL𝑓 -model of 𝑃 ∪ LF (𝑃 ).

With unitary cycle, LF (𝑃1) becomes

𝑙𝑜𝑎𝑑→ ⊤
𝑢𝑛𝑙𝑜𝑎𝑑→ ⊥
𝑠ℎ𝑜𝑜𝑡→ ⊥
𝑑𝑒𝑎𝑑→ ⊥̂︀◦□(𝑙𝑜𝑎𝑑→ ¬𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑)̂︀◦□(𝑢𝑛𝑙𝑜𝑎𝑑→ ¬𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑙𝑜𝑎𝑑)̂︀◦□(𝑠ℎ𝑜𝑜𝑡→ (¬𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑙𝑜𝑎𝑑) ∨ 𝑑𝑒𝑎𝑑)̂︀◦□(𝑑𝑒𝑎𝑑→ 𝑠ℎ𝑜𝑜𝑡 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑 S 𝑙𝑜𝑎𝑑)̂︀◦□(𝑠ℎ𝑜𝑜𝑡 ∨ 𝑑𝑒𝑎𝑑→ ¬𝑙𝑜𝑎𝑑 ∧ ¬𝑢𝑛𝑙𝑜𝑎𝑑)

𝑃1 ∪ LF (𝑃1) has the same LTL𝑓 -model 𝐶𝐹 (𝑃1) ∪ LF (𝑃1), {𝑙𝑜𝑎𝑑} · {𝑠ℎ𝑜𝑜𝑡, 𝑑𝑒𝑎𝑑}, which

is the TS-model of 𝑃1.

7. Conclusions and Future Work

In this paper we have focused on the computation methods for temporal logic programming

within the context of Temporal Equilibrium Logic over finite traces. More precisely, we have

studied a fragment close to logic programming rules in the spirit of [26]: a past-present temporal

logic program consists of a set of rules whose body refers to the past and present while their

head refers to the present. This fragment is very interesting for implementation purposes since

it can be solved by means of incremental solving techniques like those implemented in telingo.

Moreover, restricting the body of the rules to only present and past formulas makes it so that

the body of the rules can be seen as queries on the set of conclusions generated during the

solving phase.

Contrary to the propositional case [22], where the answer sets of an arbitrary propositional

formula can be captures by means of the classical models of another formula 𝜓, in the temporal



case this is not possible to do the same mapping among the temporal equilibrium models of a

formula 𝜙 and the LTL models of another formula 𝜓 [18].

In this paper we show that past-present temporal logic programs can be effectively reduced

to LTL formulas by means of completion and loop formulas. More precisely we extend the

definition of completion and temporal loop formulas in the spirit of Lin and Zhao [27] to the

temporal case, and we show that for tight past-present programs, the use of completion is

sufficient to achieve a reduction to an LTL𝑓 formula. Moreover, when the program is not tight,

we also show that the computation of the temporal completion and a finite number of loop

formulas suffices to reduce TEL𝑓 to LTL𝑓 . Finally, we consider Ferraris et al. approach [22]

where the computation of the completion can be automatically replaced by the consideration

of unitary loops. In this contribution, we extend such result to the case of past-present logic

programs.

As future work we plan to study in detail the relation between temporal completion and

loop formulas and unfounded sets [22, 32], since the latter plays a central role in the solving

algorithm of clingo [33, 34]. Lastly, we will study the case of past-present temporal programs

with variables [35] in order to get a second-order characterisation of loop formulas, in the spirit

of [36].
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A. Proofs (for reviewing purposes)

Definition 14. Let ⟨H,T⟩ and ⟨H′,T⟩ be two HT-traces of length 𝜆 and let 𝑖 ∈ [0..𝜆). We say
denote by ⟨H,T⟩ ∼𝑖 ⟨H′,T⟩ the fact for all 𝑗 ∈ [0..𝑖), 𝐻𝑖 = 𝐻 ′

𝑖 .

Proposition 4. For all HT-traces ⟨H,T⟩ and ⟨H′,T⟩ and for all 𝑖 ∈ [0..𝜆), if ⟨H,T⟩ ∼𝑖
⟨H′,T⟩ then for all 𝑗 ∈ [0..𝑖) and for all past formulas 𝜙, ⟨H,T⟩, 𝑗 |= 𝜙 iff ⟨H′,T⟩, 𝑗 |= 𝜙

Definition 15 (X𝑖). Let ⟨H,T⟩ be a HT-trace of length 𝜆 and 𝑖 ∈ [0..𝜆). We denote X𝑖 the trace
of length 𝜆 satisfying 𝑋𝑖

𝑘 = ∅ for all 𝑘 ∈ [0..𝑖).

Lemma 1. For all HT-traces ⟨H,T⟩ of length 𝜆, for all 𝑖 ∈ [0..𝜆) and for any pure past formula
𝜙, if each present and positive occurrence of an atom from 𝑋𝑖

𝑖 in 𝜙 is in the scope of negation then
⟨H,T⟩, 𝑖 |= 𝜙 iff ⟨H ∖X𝑖,T⟩, 𝑖 |= 𝜙.

Proof of Lemma 1. By induction on 𝜙. First, note that for any formula 𝜑 of the form 𝜙 ∨ 𝜓,

𝜙 ∧ 𝜓, 𝜙 T 𝜓 or 𝜙 S 𝜓, if all present and positive occurrences of an atom 𝑝 are in the scope of

negation in 𝜑, then all present and positive occurrences of 𝑝 are also in the scope of negation in

𝜙 and 𝜓.

• case ⊥: clearly, ⟨H,T⟩, 𝑖 ̸|= ⊥ and ⟨H ∖X𝑖,T⟩, 𝑖 ̸|= ⊥.

• case 𝑝: we consider two cases. If 𝑝 ̸∈ 𝑋𝑖
𝑖 , ⟨H,T⟩, 𝑖 |= 𝑝 iff 𝑝 ∈ 𝐻𝑖, iff 𝑝 ∈ 𝐻𝑖 ∖𝑋𝑖, iff

⟨H ∖X𝑖,T⟩, 𝑖 |= 𝑝.

If 𝑝 ∈ 𝑋𝑖
𝑖 , then 𝑝 has a present and positive occurence in 𝜙, which is not in the scope of

negation. Therefore, the lemma automatically holds.

• case ¬𝜙: ⟨H,T⟩, 𝑖 |= ¬𝜙 iff ⟨T,T⟩, 𝑖 ̸|= 𝜙 iff ⟨H ∖ X𝑖(𝐿),T⟩, 𝑖 |= ¬𝜙 (because of

persistency).

• case •𝜙:

– if 𝑖 = 0, then ⟨H,T⟩, 𝑖 ̸|= •𝜙 and ⟨H ∖X𝑖,T⟩, 𝑖 ̸|= •𝜙.

– if 𝑖 > 0, then ⟨H,T⟩, 𝑖 |= •𝜙 iff ⟨H,T⟩, 𝑖 − 1 |= 𝜙. Let 𝑋𝑖−1
be such that

𝑋𝑖−1
𝑖−1 = ∅. Then, we can apply the induction hypothesis, so ⟨H,T⟩, 𝑖− 1 |= 𝜙 iff

(IH) ⟨H ∖X𝑖−1,T⟩, 𝑖− 1 |= 𝜙. Since ⟨H ∖X𝑖−1,T⟩ ∼𝑖 ⟨H ∖X𝑖,T⟩ (Proposition 4)

then ⟨H ∖X𝑖−1,T⟩, 𝑖− 1 |= 𝜙 iff ⟨H ∖X𝑖,T⟩, 𝑖− 1 |= 𝜙, iff ⟨H ∖X𝑖,T⟩, 𝑖 |= •𝜙.

• case 𝜙 ∨ 𝜓: ⟨H,T⟩, 𝑖 |= 𝜙 ∨ 𝜓 iff ⟨H,T⟩, 𝑖 |= 𝜙 or ⟨H,T⟩, 𝑖 |= 𝜓. Since all positive

and present occurences of atoms from 𝑋𝑖
𝑖 in 𝜙 and 𝜓 are in the scope of negation, we

can apply the induction hypothesis to get ⟨H ∖X𝑖,T⟩, 𝑖 |= 𝜙 or ⟨H ∖X𝑖,T⟩, 𝑖 |= 𝜓.

Therefore, ⟨H ∖X𝑖,T⟩, 𝑖 |= 𝜙 ∨ 𝜓.

• case 𝜙 ∧ 𝜓: Similar as for 𝜙 ∨ 𝜓.

• case 𝜙 S 𝜓: ⟨H,T⟩, 𝑖 |= 𝜙 S 𝜓 iff for some 𝑗 ∈ [0..𝑖], ⟨H,T⟩, 𝑗 |= 𝜓 and ⟨H,T⟩, 𝑘 |= 𝜙
for all 𝑘 ∈ (𝑗..𝑖]. By induction we get that iff for some 𝑗 ∈ [0..𝑖], ⟨H ∖X𝑗 ,T⟩, 𝑗 |= 𝜓
and ⟨H ∖ X𝑘,T⟩, 𝑘 |= 𝜙 for all 𝑘 ∈ (𝑗..𝑖]. Since ⟨H ∖ X𝑡,T⟩ ∼𝑡 ⟨H ∖ X𝑖,T⟩ for all

𝑡 ∈ [0..𝑖), by Proposition 4 we get that iff for some 𝑗 ∈ [0..𝑖], ⟨H ∖X𝑖,T⟩, 𝑗 |= 𝜓 and

⟨H ∖X𝑖,T⟩, 𝑘 |= 𝜙 for all 𝑘 ∈ (𝑗..𝑖]. iff ⟨H ∖X𝑖,T⟩, 𝑖 |= 𝜙 S 𝜓.



• case 𝜙T 𝜓: assume by contradiction that ⟨H ∖X𝑖,T⟩, 𝑖 ̸|= 𝜙T 𝜓. This means that there

exist 𝑗 ∈ [0..𝑖] such that ⟨H ∖X𝑖,T⟩, 𝑗 ̸|= 𝜓 and ⟨H ∖X𝑖,T⟩, 𝑘 ̸|= 𝜙 for all 𝑘 ∈ (𝑗..𝑖].
Since ⟨H ∖X𝑡,T⟩ ∼𝑡 ⟨H ∖X𝑖,T⟩ for all 𝑡 ∈ [0..𝑖), by Proposition 4 we get that there

exist 𝑗 ∈ [0..𝑖] such that ⟨H ∖X𝑗 ,T⟩, 𝑗 ̸|= 𝜓 and ⟨H ∖X𝑘,T⟩, 𝑘 ̸|= 𝜙 for all 𝑘 ∈ (𝑗..𝑖].
By induction, there exist 𝑗 ∈ [0..𝑖] such that ⟨H,T⟩, 𝑗 ̸|= 𝜓 and ⟨H,T⟩, 𝑘 ̸|= 𝜙 for all

𝑘 ∈ (𝑗..𝑖] iff ⟨H,T⟩, 𝑖 ̸|= 𝜙 T 𝜓: a contradiction.

□

Definition 16. Let 𝐿 ⊆ 𝒜 and let 𝜆 > 0 and 𝑖 ∈ [0..𝜆). By X(𝐿)𝑖 we mean a trace of length 𝜆
satisfying the following conditions:

1. 𝐿 ⊆ 𝑋(𝐿)𝑖𝑖 ⊆ 𝒜;
2. 𝑋(𝐿)𝑖𝑡 = ∅ for all 𝑡 ∈ [0..𝑖).

Lemma 2. Let ⟨H,T⟩ be a HT-trace of length 𝜆, 𝜙 an pure past formula. Let us consider the set
of atoms 𝐿 ⊆ 𝒜. For all 𝑖 ∈ [0..𝜆), if each positive occurrence of an atom from 𝑋(𝐿)𝑖𝑖 ∖ 𝐿 in 𝜙 is
in the scope of negation, ⟨H,T⟩, 𝑖 |= S𝜙(𝐿) iff ⟨H ∖X(𝐿)𝑖,T⟩, 𝑖 |= 𝜙.

Proof of Lemma 2. By induction on 𝜙. First, note that for any formula 𝜑 of the form 𝜙 ∨ 𝜓,

𝜙 ∧ 𝜓, 𝜙 T 𝜓 or 𝜙 S 𝜓, if all present and positive occurrences of an atom 𝑝 are in the scope of

negation in 𝜑, then all present and positive occurrences of 𝑝 are also in the scope of negation in

𝜙 and 𝜓.

• case ⊥: ⟨H,T⟩, 𝑖 ̸|= ⊥ and ⟨H ∖X(𝐿)𝑖,T⟩, 𝑖 ̸|= ⊥.

• case 𝑝 ̸∈ 𝐿: we consider the following two cases

– If 𝑝 ̸∈ 𝐿, S𝑝(𝐿) = 𝑝 and, by definition, 𝑝 ̸∈ 𝑋(𝐿)𝑖𝑖. Therefore, ⟨H,T⟩, 𝑖 |= S𝑝(𝐿)
iff ⟨H,T⟩, 𝑖 |= 𝑝, iff 𝑝 ∈ 𝐻𝑖 iff 𝑝 ∈ 𝐻𝑖 ∖𝑋(𝐿)𝑖𝑖, iff ⟨H ∖X(𝐿)𝑖,T⟩, 𝑖 |= 𝑝.

– If 𝑝 ∈ 𝐿 then 𝑝 ̸∈ 𝑋(𝐿)𝑖𝑖 ∖ 𝐿 and S𝑝(𝐿) = ⊥. Therefore, we get that ⟨H,T⟩, 𝑖 ̸|=
S𝑝(𝐿) and ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝑝.

• case¬𝜙: ⟨H,T⟩, 𝑖 |= S¬𝜙(𝐿) iff ⟨H,T⟩, 𝑖 |= ¬𝜙, iff ⟨T,T⟩, 𝑖 ̸|= 𝜙, iff ⟨H∖X𝑖(𝐿),T⟩, 𝑖 |=
¬𝜙.

• case •𝜙: ⟨H,T⟩, 𝑖 |= S•𝜙(𝐿) iff ⟨H,T⟩, 𝑖 |= •𝜙.

– If 𝑖 = 0, then both ⟨H,T⟩, 0 ̸|= •𝜙 and ⟨H ∖X(𝐿)0,T⟩, 0 ̸|= •𝜙.

– If 𝑖 > 0, then ⟨H,T⟩, 𝑖 |= •𝜙 iff ⟨H,T⟩, 𝑖− 1 |= 𝜙. By definition, 𝑋(𝐿)𝑖𝑗 = ∅ for

𝑗 ∈ [0..𝑖) so by Lemma 1, ⟨H ∖X𝑖(𝐿),T⟩, 𝑖− 1 |= 𝜙, iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= •𝜙.

• case 𝜙 ∧ 𝜓: ⟨H,T⟩, 𝑖 |= S𝜙∧𝜓(𝐿)
iff ⟨H,T⟩, 𝑖 |= S𝜙(𝐿) and ⟨H,T⟩, 𝑖 |= S𝜓(𝐿),
iff (IH) ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 and ⟨H ∖X𝑖(𝑋),T⟩, 𝑖 |= 𝜓,

iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 ∧ 𝜓.

• case 𝜙 ∨ 𝜓: ⟨H,T⟩, 𝑖 |= S𝜙∨𝜓(𝐿)
iff ⟨H,T⟩, 𝑖 |= S𝜙(𝐿) or ⟨H,T⟩, 𝑖 |= S𝜓(𝐿),
iff (IH) ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 or ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜓,

iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 ∨ 𝜓.



• case 𝜙 S 𝜓: ⟨H,T⟩, 𝑖 |= S𝜙S𝜓(𝐿) iff

1. ⟨H,T⟩, 𝑖 |= S𝜓(𝐿) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜓 (IH) or

2. ⟨H,T⟩, 𝑖 |= S𝜙(𝐿) and ⟨H,T⟩, 𝑖 |= •(𝜙 S 𝜓) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 (IH) and

⟨H,T⟩, 𝑖 |= •(𝜙 S𝜓) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 and ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= •(𝜙 S𝜓)

From the previous items we conclude iff ⟨H ∖ X𝑖(𝐿),T⟩, 𝑖 |= 𝜓 ∨ (𝜙 ∧ • (𝜙 S 𝜓)) iff

⟨H ∖X𝑖(𝐿),T⟩, 𝑖 |= 𝜙 S 𝜓.

• case 𝜙 T 𝜓: ⟨H,T⟩, 𝑖 ̸|= S𝜙T𝜓(𝐿) iff

1. ⟨H,T⟩, 𝑖 ̸|= S𝜓(𝐿) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝜓 (IH) or

2. ⟨H,T⟩, 𝑖 ̸|= S𝜙(𝐿) and ⟨H,T⟩, 𝑖 ̸|= •(𝜙 T 𝜓) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝜙 (IH) and

⟨H,T⟩, 𝑖 ̸|= •(𝜙T𝜓) iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝜙 and ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= •(𝜙T𝜓)

From the previous items we conclude iff ⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝜓 ∧ (𝜙 ∨ • (𝜙 T 𝜓)) iff

⟨H ∖X𝑖(𝐿),T⟩, 𝑖 ̸|= 𝜙 T 𝜓.

□
Proof of Theorem 1. From left to right, let us assume towards a contradiction that T is a

temporal answer set of 𝑃 , but T is not an LTL𝑓 -model of 𝐶𝐹 (𝑃 ). By construction, if T is a

temporal answer set of 𝑃 then T is an LTL𝑓 model of 𝑃 so T, 0 |= 𝑃 . Therefore, T, 0 |= 𝑟,
for all 𝑟 ∈ 𝑃 such that H (𝑟) = ⊥ and T, 0 |= 𝑟 for all 𝑟 ∈ 𝐹 (𝑃 ). Since T, 0 ̸|= 𝐶𝐹 (𝑃 ), there

exists 𝑎 ∈ 𝒜 such that

T, 0 ̸|= □
(︀
𝑎↔

⋁︁
𝑟∈I (𝑃 ),𝑎∈H (𝑟)

(I ∧ 𝑆(𝑟, 𝑎)) ∨
⋁︁

𝑟∈D(𝑃 ),𝑎∈H (𝑟)

(¬I ∧ 𝑆(𝑟, 𝑎))
)︀

So, there exists 𝑖 ∈ [0..𝜆) such that

T, 𝑖 ̸|= 𝑎↔
⋁︁

𝑟∈I (𝑃 ),𝑎∈H (𝑟)

(I ∧ 𝑆(𝑟, 𝑎)) ∨
⋁︁

𝑟∈D(𝑃 ),𝑎∈H (𝑟)

(¬I ∧ 𝑆(𝑟, 𝑎))

We consider two cases:

1. T, 𝑖 |= 𝑎 and T, 𝑖 ̸|=
⋁︀
𝑟∈I (𝑃 ),𝑎∈H (𝑟)(I ∧ 𝑆(𝑟, 𝑎)) ∨

⋁︀
𝑟∈D(𝑃 ),𝑎∈H (𝑟)(¬I ∧ 𝑆(𝑟, 𝑎)):

• If 𝑖 = 0 then we get that for all 𝑟 ∈ I (𝑃 ), if 𝑎 ∈ H (𝑟) then ⟨T,T⟩, 0 ̸|= 𝑆(𝑟, 𝑎).
Therefore, for all 𝑟 ∈ I (𝑃 ), if 𝑎 ∈ H (𝑟) then ⟨T,T⟩, 0 ̸|= S(𝑟, 𝑎). Let H be a trace

of length 𝜆 such that 𝐻0 = 𝑇0 ∖ {𝑎} and 𝐻𝑖 = 𝑇𝑖 for 𝑖 ∈ [1..𝜆). Clearly, H < T.

We show a contradiction by proving that ⟨H,T⟩ |= 𝑃 :

a) ⟨H,T⟩, 0 |= I (𝑃 ): note that ⟨T,T⟩, 0 |= B(𝑟) → H (𝑟) for all 𝑟 ∈ I (𝑃 ), iff

for any 𝑟 ∈ I (𝑃 ), ⟨T,T⟩, 0 ̸|= B(𝑟) or ⟨T,T⟩, 0 |= H (𝑟). If ⟨T,T⟩, 0 ̸|= B(𝑟)
then, by persistence, ⟨H,T⟩, 0 ̸|= B(𝑟), and ⟨H,T⟩, 0 |= B(𝑟) → H (𝑟). If

⟨T,T⟩, 0 |= B(𝑟), then ⟨T,T⟩, 0 |= H (𝑟). There are two cases.

– Case 𝑎 ̸∈ H (𝑟): ⟨T,T⟩, 0 |= H (𝑟) so there is some 𝑝 ∈ H (𝑟) such that

𝑝 ∈ 𝑇0 and 𝑝 ̸= 𝑎. Then, 𝑝 ∈ 𝐻0, ⟨H,T⟩, 0 |= H (𝑟) and ⟨H,T⟩, 0 |= 𝑟.



– Case 𝑎 ∈ H (𝑟): We know that ⟨T,T⟩, 0 ̸|= B(𝑟) ∧
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝. Since,

by assumption, ⟨T,T⟩, 0 |= B(𝑟), it follows ⟨T,T⟩, 0 ̸|=
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝

Therefore, there is 𝑝 ∈ H (𝑟) ∖ {𝑎} such that 𝑝 ∈ 𝑇0. Then 𝑝 ∈ 𝐻0,

⟨H,T⟩, 0 |= H (𝑟) and ⟨H,T⟩, 0 |= 𝑟.

As 𝑟 is chosen arbitrarily, ⟨H,T⟩ |= I (𝑃 ).
b) ⟨H,T⟩, 0 |= D(𝑃 ): ⟨T,T⟩ |= D(𝑃 ), then ⟨T,T⟩, 𝑖 |= B(𝑟) → H (𝑟) for

all 𝑟 ∈ D(𝑃 ) and 𝑖 ∈ [1..𝜆). Then, for any 𝑟 ∈ D(𝑃 ) and 𝑖 ∈ [1..𝜆),
⟨T,T⟩, 𝑖 ̸|= B(𝑟) or ⟨T,T⟩, 𝑖 |= H (𝑟). If ⟨T,T⟩, 𝑖 ̸|= B(𝑟) then, by per-

sistence, ⟨H,T⟩, 𝑖 ̸|= B(𝑟), and ⟨H,T⟩, 𝑖 |= 𝑟. If, ⟨T,T⟩, 𝑖 |= H (𝑟), there is

some 𝑝 ∈ H (𝑟) such that 𝑝 ∈ 𝑇𝑖. 𝐻𝑖 = 𝑇𝑖, so 𝑝 ∈ 𝐻𝑖 and ⟨H,T⟩, 𝑖 |= H (𝑟).
Then ⟨H,T⟩, 𝑖 |= 𝑟. As 𝑟 and 𝑖 are chosen arbitrarily, ⟨H,T⟩ |= D(𝑃 ).

c) ⟨H,T⟩, 0 |= F (𝑃 ): final rules are constraints, so ⟨T,T⟩ |= F (𝑃 ) implies

⟨H,T⟩ |= F (𝑃 ).

We showed that ⟨H,T⟩, 0 |= 𝑃 : a contradiction.

• If 𝑖 > 0: we follow a very similar reasoning as for the case 𝑖 = 0.

2. T, 𝑖 ̸|= 𝑎 but T, 𝑖 |=
⋁︀
𝑟∈I (𝑃 ),𝑎∈H (𝑟)(I∧𝑆(𝑟, 𝑎))∨

⋁︀
𝑟∈D(𝑃 ),𝑎∈H (𝑟)(¬I∧𝑆(𝑟, 𝑎)): again,

we consider two cases here

• there exists 𝑟 ∈ I (𝑃 ), 𝑎 ∈ H (𝑟) and T, 𝑖 |= I ∧ 𝑆(𝑟, 𝑎): in this case, it follows that

𝑖 = 0, so T, 0 |= 𝑎 and T, 0 |= 𝑆(𝑟, 𝑎). Therefore, T, 0 |= B(𝑟). Since T, 0 |= 𝑟
and T, 0 |= B(𝑟) then T, 0 |= 𝑝 for some 𝑝 ∈ H (𝑟), which contradicts T, 0 ̸|= 𝑎
and T, 0 |= ¬𝑞 for all 𝑝 ∈ H (𝑟) ∖ {𝑎}.

• there exists 𝑟 ∈ D(𝑃 ), 𝑎 ∈ H (𝑟) and T, 𝑖 |= ¬I ∧ 𝑆(𝑟, 𝑎): in this case we conclude

that 𝑖 > 0 and so T, 𝑖 |= 𝑎 and T, 𝑖 |= 𝑆(𝑟, 𝑎). Therefore, T, 𝑖 |= B(𝑟). Since

T, 0 |= 𝑟 and T, 𝑖 |= B(𝑟) then T, 𝑖 |= 𝑞 for some 𝑞 ∈ H (𝑟). However, from

T, 𝑖 |= 𝑆(𝑟, 𝑎) and T, 𝑖 ̸|= 𝑎 we conclude that T, 𝑖 ̸|= 𝑝 for all 𝑝 ∈ H (𝑟): a

contradiction.

For the converse direction, assume, again, by contradiction that ⟨T,T⟩ is not a TEL𝑓 model

of 𝑃 . We consider two cases:

1. ⟨T,T⟩, 0 ̸|= 𝑃 . Therefore, there exists 𝑟 ∈ 𝑃 such that ⟨T,T⟩, 0 ̸|= 𝑟. Clearly, 𝑟 cannot

be a constraint, otherwise we would already reach a contradiction. We still have to check

two cases:

• If 𝑟 ∈ I (𝑃 ), then ⟨T,T⟩, 0 |= B(𝑟) and ⟨T,T⟩, 0 ̸|= H (𝑟). Take any 𝑎 ∈ H (𝑟). It

follows that ⟨T,T⟩, 0 |= I ∧ 𝑆(𝑟, 𝑎). so ⟨T,T⟩, 0 ̸|= 𝐶𝐹𝑃 (𝑎): a contradiction.

• If 𝑟 ∈ D(𝑃 ) we follow a similar reasoning as for the previous case.

2. ⟨T,T⟩, 0 |= 𝑃 but ⟨H,T⟩, 0 |= 𝑃 for some H < T. By definition, there exists 𝑖 ≥ 0
such that 𝐻𝑖 ⊂ 𝑇𝑖. Let us take the smallest 𝑖 satisfying this property. Therefore, 𝐻𝑗 = 𝑇𝑗
for all 𝑗 ∈ [0..𝑖). .Moreover, Let us take 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖 and let us proceed depending on the

value of 𝑖

• If 𝑖 > 0 and 𝑎 ∈ 𝑇𝑖 then ⟨T,T⟩, 𝑖 |= 𝐶𝐹𝑃 (𝑎) then there exists 𝑟 ∈ D(𝑃 ) such

that ⟨T,T⟩, 𝑖 |= 𝑆(𝑟, 𝑎). Therefore H (𝑡) ∖ {𝑎} ∪ 𝑇𝑖 = 0 Since 𝑎 ̸∈ 𝐻𝑖 then

⟨H,T⟩, 𝑖 ̸|= H (𝑟) and ⟨H,T⟩, 𝑖 ̸|= B(𝑟).



At this point of the proof we have that ⟨T,T⟩, 𝑖 |= B(𝑟), ⟨H,T⟩, 𝑖 ̸|= B(𝑟) and

𝑇𝑗 ∖𝐻𝑗 = ∅ for any 𝑗 < 𝑖. By Lemma 1, there must be some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 with a

present and positive occurence in B(𝑟) that is not in the scope of negation. Then,

for any 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖, there is some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 such that (𝑎, 𝑏) ∈ 𝐺(D(𝑃 )). 𝑃 is

tight, so 𝐺(D(𝑃 )) is acyclic. Then, there is a topological ordering of the nodes in

𝐺(D(𝑃 )), and therefore of the atoms in 𝑇𝑖 ∖ 𝐻𝑖, such that if 𝑎, 𝑏 ∈ 𝑇𝑖 ∖ 𝐻𝑖 and

(𝑎, 𝑏) ∈ 𝐺(D(𝑃 )), then 𝑎 appears before 𝑏 in the topoligical ordering. Then, there

is no outgoing edge from the last node in the ordering, which contradict the fact

that, for any 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖, there is some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 such that (𝑎, 𝑏) ∈ 𝐺(D(𝑃 )).

• If 𝑖 = 0 we proceed as in the previous case.

□
Proof of Theorem 2.

We first prove that if T is a temporal answer set of 𝑃 , then T is a LTL𝑓 -model of 𝐶𝐹 (𝑃 )
and LF (𝑃 ). The proof for 𝐶𝐹 (𝑃 ) is the same as for Theorem 1. Remains to prove that T is a

LTL𝑓 -model of LF (𝑃 ). Assume by contradiction that ⟨T,T⟩ ̸|= LF (𝑃 ). Two different cases

must be considered:

• there is a loop 𝐿 in G(D(𝑃 )) such that ⟨T,T⟩, 𝑖 ̸|=
⋁︀
𝑎∈𝐿 𝑎 → ESD(𝑃 )(𝐿) for some

𝑖 ∈ [1..𝜆), or

• there is a loop 𝐿 in G(I (𝑃 )) such that ⟨T,T⟩, 0 ̸|=
⋁︀
𝑎∈𝐿 𝑎→ ES I (𝑃 )(𝐿).

For the first case, let H be a trace of length 𝜆 such that 𝐻𝑖 = 𝑇𝑖 ∖ 𝐿 and 𝐻𝑘 = 𝑇𝑘 otherwise.

We show that ⟨H,T⟩, 0 |= 𝑃 , which will contradict the hypothesis T is a TEL𝑓 -model of 𝑃 :

1. ⟨H,T⟩, 0 |= I (𝑃 ): follows from ⟨T,T⟩ |= I (𝑃 ) by Lemma 1 as 𝑇0 ∖𝐻0 = ∅.
2. ⟨H,T⟩, 0 |= F (𝑃 ): follows from ⟨T,T⟩ |= F (𝑃 ) as rules in F (𝑃 ) are constraints.

3. ⟨H,T⟩, 0 |= D(𝑃 ): ⟨T,T⟩, 0 |= D(𝑃 ) since T is a TEL𝑓 -model of 𝑃 . Therefore,

⟨T,T⟩, 𝑘 |= 𝑟 for all 𝑘 ∈ [1..𝜆) and for all 𝑟 ∈ D(𝑃 ). Then, ⟨T,T⟩, 𝑘 ̸|= B(𝑟)
or ⟨T,T⟩, 𝑘 |= H (𝑟). If ⟨T,T⟩, 𝑘 ̸|= B(𝑟), by persistence, ⟨H,T⟩, 𝑘 ̸|= B(𝑟) and

⟨H,T⟩, 𝑘 |= 𝑟. If ⟨T,T⟩, 𝑘 |= B(𝑟), then ⟨T,T⟩, 𝑘 |= H (𝑟).
In the case 𝑘 ̸= 𝑖, 𝐻𝑘 = 𝑇𝑘 and ⟨T,T⟩, 𝑘 |= H (𝑟) imply ⟨H,T⟩, 𝑘 |= H (𝑟).In the case

𝑘 = 𝑖, we have two cases.

• if ⟨T,T⟩, 𝑖 ̸|= SB(𝑟)(𝐿), then, as (𝑇𝑖 ∖𝐻𝑖) ∖ 𝐿 = ∅ and 𝑇𝑘 ∖𝐻𝑘 = ∅ for 𝑘 < 𝑖, by

Lemma 2, ⟨H,T⟩, 𝑖 ̸|= B(𝑟). So ⟨H,T⟩, 𝑖 |= 𝑟.

• if ⟨T,T⟩, 𝑖 |= SB(𝑟)(𝐿) and H (𝑟) ∩ 𝐿 = ∅ then ⟨H,T⟩, 𝑖 |= H (𝑟) follows from

⟨T,T⟩, 𝑖 |= H (𝑟) and ⟨H,T⟩, 𝑖 |= 𝑟.

• if ⟨T,T⟩, 𝑖 |= SB(𝑟)(𝐿) and H (𝑟) ∩ 𝐿 = ∅ then

– if there is some 𝑝 ∈ H (𝑟) ∖ 𝐿 such that 𝑝 ∈ 𝑇𝑖, then 𝑝 ∈ 𝐻𝑖. So ⟨H,T⟩, 𝑖 |=
H (𝑟) and then ⟨H,T⟩, 𝑖 |= 𝑟.

– if there is no 𝑝 ∈ H (𝑟) ∖ 𝐿 such that 𝑝 ∈ 𝑇𝑖, then ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝.

As we also have ⟨T,T⟩, 𝑖 |= SB(𝑟)(𝐿), ⟨T,T⟩, 𝑖 |=
⋁︀
𝑎∈𝐿 𝑎 → ESD(𝑃 )(𝐿),

which contradict our hypothesis.



The proof of the second case follows a similar reasoning as for the first one.

Next, we prove that if T is a LTL𝑓 -model of 𝐶𝐹 (𝑃 ) and LF (𝑃 ), then T is a TEL𝑓 -model of

𝑃 . The proof for ⟨T,T⟩ |= 𝑃 is the same as for Theorem 1. Remains to prove that there is no

H < T such that ⟨H,T⟩ |= 𝑃 .

Let assume that there exists such a trace H, and let 𝑖 be the smallest time point such that

𝐻𝑖 ⊂ 𝑇𝑖. Therefore, 𝐻𝑘 = 𝑇𝑘 for all 𝑘 ∈ [0..𝑖).

• If 𝑖 > 0: Let 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖. ⟨T,T⟩ |= 𝐶𝐹 (𝑃 ), so ⟨T,T⟩, 𝑖 |= 𝑎↔
⋁︀
𝑟∈D(𝑃 ),𝑎∈H (𝑟)(B(𝑟)∧⋀︀

𝑝∈H (𝑟)∖{𝑎} ¬𝑝). As 𝑎 ∈ 𝑇𝑖, there is some rule 𝑟 ∈ D(𝑃 ) such that 𝑎 ∈ H (𝑟),
⟨T,T⟩, 𝑖 |= B(𝑟), and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝. ⟨H,T⟩ |= 𝑃 , so ⟨H,T⟩, 𝑖 |=

B(𝑟) → 𝑎 ∨
⋁︀
𝑝∈H (𝑟)∖{𝑎} 𝑝. Then, ⟨H,T⟩, 𝑖 ̸|= B(𝑟) or ⟨H,T⟩, 𝑖 |= 𝑎 or ⟨H,T⟩, 𝑖 |=⋁︀

𝑝∈H (𝑟)∖{𝑎} 𝑝. As 𝑎 ̸∈ 𝐻𝑖, ⟨H,T⟩, 𝑖 ̸|= 𝑎. As ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝, ⟨H,T⟩, 𝑖 ̸|=⋁︀

𝑝∈H (𝑟)∖{𝑎} 𝑝. So, ⟨H,T⟩, 𝑖 ̸|= B(𝑟).
⟨T,T⟩, 𝑖 |= B(𝑟), ⟨H,T⟩, 𝑖 ̸|= B(𝑟) and 𝑇𝑗 ∖𝐻𝑗 = ∅ for 𝑗 < 𝑖, so, by Lemma 1, there

must be some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 with a present and positive occurence in B(𝑟) that is not in

the scope of negation. Therefore, for any 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖, there is some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 such that

(𝑎, 𝑏) ∈ 𝐺(D(𝑃 )). It implies a loop 𝐿 in D(𝑃 ), with 𝐿 ⊆ 𝑇𝑖 ∖𝐻𝑖.

The strongly connected components (SCC) of the dependency graph of D(𝑃 ) over 𝑇𝑖 ∖𝐻𝑖

form a directed acyclic graph, so there is some SCC 𝐿, such that, for any 𝑎 ∈ 𝐿, there is

no 𝑏 ∈ (𝑇𝑖 ∖𝐻𝑖) ∖ 𝐿 such that (𝑎, 𝑏) ∈ G(D(𝑃 )).
For any 𝑎 ∈ 𝑇𝑖 ∖ 𝐻𝑖, ⟨H,T⟩, 𝑖 ̸|= B(𝑟), for all 𝑟 ∈ D(𝑃 ) such that 𝑎 ∈ H (𝑟)
and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝. So ⟨H,T⟩, 𝑖 ̸|= B(𝑟), for all 𝑟 ∈ D(𝑃 ) such that

𝐿 ∩ H (𝑟) ̸= ∅ and ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. Let X be a trace of length 𝜆 with

𝑋𝑖 = 𝐿 and 𝑋𝑗 = ∅ for 𝑗 ̸= 𝑖. For any 𝑎 ∈ 𝐿 there is no 𝑏 ∈ (𝑇𝑖 ∖𝐻𝑖) ∖ 𝐿 such that

(𝑎, 𝑏) ∈ G(D(𝑃 )), so all positive and present occurences of atoms from 𝐿 in B(𝑟) are in

the scope of negation. Then, we can apply Lemma 1, and get that ⟨T ∖X,T⟩, 𝑖 ̸|= B(𝑟),
for all 𝑟 ∈ D(𝑃 ) such that 𝐿 ∩ H (𝑟) ̸= ∅ and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. Then, as

𝑋𝑖 ∖𝐿 = ∅, by Lemma 2, ⟨T,T⟩, 𝑖 ̸|= SB(𝑟)(𝐿), for all 𝑟 ∈ D(𝑃 ) such that 𝐿∩H (𝑟) ̸= ∅
and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. So, ⟨T,T⟩, 𝑖 ̸|=

⋁︀
𝑎∈𝐿 𝑎 → ESD(𝑃 )(𝐿), and then

⟨T,T⟩ ̸|= LF (𝑃 ). Contradiction.

• Case 𝑖 = 0: we reach a contradiction in a similar way as above.

□
Proof of Theorem 3.

We first prove that if T is a temporal answer set of 𝑃 , then T is a LTL𝑓 -model of 𝑃 ∪LF (𝑃 ).
T is a temporal answer set of 𝑃 , so T is a LTL𝑓 -model of 𝑃 . We can show that T is a LTL𝑓 -model

of LF (𝑃 ) the same way as for Theorem 2.

Next, we prove that if T is a LTL𝑓 -model of 𝑃 ∪ LF (𝑃 ), then T is a temporal answer set

of 𝑃 . It amounts to showing that there is no H < T such that ⟨H,T⟩ |= 𝑃 . Let assume that

there is such a trace H, and let 𝑖 be the smallest time point such that 𝐻𝑖 ⊂ 𝑇𝑖.

1. If 𝑖 > 0, Let 𝑎 ∈ 𝑇𝑖∖𝐻𝑖. ⟨T,T⟩ |= LF (𝑃 ), so ⟨T,T⟩, 𝑖 |= 𝑎↔
⋁︀
𝑟∈D(𝑃 ),𝑎∈H (𝑟)(SB(𝑟)(𝑎)∧⋀︀

𝑝∈H (𝑟)∖{𝑎} ¬𝑝). As 𝑎 ∈ 𝑇𝑖, there exists 𝑟 ∈ D(𝑃 ) such that 𝑎 ∈ H (𝑟), ⟨T,T⟩, 𝑖 |=



SB(𝑟)(𝑎) and ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝. ⟨H,T⟩ |= 𝑃 , so ⟨H,T⟩, 𝑖 |= B(𝑟) → 𝑎 ∨⋁︀

𝑝∈H (𝑟)∖{𝑎} 𝑝. Then, ⟨H,T⟩, 𝑖 ̸|= B(𝑟) or ⟨H,T⟩, 𝑖 |= 𝑎 or ⟨H,T⟩, 𝑖 |=
⋁︀
𝑝∈H (𝑟)∖{𝑎} 𝑝.

As 𝑎 ̸∈ 𝐻𝑖, ⟨H,T⟩, 𝑖 ̸|= 𝑎. As ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝, ⟨H,T⟩, 𝑖 ̸|=

⋁︀
𝑝∈H (𝑟)∖{𝑎} 𝑝.

So, ⟨H,T⟩, 𝑖 ̸|= B(𝑟).
⟨T,T⟩, 𝑖 |= SB(𝑟)(𝑎), ⟨H,T⟩, 𝑖 ̸|= B(𝑟) and 𝑇𝑗 ∖ 𝐻𝑗 = ∅ for 𝑗 < 𝑖, so, by Lemma 2,

there must be some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 with a present and positive occurence in B(𝑟) that is not

in the scope of negation. Therefore, for any 𝑎 ∈ 𝑇𝑖 ∖𝐻𝑖, there is some 𝑏 ∈ 𝑇𝑖 ∖𝐻𝑖 such

that (𝑎, 𝑏) ∈ 𝐺(D(𝑃 )). It implies a loop 𝐿 in D(𝑃 ), with 𝐿 ⊆ 𝑇𝑖 ∖𝐻𝑖.

The strongly connected components (SCC) of the dependency graph of D(𝑃 ) over 𝑇𝑖 ∖𝐻𝑖

form a directed acyclic graph, so there is some SCC 𝐿, such that, for any 𝑎 ∈ 𝐿, there is

no 𝑏 ∈ (𝑇𝑖 ∖𝐻𝑖) ∖ 𝐿 such that (𝑎, 𝑏) ∈ G(D(𝑃 )).
For any 𝑎 ∈ 𝑇𝑖 ∖ 𝐻𝑖, ⟨H,T⟩, 𝑖 ̸|= B(𝑟), for all 𝑟 ∈ D(𝑃 ) such that 𝑎 ∈ H (𝑟)
and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖{𝑎} ¬𝑝. So ⟨H,T⟩, 𝑖 ̸|= B(𝑟), for all 𝑟 ∈ D(𝑃 ) such that

𝐿 ∩ H (𝑟) ̸= ∅ and ⟨T,T⟩, 𝑖 |=
⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. Let X be a trace of length 𝜆 with

𝑋𝑖 = 𝐿 and 𝑋𝑗 = ∅ for 𝑗 ̸= 𝑖. For any 𝑎 ∈ 𝐿 there is no 𝑏 ∈ (𝑇𝑖 ∖𝐻𝑖) ∖ 𝐿 such that

(𝑎, 𝑏) ∈ G(D(𝑃 )), so all positive and present occurences of atoms from 𝐿 in B(𝑟) are in

the scope of negation. Then, we can apply Lemma 1, and get that ⟨T ∖X,T⟩, 𝑖 ̸|= B(𝑟),
for all 𝑟 ∈ D(𝑃 ) such that 𝐿 ∩ H (𝑟) ̸= ∅ and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. Then, as

𝑋𝑖 ∖𝐿 = ∅, by Lemma 2, ⟨T,T⟩, 𝑖 ̸|= SB(𝑟)(𝐿), for all 𝑟 ∈ D(𝑃 ) such that 𝐿∩H (𝑟) ̸= ∅
and ⟨T,T⟩, 𝑖 |=

⋀︀
𝑝∈H (𝑟)∖𝐿 ¬𝑝. So, ⟨T,T⟩, 𝑖 ̸|=

⋁︀
𝑎∈𝐿 𝑎 → ESD(𝑃 )(𝐿), and then

⟨T,T⟩ ̸|= LF (𝑃 ): a contradiction.

2. For the case when 𝑖 = 0 we reach a contradiction in a similar way as above.

□
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