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Abstract
The logic of hybrid MKNF (Minimal Knowledge and Negation as Failure) enables tight interwoven
reasoning between answer set programming and open-world reasoning systems. The presence of both
classical negation and negation as failure poses significant semantic challenges on issues that must
be addressed before practical systems can be built. In this work, we improve well-founded reasoning
for hybrid MKNF knowledge bases. Unlike traditional answer set programming, the well-founded
semantics for hybrid MKNF is intractable. Prior work established a class of knowledge bases with known
polynomial-time algorithms to compute their well-founded models and in this paper, we improve upon
this work by expanding this class. We provide a new fixpoint operator for computing well-founded
models and compare our operator to prior work.
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1. Introduction

Reasoning with ASP (Answer Set Programming) [1] is limited to the closed-world assumption.
Under this assumption, we assume that unprovable facts are false. This is different from
the open-world assumption which requires proof of falsity. Many description logics support
powerful polynomial reasoning services [2] and hybrid MKNF can be adopted as a framework
to enrich these description logics with nonmonotonic, rule-based reasoning. While the logic of
hybrid MKNF [3] enables tight integration of open and closed-world reasoning, many semantic
questions remain open. Well-founded semantics is one such area of interest. Polynomial-time
computable well-founded semantics play a crucial role in the grounding of programs, that is, the
instantiation of all variables in a program. More generally, the 3-valued semantics leveraged by
well-founded semantics capture reasoning with partial information rather than an entire system
which can make systems more scalable. Fixpoint operators are well-suited to express polynomial
algorithms that capture well-founded semantics. However, because the well-founded semantics
of hybrid MKNF knowledge bases are intractable, we do not hope to capture the entirety of the
semantics [4].
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In this work, we present a well-founded operator that can compute the well-founded models
for a larger class of knowledge bases than the previous state-of-the-art operators. Prior work on
well-founded semantics has diverged in method with non-overlapping advancements and our
work unifies these advancements and extends them further. We provide an in-depth analysis of
prior operators to compare semantic differences and ultimately show that our new operator
subsumes prior work.

Namely, prior operators are limited in the inferences they can make that rely on classically
false information. The mixing of negation as failure and classical falsity is strong reason to
use hybrid MKNF, however, current fixpoint operators do not make full use of classically false
information. Our advancements are general-purpose and can improve inference power on a
wide variety of problem domains.

Because a given knowledge base may not have a well-founded model, well-founded operators
are sound but not necessarily complete. The fixpoint of a sound operator will always be less
precise or as precise as the well-founded model if a well-founded model exists.

Section 2 details necessary preliminaries and establish notation used throughout this work.
Section 3 discusses the well-founded semantics of hybrid MKNF knowledge bases. In Section 4,
we present a fixpoint characterization of hybrid MKNF knowledge bases that expands the class
of knowledge bases with polynomial well-founded semantics. In Section 5, we give a granular
breakdown of the differences between our operators and prior operators. Finally, we summarize
and conclude in Section 6.

2. Preliminaries: Hybrid MKNF Knowledge Bases

MKNF (Minimal Knowledge and Negation as Failure) is a nonmonotonic logic formulated by
Lifschitz [5]. This logic flexibly unifies various nonmonotonic semantics including default and
autoepistemic logic. Motik and Rosati [3] construct hybrid MKNF as a subset of the full logic
of MKNF. This subset extends the MKNF characterization of stable model semantics initially
introduced by Lifshitz [5] with a first-order characterization of an ontology. The resulting logic
allows for joint reasoning between a set of nonmonotonic rules and an ontology. In theory, the
ontology may be any external monotonic reasoning system that can be encoded as a first-order
formula. Ideally, this system should support a polynomial entailment reasoning service.

While there are many hybrid frameworks that combine ASP with an external system, Motik
and Rosati list several key properties of hybrid MKNF knowledge bases that make it suitable for
embedding description logics [3]. (Faithfulness) The semantics of rules and embedded ontology
are preserved. (Tightness) Reasoning is not limited to layering the ontology on top of the
rules and vice versa. (Flexibility) A single predicate may be viewed under either the open- or
closed-world assumption and (Decidability). Alberti et al. provide practical motivation to use
hybrid MKNF by arguing that normative systems require it [6].

Partial model semantics have numerous advantages over their two-valued counterparts. They
can serve as the basis for grounding algorithms as well as increase the scalability of a reasoning
system by leaving some truth values unspecified. We adopt Knorr et al.’s [7] 3-valued semantics
for hybrid MKNF; Under which there are three truth values: f (false), u (undefined), and t (true)
that use the ordering f < u < t. The 𝑚𝑖𝑛 and 𝑚𝑎𝑥 functions respect this ordering when



applied to sets.
Hybrid MKNF relies on the standard name assumption under which every first-order interpre-

tation in an MKNF interpretation is required to be a Herbrand interpretation with a countably
infinite amount of additional constants. We use ∆ to denote the set of all these constants. We
use 𝜑[𝑥→ 𝛼] to denote the formula obtained by replacing all free occurrences of variable x in
𝜑 with the term 𝛼.

A (3-valued) MKNF structure is a triple (𝐼,ℳ,𝒩 ) where 𝐼 is a (two-valued first-order) inter-
pretation andℳ = ⟨𝑀,𝑀1⟩ and 𝒩 = ⟨𝑁,𝑁1⟩ are pairs of sets of first-order interpretations
such that 𝑀 ⊇𝑀1 and 𝑁 ⊇ 𝑁1. Using 𝜑 and 𝜎 to denote MKNF formulas, the evaluation of
an MKNF structure is defined as follows:

(𝐼,ℳ,𝒩 )(𝑝(𝑡1, . . . , 𝑡𝑛)) :=

{︂
t iff 𝑝(𝑡1, . . . , 𝑡𝑛) is true in 𝐼

f iff 𝑝(𝑡1, . . . , 𝑡𝑛) is false in 𝐼

(𝐼,ℳ,𝒩 )(¬𝜑) :=

⎧⎨⎩
t iff (𝐼,ℳ,𝒩 )(𝜑) = f
u iff (𝐼,ℳ,𝒩 )(𝜑) = u
f iff (𝐼,ℳ,𝒩 )(𝜑) = t

(𝐼,ℳ,𝒩 )(∃𝑥, 𝜑) := 𝑚𝑎𝑥{(𝐼,ℳ,𝒩 )(𝜑[𝑥→ 𝛼]) | 𝛼 ∈ ∆}
(𝐼,ℳ,𝒩 )(∀𝑥, 𝜑) := 𝑚𝑖𝑛{(𝐼,ℳ,𝒩 )(𝜑[𝑥→ 𝛼]) | 𝛼 ∈ ∆}
(𝐼,ℳ,𝒩 )(𝜑 ∧ 𝜎) := 𝑚𝑖𝑛((𝐼,ℳ,𝒩 )(𝜑), (𝐼,ℳ,𝒩 )(𝜎))

(𝐼,ℳ,𝒩 )(𝜑 ∨ 𝜎) := 𝑚𝑎𝑥((𝐼,ℳ,𝒩 )(𝜑), (𝐼,ℳ,𝒩 )(𝜎))

(𝐼,ℳ,𝒩 )(𝜑 ⊂ 𝜎) :=

{︃
t iff (𝐼,ℳ,𝒩 )(𝜑) ≥ (𝐼,ℳ,𝒩 )(𝜎)

f otherwise

(𝐼,ℳ,𝒩 )(K𝜑) :=

⎧⎨⎩
t iff (𝐽, ⟨𝑀,𝑀1⟩,𝒩 )(𝜑) = t for all 𝐽 ∈𝑀

f iff (𝐽, ⟨𝑀,𝑀1⟩,𝒩 )(𝜑) = f for some 𝐽 ∈𝑀1

u otherwise

(𝐼,ℳ,𝒩 )(not𝜑) :=

⎧⎨⎩
t iff (𝐽,ℳ, ⟨𝑁,𝑁1⟩)(𝜑) = f for some 𝐽 ∈ 𝑁1

f iff (𝐽,ℳ, ⟨𝑁,𝑁1⟩)(𝜑) = t for all 𝐽 ∈ 𝑁
u otherwise

Intuitively,ℳ and 𝒩 are collections of possible worlds (two-valued first-order interpretations).
The modal K and not operators check whether a condition holds for every possible world in
ℳ and𝒩 respectively.ℳ and𝒩 are pairs of sets of possible worlds so that we can encode the
third truth value, u. It is this separation of the evaluation of K and not that allows us to avoid
transforming a program into its “reduct” as is done in stable model semantics.

The logic of MKNF as described above is very general, but we restrict our focus to hybrid
MKNF Knowledge bases, a syntactic restriction that captures combining answer set programs
with ontologies. An (MKNF) program 𝒫 is a set of (MKNF) rules. A rule 𝑟 is written as follows:

Kℎ← K𝑝0, . . . , K𝑝𝑗 , not𝑛0, . . . , not𝑛𝑘.

In the above, the atoms ℎ, 𝑝0, 𝑛0, . . . , 𝑝𝑗 , and 𝑛𝑘 are function-free first-order atoms of the form
𝑝(𝑡0, . . . , 𝑡𝑛) where 𝑝 is a predicate and 𝑡0, . . . , 𝑡𝑛 are either constants or variables. We call an



MKNF formula 𝜑 ground if it does not contain variables. The corresponding MKNF formula
𝜋(𝑟) for a rule 𝑟 is as follows:

𝜋(𝑟) := ∀𝑥⃗, Kℎ ⊂ K𝑝0 ∧ · · · ∧ K𝑝𝑗 ∧ not𝑛0 ∧ · · · ∧ not𝑛𝑘

where 𝑥⃗ is a vector of all variables appearing in the rule. We will use the following abbreviations:

𝜋(𝒫) :=
⋀︁
𝑟∈𝒫

𝜋(𝑟)

ℎ𝑒𝑎𝑑(𝑟) = Kℎ

𝑏𝑜𝑑𝑦+(𝑟) = {K𝑝0, . . . , K𝑝𝑗}
𝑏𝑜𝑑𝑦−(𝑟) = {not𝑛0, . . . , not𝑛𝑘}
K(𝑏𝑜𝑑𝑦−(𝑟)) = {K𝑎 | not 𝑎 ∈ 𝑏𝑜𝑑𝑦−(𝑟)}

An ontology 𝒪 is a decidable description logic (DL) knowledge base translatable to first-order
logic, we denote its translation to first-order logic with 𝜋(𝒪). We also assume that entailment
reasoning with the ontology can be performed in polynomial time.

A normal hybrid MKNF knowledge base (or knowledge base for short) 𝒦 = (𝒪,𝒫) contains
a program and an ontology. The semantics of a knowledge base corresponds to the MKNF
formula 𝜋(𝒦) = 𝜋(𝒫) ∧ K𝜋(𝒪). We assume, without loss of generality [7], that any given
hybrid MKNF knowledge𝒦 = (𝒪,𝒫) base is ground, that is, 𝒫 , does not contain any variables1

This ensures that 𝒦 is decidable.
A (3-valued) MKNF interpretation (𝑀,𝑁) is a pair of sets of first-order interpretations where
∅ ⊂ 𝑁 ⊆𝑀 . We say an MKNF interpretation (𝑀,𝑁) satisfies a knowledge base 𝒦 = (𝒪,𝒫)
if for each 𝐼 ∈𝑀 , (𝐼, ⟨𝑀,𝑁⟩, ⟨𝑀,𝑁⟩)(𝜋(𝒦)) = t.

Definition 2.1. A (3-valued) MKNF interpretation (𝑀,𝑁) is a (3-valued) MKNF model of a
normal hybrid MKNF knowledge base 𝒦 if (𝑀,𝑁) satisfies 𝜋(𝒦) and for every 3-valued MKNF
interpretation pair (𝑀 ′, 𝑁 ′) where 𝑀 ⊆𝑀 ′, 𝑁 ⊆ 𝑁 ′, (𝑀,𝑁) ̸= (𝑀 ′, 𝑁 ′), and we have some
𝐼 ∈𝑀 ′ s.t. (𝐼, ⟨𝑀 ′, 𝑁 ′⟩, ⟨𝑀,𝑁⟩)(𝜋(𝒦)) ̸= t.

Intuitively, minimal knowledge is captured by adding more possible worlds to the MKNF
interpretation used to evaluate K-atoms (the evaluation of not -atoms stays the same). The
more possible worlds there are, the more likely it is for K𝑎 to be false.

It is often convenient to only deal with atoms that appear inside 𝒫 . We use KA(𝒦) to denote
the set of K-atoms that appear as either K𝑎 or not 𝑎 in the program and we use OB𝒪,𝑆 to the
objective knowledge w.r.t. to a set of K-atoms 𝑆.

KA(𝒦) := {K𝑎 | 𝑟 ∈ 𝒫, K𝑎 ∈
(︁
{ℎ𝑒𝑎𝑑(𝑟)} ∪ 𝑏𝑜𝑑𝑦+(𝑟) ∪ K(𝑏𝑜𝑑𝑦−(𝑟))

)︁
}

OB𝒪,𝑆 :=
{︀
𝜋(𝒪)

}︀
∪
{︀
𝑎 | K𝑎 ∈ 𝑆}

1Not every knowledge base can be grounded. The prevalent class of groundable knowledge bases is the knowledge
bases that are DL-safe [3].



A K-interpretation (𝑇, 𝑃 ) ∈ ℘(KA(𝒦))2 is a pair of sets of K-atoms2. We say that (𝑇, 𝑃 )
is consistent if 𝑇 ⊆ 𝑃 . An MKNF interpretation pair (𝑀,𝑁) uniquely induces a consistent
K-interpretation (𝑇, 𝑃 ) where for each K𝑎 ∈ KA(𝒦):

K𝑎 ∈ (𝑇 ∩ 𝑃 ) if ∀𝐼 ∈𝑀, (𝐼, ⟨𝑀,𝑁⟩, ⟨𝑀,𝑁⟩)(K𝑎) = t

K𝑎 ̸∈ 𝑃 if ∀𝐼 ∈𝑀, (𝐼, ⟨𝑀,𝑁⟩, ⟨𝑀,𝑁⟩)(K𝑎) = f

K𝑎 ∈ (𝑃 ∖ 𝑇 ) if ∀𝐼 ∈𝑀, (𝐼, ⟨𝑀,𝑁⟩, ⟨𝑀,𝑁⟩)(K𝑎) = u

Intuitively, 𝑇 contains K-atoms that are true and 𝑃 contains K-atoms that are possibly true (i.e.
they are not false). We can acquire the set of false K-atoms by taking the complement of 𝑃 , e.g.,
𝐹 = KA(𝒦) ∖ 𝑃 and 𝑃 = KA(𝒦) ∖ 𝐹 . When we use the letters 𝑇 , 𝑃 , and 𝐹 , we always mean
sets of true, possibly true, and false K-atoms respectively.

We say that a K-interpretation (𝑇, 𝑃 ) extends to an MKNF interpretation (𝑀,𝑁) if (𝑇, 𝑃 ) is
consistent, OB𝒪,𝑃 is consistent, and

(𝑀,𝑁) = ({𝐼 | OB𝒪,𝑇 |= 𝐼}, {𝐼 | OB𝒪,𝑃 |= 𝐼})

where 𝐼 is a first-order interpretation of 𝜋(𝒦) that is satisfies OB𝒪,𝑇 or OB𝒪,𝑃 respetively.
This operation extends (𝑇, 𝑃 ) to the ⊆-maximal MKNF interpretation that induces (𝑇, 𝑃 ).

We comment on how the relation induces and extends are related.

Remark 1. Let (𝑀,𝑁) be an MKNF model of an MKNF knowledge base 𝒦. A K-interpretation
(𝑇, 𝑃 ) that extends to (𝑀,𝑁) exists, is unique and is the K-interpretation induced by (𝑀,𝑁).

We say that an MKNF interpretation (𝑀,𝑁) weakly induces a K-interpretation (𝑇, 𝑃 ) if
(𝑀,𝑁) induces a K-interpretation (𝑇 *, 𝑃 *) where 𝑇 ⊆ 𝑇 * and 𝑃 * ⊆ 𝑃 . Similarly, a K-
interpretation weakly extends to an MKNF interpretation (𝑀,𝑁) if there exists an interpretation
(𝑇 *, 𝑃 *) that extends to (𝑀,𝑁) such that 𝑇 ⊆ 𝑇 *, 𝑃 * ⊆ 𝑃 . Intuitively, we are leveraging
the knowledge ordering u < t and u < f . A K-interpretation is weakly induced by an MKNF
interpretation if that MKNF interpretation induces a K-interpretation that “knows more” than
the original K-interpretation.

There are MKNF interpretations to which no K-interpretation extends, however, these are of
little interest; either OB𝒪,𝑃 is inconsistent or (𝑀,𝑁) is not maximal w.r.t. atoms that do not
appear in KA(𝒦). Similarly, there exist K-interpretations that extend to MKNF interpretations
that do not induce them. If this is the case, then the K-interpretation is missing some logical con-
sequences of the ontology and this should be corrected. We define the class of K-interpretations
that excludes the undesirable K-interpretations and MKNF interpretations from focus.

Definition 2.2. A K-interpretation (𝑇, 𝑃 ) of an MKNF knowledge base 𝒦 is saturated if it can be
extended to an MKNF interpretation (𝑀,𝑁) that induces (𝑇, 𝑃 ). Equivalently, a K-interpretation
is saturated iff (𝑇, 𝑃 ) and OB𝒪,𝑃 are consistent, OB𝒪,𝑃 ̸|= 𝑎 for each K𝑎 ∈ (KA(𝒦) ∖ 𝑃 ) and
OB𝒪,𝑇 ̸|= 𝑎 for each K𝑎 ∈ (KA(𝒦) ∖ 𝑇 ).

2We use ℘(𝑆) to denote the powerset of 𝑆, i.e., ℘(𝑆) = {𝑋 | 𝑋 ⊆ 𝑆}



2.1. An Example Knowledge Base

Hybrid MKNF knowledge bases are equivalent to answer set semantics when the ontology is
empty. The definition of an MKNF program given is precisely the formulation of stable model
semantics [1] in the logic of MKNF [5]. We give an example of a knowledge base to demonstrate
the combined reasoning of an answer set program with an ontology.

Example 1. Let 𝒦 = (𝒪,𝒫) be the following knowledge base

𝜋(𝒪) = {𝑎 ∨ ¬𝑏}
(The definition of 𝒫 follows)

K𝑎← not 𝑏
K𝑏← not 𝑎

This knowledge base has two MKNF models(︁{︁
{𝑎, 𝑏}, {𝑎,¬𝑏}, {¬𝑎,¬𝑏}

}︁
,
{︁
{𝑎, 𝑏}

}︁)︁
which induces the K-interpretation (∅, {K𝑎,K𝑏})

(𝑀,𝑀) where 𝑀 =
{︁
{𝑎,¬𝑏}, {𝑎, 𝑏}

}︁
which induces the K-interpretation ({K𝑎}, {K𝑎})

Above we have the answer set program 𝒫 that, without 𝒪, admits three partial stable models. The
ontology 𝒪 encodes an exclusive choice between the atoms 𝑎 and 𝑏. The program allows for both 𝑎
and 𝑏 to be undefined. The ontology here is used as a filter to remove all interpretations where 𝑎 is
false but 𝑏 is true.

The mixing of negation as failure and classical negation is not always straightforward. For
example, let 𝜋(𝒪) = {𝑎 ∨ 𝑏} and 𝒫 = ∅. This knowledge base has just one MKNF model(︀

𝑀,𝑀
)︀

where 𝑀 =
{︁
{𝑎,¬𝑏}, {¬𝑎, 𝑏}, {𝑎, 𝑏}

}︁
which induces the K-interpretation (∅, ∅)

From the perspective of 𝒫 , which is only concerned with K-interpretations, all atoms are false.
However, the interpretation {¬𝑎,¬𝑏} is absent from the model which ensures that𝒪 is still satisfied.
Recall that 𝜋(𝒦) = K(𝑎 ∨ 𝑏).

3. Well-Founded Semantics

3-valued semantics allow for uncertainty to be encoded using an additional truth value, un-
defined. Well-founded semantics are a special case of 3-valued semantics and a well-founded
model does not assign a K-atom to be true (resp. false) unless it is true (resp. false) in all 3-valued
MKNF models.

We give a formal definition of well-founded semantics.



Definition 3.1. Given a hybrid MKNF knowledge base 𝒦 with an MKNF model (𝑀,𝑁), we call
(𝑀,𝑁) the well-founded model of (𝑀,𝑁) if for every other MKNF model (𝑀 ′, 𝑁 ′) of 𝒦 we
have 𝑀 ′ ⊆𝑀 and 𝑁 ⊆ 𝑁 ′.

In general, a knowledge base may have several non-comparable minimal MKNF models
and a well-founded model may not exist. While the minimality condition of MKNF minimizes
interpretations according to the truth ordering f < u < t, a well-founded model is minimal
w.r.t. the partial ordering u < t, u < f .

Crucially, a well-founded model contains information that must hold for all MKNF models
of a knowledge base. This property also holds for MKNF interpretations that contain a subset
of the knowledge found in the well-founded model. A polynomial algorithm will miss some
well-founded models or a well-founded model may not exist [8]. However, if the algorithm
is sound, then the MKNF interpretation it computes is an approximation of the well-founded
model and thus it is still useful for applications such as grounding. In the following section, we
present a fixpoint operator that can compute well-founded models of hybrid MKNF knowledge
bases. We primarily restrict our focus to K-interpretations which can be extended to MKNF
interpretations (See Section 2).

4. A Well-Founded Operator

We now present a fixpoint operator that captures the 3-valued semantics of hybrid MKNF
knowledge bases. This operator builds directly upon prior work [9, 10].

In the following, we use OB𝒪,𝑃,𝐵 as shorthand for OB𝒪,𝑃 ∪ {¬𝑏 | K𝑏 ∈ 𝐵} and we use
⊥ as an atom that is always false. The function 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) can be any function 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) :
℘(KA(𝒦))→ ℘(℘(KA(𝒦))) so long as it is ⊆-order preserving, that is,

∀𝐹, 𝐹 ′ ∈ ℘(KA(𝒦)), (𝐹 ⊆ 𝐹 ′)⇒ (𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) ⊆ 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ′))

To limit computational complexity, it is ideal for 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) to be polynomial-time computable
and for its image is restricted to elements of polynomial size w.r.t. syntactic measure of𝒦. This al-
lows our operator that embeds 𝑓𝑖𝑙𝑡𝑒𝑟 to be polynomial. In the following, we use lfp𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 )

to denote the least fixedpoint of the operator 𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 ).

𝑊 (𝑇, 𝐹 ) :=
(︁ 2⋃︁

𝑘=0

𝑎𝑑𝑑 𝑘(𝑇, (KA(𝒦) ∖ 𝐹 )), (KA(𝒦) ∖ lfp 𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 ))
)︁

𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 )(𝑃 ) =

(︂ 2⋃︁
𝑘=0

𝑎𝑑𝑑 𝑘(𝑃, 𝑇 ) ∖
2⋃︁

𝑘=0

𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
𝑘 (𝑃 )

)︂
𝑎𝑑𝑑 0(𝑋, ) := {K𝑎 ∈ KA(𝒦) | OB𝒪,𝑋 |= 𝑎}
𝑎𝑑𝑑 1(𝑋,𝑌 ) := {K𝑎 | 𝑟 ∈ 𝒫, K𝑎 = ℎ𝑒𝑎𝑑(𝑟), 𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑋, K(𝑏𝑜𝑑𝑦−(𝑟)) ∩ 𝑌 = ∅}

𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
0 (𝑃 ) := {K𝑎 ∈ 𝑃 | 𝐵 ⊆ 𝐹,𝐵 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ),OB𝒪,𝑃,𝐵 ̸|= ⊥,OB𝒪,𝑇,𝐵 |= ¬𝑎}

𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
1 (𝑃 ) := {K𝑎 ∈ 𝑃 | 𝑟 ∈ 𝒫, ℎ𝑒𝑎𝑑(𝑟) ∈ 𝐹, K(𝑏𝑜𝑑𝑦−(𝑟)) ⊆ 𝐹, (𝑏𝑜𝑑𝑦+(𝑟) ∖ {K𝑎}) ⊆ 𝑇}



We use the letter 𝑇 to denote a parameter that contains true atoms, 𝑃 for possibly true atoms
(either undefined or true) and 𝐹 for false atoms. 𝑋 and 𝑌 are used if the parameter could be a
set of true or possibly true atoms. We give an intuitive explanation of each component of the
operator.

• 𝑎𝑑𝑑 0(𝑋, ): When 𝑋 is 𝑇 , everything that must be true as a consequence of the ontology
is computed. When 𝑋 is 𝑃 , it returns everything that is possibly true as a consequence
of the ontology. The second argument of the function is not used.

• 𝑎𝑑𝑑 1(𝑋,𝑌 ): Similar to 𝑎𝑑𝑑 0(𝑋, ), except that the consequences of 𝒫 are computed.
When (𝑋,𝑌 ) = (𝑇, 𝑃 ) the not -atoms in the body of the rules are checked against atoms
that are not in 𝑃 , i.e. they are false, whereas when (𝑋,𝑌 ) = (𝑃, 𝑇 ), not -atoms are
evaluated against atoms not present in 𝑇 , i.e., undefined atoms.

• 𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
0 (𝑃 ): Computes atoms that are false as a consequence of the ontology. Uses

atoms in 𝐹 that have been previously established as false to improve inferences. Subsets
of 𝐹 must be checked for consistency with OB𝒪,𝑇 because atoms may not necessarily
be false in conjunction. To ensure monotonicity, the consistency of OB𝒪,𝑃,𝐵 must be
checked (which implies that OB𝒪,𝑇 is consistent when (𝑇, 𝑃 ) is consistent.) If OB𝒪,𝑃,𝐵

is consistent, then we will not gain any additional inferences by checking subsets of 𝐵.

• 𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
1 (𝑃 ): Finds rules where a single atom in the body has a value of undefined

and the head of the rule is false. The single atom is set to be false. This rule relies on
atoms that have been previously established as false to determine that the negative bodies
of rules are satisfied. It would not be correct to use the complement of 𝑃 to perform this
check.

It is sometimes convenient to use 𝑊 as an operator that takes and returns K-interpretations.

𝑊+(𝑇, 𝑃 ) = (𝑇 ′,KA(𝒦) ∖ 𝐹 ′) where (𝑇 ′, 𝐹 ′) = 𝑊 (𝑇,KA(𝒦) ∖ 𝑃 )

The operator is monotone w.r.t. the precision-ordering of K-interpretations, that is, the
ordering on K-interpretations that embeds the ordering on logic values that ranks undefined
beneath true and false.

Proposition 4.1. The 𝑊+(𝑇, 𝑃 ) operator is monotone, i.e., for each (𝑇1, 𝑃1) and (𝑇2, 𝑃2) such
that 𝑇1 ⊆ 𝑇2 and 𝑃2 ⊆ 𝑃1 we have

(𝑇 ′
1, 𝑃

′
1) = 𝑊+(𝑇1, 𝑃1)

(𝑇 ′
2, 𝑃

′
2) = 𝑊+(𝑇2, 𝑃2)

𝑇 ′
1 ⊆ 𝑇 ′

1, 𝑃
′
2 ⊆ 𝑃 ′

1

Note that the above proposition holds for both consistent and inconsistent K-interpretations.
We now formally claim that the operator captures a sound approximation of models.

Proposition 4.2. Let (𝑀,𝑁) be an MKNF model of a knowledge base𝒦. For any K-interpretation
(𝑇, 𝑃 ) that weakly extends to (𝑀,𝑁), (𝑀,𝑁) weakly induces 𝑊+(𝑇, 𝑃 ).



If a well-founded model exists, then it weakly induces the K-interpretation (∅,KA(𝒦)). We
can obtain a more precise approximation of this well-founded model by iteratively applying
𝑊+ on (∅,KA(𝒦)).

We can also easily check whether the K-interpretation computed by 𝑊 corresponds to the
well-founded model.

Proposition 4.3. Let 𝒦 be an MKNF knowledge base with a well-founded model (𝑀,𝑁). Extend
the least fixedpoint of 𝑊+ to the MKNF interpretation (𝑀 ′, 𝑁 ′). We have (𝑀 ′, 𝑁 ′) = (𝑀,𝑁)
iff (𝑀 ′, 𝑁 ′) |= 𝜋(𝒦).

In some cases, we can compute the well-founded model by iteratively applying the 𝑊+

operator on (∅,KA(𝒦)). To check whether the well-founded model can be computed using
𝑊+, we can apply the operator until a fixpoint is reached then check whether it is the well-
founded model using Proposition 4.3. Even if the fixpoint is not the well-founded model,
everything true or false in the fixpoint is also true and false respectively in the well-founded
model due to Proposition 4.2.

The following example demonstrates basic application of the operator on a knowledge base.
We demonstrate the more nuanced properties of the operator in the next section. Note that in this
example, and subsequent examples, we omit K from atoms when describing K-interpretations.

Example 2. Let 𝒦 = (𝒪,𝒫) be the following MKNF knowledge base.

𝜋(𝒪) = {(𝑎 ⊃ 𝑏),¬𝑐}
(The definition of 𝒫 follows)

K𝑎← not 𝑐
K𝑏← not 𝑏

When we iteratively apply 𝑊 to (∅, ∅) we obtain the following sequence.

𝐴𝑡𝑚𝑜𝑠𝑡 fails to compute 𝑐 as possibly true, it is added to the set of false atoms
𝑊 (∅, ∅) = (∅, {𝑐})

With 𝑐 false, the body of the first rule is true, so 𝑎 is derived
𝑊 (∅, {𝑐}) = ({𝑎}, {𝑐})

When 𝑎 is true, the ontology implies 𝑏
𝑊 ({𝑎}, {𝑐}) = ({𝑎, 𝑏}, {𝑐})

Finally, a fixpoint is reached
𝑊 ({𝑎, 𝑏}, {𝑐}) = ({𝑎, 𝑏}, {𝑐})

The operator 𝑊 (𝑇, 𝐹 ) provides significant improvements on the prior work. In particular,
our operator makes better use of false atoms and can infer more negative consequences. In the
coming section, we give general examples that demonstrate inference power improvements.
While it remains to be shown whether these advancements may directly benefit practical use
cases, the work here improves the theoretical basis for inferences that rely on classical negation
and could be built upon to support practical use cases.



5. Comparing Prior Work

The work on fixpoint operators for 3-valued hybrid MKNF is split. The well-founded operator
from Ji, Liu and You [9] follows a similar presentation as our operator in Section 4. The operator
that computes possibly true atoms, has access to a set of atoms that were established as false
in a previous iteration. The operator defined by Liu and You [10] adheres to the conventions
of approximation fixpoint theory. While it introduces improvements to the well-founded
operator [9], Liu and You’s operator is unable to capture false inferences to the same extent
due to not having access to a well-established K-interpretation. As it turns out, well-founded
operators, such as the one presented in Section 4, can be captured in approximation fixpoint
theory, however, we save these results for a separate publication. Both of these operators
improve upon the original operator defined by Knorr, Alferes, and Hitzler [7].

In this section, we describe four operators in a uniform way to highlight their semantics
differences. While some restructuring of the operators was required to make meaningful
comparisons, we believe the presentation below is faithful. The fixpoints of the operators are
maintained. For ease of reference, we assign each operator a symbol (either 𝛾, 𝛼, 𝛽, or 𝛿).

• 𝛾 The alternating fixpoint operator from Knorr, Alferes, and Hitzler [7].
• 𝛼 The well-founded operator from Ji, Liu and You [9].
• 𝛽 The approximator defined by Liu and You [10].
• 𝛿 Our well-founded operator defined in Section 4.

In the following, we define all four operators by prefixing each row with a set of these symbols.
A definition for any of the operators can be reached by deleting all rows that do not contain the
symbol corresponding to the operator.

⟨𝛾, 𝛼, 𝛽, 𝛿⟩−𝑊 (𝑇, 𝐹 ) :=
(︁ 2⋃︁

𝑘=0

𝑎𝑑𝑑 𝑘(𝑇, (KA(𝒦) ∖ 𝐹 )), (KA(𝒦) ∖ lfp 𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 ))
)︁

⟨𝛾, 𝛼, 𝛽, 𝛿⟩−𝐴𝑡𝑚𝑜𝑠𝑡(𝑇,𝐹 )(𝑃 ) =

(︂ 2⋃︁
𝑘=0

𝑎𝑑𝑑 𝑘(𝑃, 𝑇 ) ∖
2⋃︁

𝑘=0

𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
𝑘 (𝑃 )

)︂
⟨𝛾, 𝛼, 𝛽, 𝛿⟩−𝑎𝑑𝑑 0(𝑋, ) := {K𝑎 ∈ KA(𝒦) | OB𝒪,𝑋 |= 𝑎}
⟨𝛾, 𝛼, 𝛽, 𝛿⟩−𝑎𝑑𝑑 1(𝑋,𝑌 ) := {K𝑎 | 𝑟 ∈ 𝒫, K𝑎 = ℎ𝑒𝑎𝑑(𝑟),

𝑏𝑜𝑑𝑦+(𝑟) ⊆ 𝑋, K(𝑏𝑜𝑑𝑦−(𝑟)) ∩ 𝑌 = ∅}

⟨𝛾⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑃 ) := ∅

⟨𝛼⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑃 ) := {K𝑎 ∈ 𝑃 | (𝐵 = {K𝑏} ∨𝐵 = ∅), 𝐵 ⊆ 𝐹, OB𝒪,𝑇,𝐵 |= ¬𝑎}

⟨𝛽⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑃 ) := {K𝑎 ∈ 𝑃 | OB𝒪,𝑇 |= ¬𝑎}

⟨𝛿⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑃 ) := {K𝑎 ∈ 𝑃 | 𝐵 ⊆ 𝐹,𝐵 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ),

OB𝒪,𝑃,𝐵 ̸|= ⊥,OB𝒪,𝑇,𝐵 |= ¬𝑎}

⟨𝛾, 𝛼⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 (𝑃 ) := ∅

⟨𝛽⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 (𝑃 ) := {K𝑎 ∈ 𝑃 | 𝑟 ∈ 𝒫, K𝑏 = ℎ𝑒𝑎𝑑(𝑟),OB𝒪,𝑇 |= ¬𝑏,



(𝑏𝑜𝑑𝑦+(𝑟) ∖ {K𝑎}) ⊆ 𝑇,K(𝑏𝑜𝑑𝑦−(𝑟)) = ∅}

⟨𝛿⟩−𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 (𝑃 ) := {K𝑎 ∈ 𝑃 | 𝑟 ∈ 𝒫, ℎ𝑒𝑎𝑑(𝑟) ∈ 𝐹, K(𝑏𝑜𝑑𝑦−(𝑟)) ⊆ 𝐹,

(𝑏𝑜𝑑𝑦+(𝑟) ∖ {K𝑎}) ⊆ 𝑇}

In Table 1 we provide a high-level overview of the semantic difference between the operators
that we will cover in the following examples.

Feature Description Example 𝛾 𝛼 𝛽 𝛿
Ontology inferences use singleton sets of false atoms See (3)
Ontology inferences with any subset of false atoms See (3)
Rule unit propagation with positive rules See (4)
Rule unit propagation with all rules See (4)

Table 1
A high-level overview of operator features

Minor differences with how the operators deal with inconsistent information warrant us
to limit our analysis to K-interpretations that are consistent and cannot be used to derive
new information from the ontology. For this reason, we restrict our focus to saturated K-
interpretations.

Before we compare 𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
0 (𝑋) for each operator, we note an ordering between them.

Lemma 5.1. For any MKNF knowledge base 𝒦 and saturated K-interpretation (𝑇, 𝑃 ) where
𝐹 = KA(𝒦) ∖ 𝑃 , we have for all 𝑋 ⊆ 𝑃

𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑋) ⊆ 𝛼-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

0 (𝑋) ⊆ 𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 (𝑋)

Because 𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
0 (𝑋) is computing atoms that should be false, a larger set of false atoms

is more precise.

Example 3. The difference in the treatment of negation is the core distinction between 𝒫 and𝒪. In
hybrid MKNF, negation as failure is looser than classical negation in the sense that OB𝒪,𝑇 |= ¬𝑎
implies OB𝒪,𝑇 |= not 𝑎 but the inverse does not necessarily hold. We compare 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

0 across
the 𝛼, 𝛽, and 𝛿 operators. In all three cases, we are propagating negative consequences from the
ontology.

The 𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 operator only relies on true atoms to derive consequences with the ontology.

The operator 𝛼-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 is slightly stronger and combines individual false atoms with the

ontology. When 𝐵 = {K𝑏} is a singleton set we do not need to test whether OB𝒪,𝑃,𝐵 is consistent.
When we extend (𝑇, 𝑃 ) to an MKNF interpretation (𝑀,𝑁), there must be a first-order interpreta-
tion in (𝑀,𝑁) that assigns 𝑏 to be false. Otherwise, OB𝒪,𝑃 would be inconsistent. When we allow
𝐵 to contain multiple K-atoms in 𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

0 , we must ensure that OB𝒪,𝑃,𝐵 is consistent. Note
that the operator 𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

0 is equivalent to 𝛼-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
0 when the filter function maps 𝐹

to singleton subsets of 𝐹 like the following.

𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) := {{K𝑏} | K𝑏 ∈ 𝐹} ∪ {∅}



In the coming example, we assume that 𝑓𝑖𝑙𝑡𝑒𝑟(𝐹 ) returns the power set of 𝐹 . When we allow the
set 𝐵 to be larger than a singleton, i.e., we provide the ontology with a conjunction of false atoms,
it is possible that the ontology does not allow these atoms to be false in conjunction. While testing
OB𝒪,𝑇,𝐵 to be consistent would be sufficient, this would result in a nonmonotonic operator.

We demonstrate these types of false inferences with a knowledge base. Let 𝒦 = (𝒪,𝒫) be the
following

𝜋(𝒪) = {(𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑) ∧
(¬(𝑎 ∧ 𝑏) ∧ ¬(𝑎 ∧ 𝑐) ∧ ¬(𝑎 ∧ 𝑑) ∧ ¬(𝑏 ∧ 𝑐) ∧ ¬(𝑏 ∧ 𝑑) ∧ ¬(𝑐 ∧ 𝑑))}

(The definition of 𝒫 follows)
K𝑎← not 𝑏
K𝑏← K𝑏; K𝑐← K𝑐; K𝑑← K𝑑

Note that the last three rules simply ensure that the K-atoms K𝑏, K𝑐, and K𝑑 are present in
KA(𝒦). Here, there is only one MKNF model and it induces the K-interpretation ({𝑎}, {𝑎}). The
ontology encodes that a single atom must be true while all other atoms must be false. Consider the
K-interpretation ({𝑎}, {𝑎, 𝑑}). Each operator computes the following

𝛼-𝑒𝑥𝑡𝑟𝑎𝑐𝑡({𝑎},{𝑏,𝑐})0 (∅) = 𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡({𝑎},{𝑏,𝑐})0 (∅) = ∅

𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡({𝑎},{𝑏,𝑐})0 (∅) = {𝑑}

When 𝐵 = {𝑏, 𝑐} and 𝑇 = {𝑎}, we have OB𝒪,𝑇,𝐵 |= ¬𝑑, thus the 𝛿 operator makes a more
precise inference.

Before we compare 𝑒𝑥𝑡𝑟𝑎𝑐𝑡
(𝑇,𝐹 )
1 (𝑋), we note the following ordering.

Lemma 5.2. For any MKNF knowledge base 𝒦 and saturated K-interpretation (𝑇, 𝑃 ) where
𝐹 = KA(𝒦) ∖ 𝑃 , we have for all 𝑋 ⊆ 𝑃

𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 (𝑋) ⊆ 𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

1 (𝑋)

Like before, 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 (𝑋) is computing atoms that need to be false, therefore it is better

for it to return larger sets.

Example 4. If the head of a rule must be false, then its body must also be false. If there is a single
undefined atom in the positive body of such a rule preventing the body of the rule from being false,
we can safely assign this atom to be false. We compare 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

(𝑇,𝐹 )
1 between the 𝛽 and the 𝛿

operators. In the 𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 function, the lone undefined atom must exist in a positive rule,

that is, a rule with an empty negative body. Additionally, the 𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 function determines

the head of a rule to be false by checking if OB𝒪,𝑇 entails it as false. As a result, false consequences
computed by other parts of the operator, e.g. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

0 , cannot assist in determining that the
head of the rule is false. Let 𝒦 = (𝒪,𝒫) be the following knowledge base.

𝜋(𝒪) = {(𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ ¬𝑏)



(The definition of 𝒫 follows)
K𝑥← not 𝑦
K𝑦 ← not𝑥
K𝑎←
K𝑏← K𝑎,K𝑥

Here, 𝒪 ensures that either 𝑎 or 𝑏 is true, but not both. The program 𝒫 has a choice between K𝑥 or
K𝑦. If K𝑥 is chosen, then both K𝑎 and K𝑏 must be true, which violates the ontology. This knowledge
base has a single MKNF model that induces the K-interpretation ({𝑎, 𝑦}, {𝑎, 𝑦}). Consider the
K-interpretation ({𝑎}, {𝑥, 𝑦}). Both the 𝛽-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )

1 and 𝛿-𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑇,𝐹 )
1 functions correctly

compute that 𝑥 must be false. If we modify the final rule to be K𝑏← K𝑎,K𝑥,not 𝑏, the MKNF
models are unchanged, but the 𝛽 operator fails to compute 𝑥 because the rule is no longer positive.

We now formally claim that our operator in Section 4 captures both the 𝛼 and 𝛽 operators.

Proposition 5.1. For any MKNF knowledge base 𝒦 and K-interpretation (𝑇, 𝑃 ) where 𝐹 =
KA(𝒦) ∖ 𝑃 , we have

𝛼-𝑊 (𝑇, 𝐹 ) ⊑ 𝛿-𝑊 (𝑇, 𝐹 )

𝛽-𝑊 (𝑇, 𝐹 ) ⊑ 𝛿-𝑊 (𝑇, 𝐹 )

Where (𝑇, 𝐹 ) ⊑ (𝑇 ′, 𝐹 ′) iff 𝑇 ⊆ 𝑇 ′ and 𝐹 ⊆ 𝐹 ′.

6. Discussion

Well-founded semantics play a vital role in efficient answer set solving. The ground, solve,
check paradigm is still prevalent and grounders rely on well-founded semantics. In hybrid
MKNF knowledge bases, well-founded semantics are intractable and well-founded models may
not exist. Additional challenges must be overcome if we are to build effective grounders for
hybrid MKNF. In this work, we improved upon the well-founded semantics for hybrid MKNF
knowledge bases by capturing them with a well-founded fixpoint operator. We compared our
operator with prior work and demonstrated the differences to ultimately show that we expand
the class of knowledge bases with known polynomial-time well-founded semantics. Because our
operator performs well-founded propagation, it can also be used in conjunction with constraint
propagation.

Future work could include using lookahead to achieve better unit propagation with rules.
Currently, we rely on there being only a single undefined atom in the body of a rule, however,
if there are two undefined atoms and assigning one to be false results in inconsistency, we may
be able to safely assign the other atom as false.
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