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Abstract
Recently, it was shown how to translate logic programs with aggregates into first-order formulas. In
combination with the SM operator, this translation can be used to describe the ASP-Core-2 semantics for
this class of programs without relying on grounding. In this paper we prove that this same translation can
be used to describe the semantics used by the answer set solver clingowhen we interpret functions in an
intensional way. We also state a similar conjecture regarding the semantics used by the answer set solver
dlv. Recall that these solvers extend the ASP-Core-2 semantics to programs that contain recursive
aggregates. If this last conjecture is correct, the interpretation of aggregates used by clingo and dlv
are exactly the same and the difference in their behaviour arises only from the different interpretations
of implication (and negation).
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1. Introduction

Answer set programming (ASP) is a form of declarative logic programming well-suited to solving
knowledge-intensive search and optimization problems [1]. Its success relies on the combination
of a rich knowledge representation language with efficient solvers. Some of the most useful
constructs of this language are aggregates: intuitively, these are functions that apply to sets. The
semantics of aggregates have been extensively studied in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10]. In
most cases, papers rely on the idea of grounding — a process in which all variables are replaced
by variable-free terms. Thus, first a program with variables is transformed into a propositional
program, then the semantics of the propositional program are defined. This makes reasoning
about programs with variables cumbersome. For instance, it prohibits using first-order theorem
provers for verifying properties of programs as advocated by Fandinno et al. [11].

Though there are several approaches to describe the semantics of aggregates that bypass the
need for grounding, most of these approaches only allow a restricted class of aggregates [12, 13]
or use some extension of the logical language [14, 15, 16, 17]. Recently, Fandinno et al. [18]
showed how to translate logic programs with aggregates into first-formulas, which, after the
application of the SM operator [19] to the result, captures the ASP-Core-2 semantics. Recall
that the ASP-Core-2 semantics do not allow recursion through aggregates. Despite the fact that
most practical problems can be represented within the restrictions of the ASP-Core-2 semantics,
there are some notable execptions that are more naturally represented using recursive aggregates.
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One of these examples is the Company Control problem, which consists of finding companies
that control other companies by (directly or indirectly) owning a majority of its shares. This
problem has been encoded in the literature using the following logic program [4, 7, 20, 21, 22]:

ctrStk(C1,C1,C2,P) :- ownsStk(C1,C2,P). (1)

ctrStk(C1,C2,C3,P) :- controls(C1,C2),ownsStk(C2,C3,P). (2)

controls(C1,C3) :- company(C1),company(C3),

#sum{P,C2:ctrStk(C1,C2,C3,P)}>50. (3)

where ownsStk(C1,C2,P) means that company C1 directly owns P% of the shares of com-
pany C2; ctrStk(C1,C2,C3,P) means that company C1 controls P% of the shares of com-
pany C3 through company C2 that it controls; and controls(C1,C3) means that company C1
controls company C3. Another area where allowing recursive aggregates is important is in
the study of strong equivalence [23, 24]. Recall that the strong equivalence problem consists
of determining whether two programs have the same behaviour in any context. Here, even if
the program we are analyzing does not contain recursion, augmenting it by some context may
introduce recursion.

In this paper, we show that the translation introduced by Fandinno et al. [18] can also
be used for programs with recursive aggregates if we interpret functions in an intensional
way [25, 26, 27, 28]. In particular, we focus on the Abstract Gringo [29] generalization of the
semantics by Ferraris [6], which is used in the answer set solver clingo, and the semantics
by Faber et al. [7], which is used in the answer set solver dlv. More precisely, we prove that the
translation introduced by Fandinno et al. [18] coincides with the Abstract Gringo semantics when
we interpret the function symbols representing sets according to the semantics for intensional
functions by Bartholomew and Lee [28]. For the semantics used by dlv, we introduce a variation
of these semantics for intensional functions based on the FLPT semantics [14] and state a similar
conjecture, which is matter of ongoing study.

2. Preliminaries

Syntax of programs with aggregates. We assume a (program) signature with three count-
ably infinite sets of symbols: numerals, symbolic constants and program variables. We also
assume a 1-to-1 correspondence between numerals and integers; the numeral corresponding to
an integer 𝑛 is denoted by 𝑛. Program terms are either numerals, symbolic constants, variables
or either of the special symbols inf and sup. A program term (or any other expression) is ground
if it contains no variables. We assume that a total order on ground terms is chosen such that

• inf is its least element and sup is its greatest element,
• for any integers 𝑚 and 𝑛, 𝑚 < 𝑛 iff 𝑚 < 𝑛, and
• for any integer 𝑛 and any symbolic constant 𝑐, 𝑛 < 𝑐.

An atom is an expression of the form 𝑝(t), where 𝑝 is a symbolic constant and t is a list of
program terms. A comparison is an expression of the form 𝑡 ≺ 𝑡′, where 𝑡 and 𝑡′ are program
terms and ≺ is one of the comparison symbols:

= ̸= < > ≤ ≥ (4)



An atomic formula is either an atom or a comparison. A basic literal is an atomic formula
possibly preceded by one or two occurrences of not. An aggregate element has the form

𝑡1, . . . , 𝑡𝑘 : 𝑙1, . . . , 𝑙𝑚 (5)

where each 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑘) is a program term and each 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑚) is a basic literal. An
aggregate atom is of form

#op{𝐸} ≺ 𝑢 (6)

where op is an operation name, 𝐸 is an aggregate element, ≺ is one of the comparison symbols
in (1), and 𝑢 is a program term, called guard. We consider operation names names count
and sum. For example, expression

#sum{P,C2:ctrStk(C1,C2,C3,P)}>50

in the body of rule (3) is an aggregate atom. An aggregate literal is an aggregate atom possibly
preceded by one or two occurrences of not. A literal is either a basic literal or an aggregate
literal.

A rule is an expression of the form

Head :- 𝐵1, . . . , 𝐵𝑛, (7)

where

• Head is either an atom or symbol ⊥; we often omit symbol ⊥ which results in an empty
head;

• each 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a literal.

We call the symbol :- a rule operator. We call the left hand side of the rule operator the head, the
right hand side of the rule operator the body. When the head of the rule is an atom we call the
rule normal. A program is a finite set of rules.

Each operation name op is associated with a function ̂︁op that maps every set of tuples of
ground terms to a ground term. If the first member of a tuple t is a numeral 𝑛 then we say that
integer 𝑛 is the weight of t, otherwise the weight of t is 0. For any set Δ of tuples of ground
terms,

• ˆ︂count(Δ) is the numeral corresponding to the cardinality of Δ, if Δ is finite; and sup
otherwise.

• ̂︂sum(Δ) is the numeral corresponding to the sum of the weights of all tuples in Δ, if Δ
contains finitely many tuples with non-zero weights; and 0 otherwise.1 If Δ is empty,
then ̂︂sum(Δ) = 0.

1The sum of a set of integers is not always defined. We could choose a special symbol to denote this case, we chose
to use 0 following the description of abstract gringo [30].



Many-sorted formulas A many-sorted signature consists of symbols of three kinds—sorts,
function constants, and predicate constants. A reflexive and transitive subsort relation is defined
on the set of sorts. A tuple 𝑠1, . . . , 𝑠𝑛 (𝑛 ≥ 0) of argument sorts is assigned to every function
constant and to every predicate constant; in addition, a value sort is assigned to every function
constant. Function constants with 𝑛 = 0 are called object constants.

We assume that for every sort, an infinite sequence of object variables of that sort is chosen.
Terms over a (many-sorted) signature 𝜎 are defined recursively:

• object constants and object variables of a sort 𝑠 are terms of sort 𝑠;
• if 𝑓 is a function constant with argument sorts 𝑠1, . . . , 𝑠𝑛 (𝑛 > 0) and value sort 𝑠,

and 𝑡1, . . . , 𝑡𝑛 are terms such that the sort of 𝑡𝑖 is a subsort of 𝑠𝑖 (𝑖 = 1, . . . , 𝑛), then
𝑓(𝑡1, . . . , 𝑡𝑛) is a term of sort 𝑠.

Atomic formulas over 𝜎 are

• expressions of the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 is a predicate constant and 𝑡1, . . . , 𝑡𝑛 are
terms such that their sorts are subsorts of the argument sorts 𝑠1, . . . , 𝑠𝑛 of 𝑝, and

• expressions of the form 𝑡1 = 𝑡2, where 𝑡1 and 𝑡2 are terms such that their sorts have a
common supersort.

(First-order) formulas over 𝜎 are formed from atomic formulas and the 0-place connective ⊥
(falsity) using the binary connectives ∧, ∨, → and the quantifiers ∀, ∃. The other connectives are
treated as abbreviations: ¬𝐹 stands for 𝐹 → ⊥ and 𝐹 ↔ 𝐺 stands for (𝐹 → 𝐺) ∧ (𝐺 → 𝐹 ).

An interpretation 𝐼 of a signature 𝜎 assigns

• a non-empty domain |𝐼|𝑠 to every sort 𝑠 of 𝐼 , so that |𝐼|𝑠1 ⊆ |𝐼|𝑠2 whenever 𝑠1 is a
subsort of 𝑠2,

• a function 𝑓 𝐼 from |𝐼|𝑠1 × · · · × |𝐼|𝑠𝑛 to |𝐼|𝑠 to every function constant 𝑓 with argument
sorts 𝑠1, . . . , 𝑠𝑛 and value sort 𝑠, and

• a Boolean-valued function 𝑝𝐼 on |𝐼|𝑠1 × · · · × |𝐼|𝑠𝑛 to every predicate constant 𝑝 with
argument sorts 𝑠1, . . . , 𝑠𝑛.

If 𝐼 is an interpretation of a signature 𝜎 then by 𝜎𝐼 we denote the signature obtained from 𝜎
by adding, for every element 𝑑 of a domain |𝐼|𝑠, its name 𝑑* as an object constant of sort 𝑠.
The interpretation 𝐼 is extended to 𝜎𝐼 by defining (𝑑*)𝐼 = 𝑑. The value 𝑡𝐼 assigned by an
interpretation 𝐼 of 𝜎 to a ground term 𝑡 over 𝜎𝐼 and the satisfaction relation between an
interpretation of 𝜎 and a sentence over 𝜎𝐼 are defined recursively, in the usual way.

If d is a tuple 𝑑1, . . . , 𝑑𝑛 of elements of domains of 𝐼 then d* stands for the tuple 𝑑*1, . . . , 𝑑
*
𝑛

of their names. If t is a tuple 𝑡1, . . . , 𝑡𝑛 of ground terms then t𝐼 stands for the tuple 𝑡𝐼1, . . . , 𝑡
𝐼
𝑛

of values assigned to them by 𝐼 .

3. Programs With Aggregates as Many-Sorted First-Order
Sentences

In this section, we present translation 𝜏* that turns a program Π into a first-order sentence
with equality over a signature 𝜎*(𝒫,𝒮) of three sorts where 𝒫 and 𝒮 respectively are sets of



predicate and set symbols. An set symbol is a pair 𝐸/X, where 𝐸 is an aggregate element and X
is a list of variables occurring in 𝐸. In the sake of brevity, each set symbol 𝐸/X is assigned a
short name |𝐸/X|. The first sort is called the program sort (denoted 𝑠prg ); all program terms
are of this sort. The second sort is called the tuple sort (denoted 𝑠tuple ); it contains entities that
are tuples of objects of the program sort. The second sort is called the set sort (denoted 𝑠set );
it contains entities that are sets of elements of the second sort, that is, tuples of objects of the
program sort. Signature 𝜎*(𝒫,𝒮) contains:

1. all ground terms as object constants of the program sort;
2. all predicate symbols in 𝒫 with all arguments of program sort;
3. the comparison symbols other than equality as binary predicate constants whose argu-

ments are of the program sort;
4. predicate constant ∈/2 with the first argument of the sort tuple and the second argument

of the sort set;
5. function constant tuple/𝑘 with arguments of the program sort and value of the tuple

sort for each set symbol 𝐸/X in 𝒮 with 𝐸 of the form of (5);
6. unary function constants count and sum whose argument is of the set sort and its value

is of the program sort;
7. for each set symbol 𝐸/X in 𝒮 , a function constant set |𝐸/X|/𝑛 whose arguments are of

the program sort and its value is of the set sort and where 𝑛 is the number of variables
in X;

We use infix notation in constructing atoms that utilize predicate symbols >,≥, <,≤, ̸= and ∈.
Intuitively, tuple (𝑡1, . . . , 𝑡𝑘) is a constructor for the 𝑘-tuple containing program terms 𝑡1, . . . , 𝑡𝑘 .

Furthermore, each function constant set |𝐸/X|/𝑛 maps an 𝑛-tuple of ground terms x to the
set of tuples represented2 by 𝐸X

x . The result of count is the cardinality of the set passed as
an argument; the result of sum is the sum of the weights of all elements in the set passed as
an argument. These claims are formalized below. Note also that in contrast to other work
on the theory of stable models that do not consider aggregates (or intensional functions), ex-
pression 𝑡1 ̸= 𝑡2 is not equivalent to ¬(𝑡1 = 𝑡2). This is necessary because according to the
Abstract Gringo semantics inequality and the negation of equality are not equivalent when
used in aggregate atoms. For instance, the program consisting of rule

p(a) :- not #count{X : p(X)} = 0. (8)

has two answer sets according to the Abstract Gringo semantics: the empty set and {𝑝(𝑎)}.
The program consisting of rule

p(a) :- #count{X : p(X)} ̸= 0. (9)

has the empty set as its unique answer set. On the other hand, this replacement is correct
under the dlv semantics and, in fact, both programs have only the empty set as their unique
answer set.
2For a tuple X of distinct variables, a tuple x of ground terms of the same length as X, and an expression 𝛼, by 𝛼X

x

we denote the expression obtained from 𝛼 by substituting x for X.



About a predicate symbol 𝑝/𝑛, we say that is occurs in a program Π if there is an atom of
the form 𝑝(𝑡1, . . . , 𝑡𝑛) in Π. For set symbols, we need to introduce first the concepts of a global
variable and an set symbol. A variable is said to be global in a rule if

1. it occurs in any non-aggregate literal, or
2. it occurs in a guard of any aggregate literal.

We say that set symbol 𝐸/X occurs in rule 𝑅 if this rule contains an aggregate literal with the
aggregate element 𝐸 and X is the list of all variables in 𝐸 that are global in 𝑅. We say that 𝐸/X
occurs in a program Π if 𝐸/X occurs in some rule of the program. For instance, in rule (3) the
global variables are C1 and C3. Set symbol 𝐸𝑐𝑡𝑟/X𝑐𝑡𝑟 occurs in this rule where 𝐸𝑐𝑡𝑟 stands for
the aggregate element P,C2:ctrStk(C1,C2,C3,P) and X𝑐𝑡𝑟 is the list of variables C1, C3.
In the following, we denote by set𝑐𝑡𝑟/2 the function symbol associated with this set symbol.

In the following, when discussing some program Π, we assume a signature 𝜎*(𝒫,𝒮) such
that 𝒫 is a set that contains all predicate symbols occurring in Π and 𝒮 contains all set symbols
occurring in Π. When no confusion arises we will simply write 𝜎* instead of 𝜎*(𝒫,𝒮). In the
following, we also assume that 𝒫 is the set of intensional symbols and that the set of intensional
functions ℱ is the set of all function symbols corresponding to the set symbols in 𝒮 .

Translation 𝜏* We now describe a translation 𝜏* that converts a program into a finite set of
first-order sentences.

Given a list Z of global variables in some rule 𝑅, we define 𝜏*Z for all elements of 𝑅 as follows:

1. for every atomic formula 𝐴 occurring outside of an aggregate literal, its translation 𝜏*Z𝐴
is 𝐴 itself; 𝜏*Z⊥ is ⊥;

2. for an aggregate atom 𝐴 of form #count{𝐸} ≺ 𝑢 or #sum{𝐸} ≺ 𝑢, its translation 𝜏*Z is
the atom

count(set |𝐸/X|(X)) ≺ 𝑢 or sum(set |𝐸/X|(X)) ≺ 𝑢

respectively, where X is the list of variables in Z occurring in 𝐸;
3. for every (basic or aggregate) literal of the form not 𝐴 its translation 𝜏*Z(not 𝐴) is ¬𝜏*Z𝐴;

for every literal of the form not not 𝐴 its translation 𝜏*Z(not not 𝐴) is ¬¬𝜏*Z𝐴.

We now define the translation 𝜏* as follows:

4. for every rule 𝑅 of form (4), its translation 𝜏*𝑅 is the universal closure of

𝜏*Z𝐵1 ∧ · · · ∧ 𝜏*Z𝐵𝑛 → 𝜏*ZHead ,

where Z is the list of the global variables of 𝑅.
5. for every program Π, its translation 𝜏*Π is the first-order theory containing 𝜏*𝑅 for each

rule 𝑅 in Π.

For instance, rule (3) is translated into

company(𝐶1) ∧ company(𝐶3) ∧ sum(set𝑐𝑡𝑟(𝐶1, 𝐶3)) > 50 → controls(𝐶1, 𝐶3) (10)

where variables 𝐶1 and 𝐶3 are of the program sort.



Standard interpretations. A standard interpretation 𝐼 is an interpretation of 𝜎*(𝒫,ℱ) that
satisfies the following conditions:

1. the domain |𝐼|𝑠prg is the set containing all ground terms of the program sort (or ground
program terms, for short);

2. universe |𝐼|𝑠tuple is the set of all tuples of form ⟨𝑑1, . . . , 𝑑𝑘⟩ with 𝑑𝑖 ∈ |𝐼|𝑠prg for each set
symbol 𝐸/X in 𝒮 with 𝐸 of the form of (5);

3. the elements of domain |𝐼|𝑠set are sets of elements from |𝐼|𝑠tuple ;
4. 𝐼 interprets each ground program term as itself;
5. 𝐼 interprets predicate symbols >,≥, <,≤ according to the total order chosen earlier;
6. 𝐼 interprets each tuple term of form tuple (𝑡1, . . . , 𝑡𝑘) as the tuple ⟨𝑡𝐼1, . . . , 𝑡𝐼𝑘⟩;
7. ∈𝐼 is the set of pairs (𝑡, 𝑠) such that tuple 𝑡 belongs to set 𝑠;
8. for term 𝑡set of sort 𝑠set , count(𝑡set)𝐼 is ˆ︂count(𝑡𝐼set);
9. for term 𝑡set of sort 𝑠set , sum(𝑡set)

𝐼 is ̂︂sum(𝑡𝐼set);
To complete the first-order characterization of the Abstract Gringo semantics, we introduce

a set axiom as follows. For each set symbol 𝐸/X of the form of (5), by SCA(𝐸/X) we denote
the first-order sentence

∀X𝑇
(︀
𝑇 ∈ set |𝐸/X|(X) ↔ ∃Y(𝑇 = tuple (𝑡1, . . . , 𝑡𝑘) ∧ 𝑙1 ∧ · · · ∧ 𝑙𝑚)

)︀
(11)

where Y is the list of all the variables occurring in 𝐸 that are not in X. We write SCA for the
set containing SCA(𝐸/X) for each set symbol 𝐸/X in the signature.

Proposition 1. A standard interpretation 𝐼 of 𝜎* satisfies (11) iff it satisfies the following condition:

set |𝐸/X|(x)
𝐼 is the set of all tuples of form ⟨(𝑡1)XY

xy , . . . , (𝑡𝑘)
XY
xy ⟩ such that

𝐼 satisfies (𝑙1)XY
xy ∧ · · · ∧ (𝑙𝑚)XY

xy

where x and y are lists of ground program terms of the same length as X and Y respectively.

For instance, the program representing the Company Control problem has a unique set
symbol that is associated with the function symbol set𝑐𝑡𝑟/2. For this function symbol, we have
the first-order sentence

∀𝐶1𝐶3𝑇
(︀
𝑇 ∈ set𝑐𝑡𝑟(𝐶1, 𝐶3) ↔ ∃𝑃𝐶2(𝑇 = tuple (𝑃,𝐶2) ∧ ctrStk(𝐶1, 𝐶2, 𝐶3, 𝑃 ))

)︀
(12)

If 𝐼 is a model of (12) such that ctrStk 𝐼 is the set containing (𝑐1, 𝑐2, 𝑐3, 10) and (𝑐1, 𝑐4, 𝑐3, 20),
by Proposition 1, it follows that setctr (c1 , c3 )

𝐼 is the set containing tuples ⟨10, 𝑐2⟩ and ⟨20, 𝑐4⟩.

4. Abstract Gringo Semantics

In this section, we establish the correspondence between the semantics of programs with
aggregates introduced in the previous section and the Abstract Gringo [29]. These semantics
are stated in terms of infinitary formulas.



Background on Infinitary Formulas We recall some definitions of infinitary logic [31].
We denote a propositional signature (a set of propositional atoms) as 𝜎. For every nonnegative
integer 𝑟, (infinitary propositional) formulas of rank 𝑟 are defined recursively:

• every ground atom in 𝜎 is a formula of rank 0,
• if Γ is a set of formulas, and 𝑟 is the smallest nonnegative integer that is greater than the

ranks of all elements of Γ, then Γ∧ and Γ∨ are formulas of rank 𝑟,
• if 𝐹 and 𝐺 are formulas, and 𝑟 is the smallest nonnegative integer that is greater than

the ranks of 𝐹 and 𝐺, then 𝐹 → 𝐺 is a formula of rank 𝑟.

We write {𝐹,𝐺}∧ as 𝐹 ∧𝐺, {𝐹,𝐺}∨ as 𝐹 ∨𝐺, and ∅∨ as ⊥.
Subsets of a propositional signature 𝜎 will be called interpretations. The satisfaction relation

between an interpretation 𝒜 and an infinitary formula is defined recursively:

• for every ground atom 𝐴 from 𝜎, 𝒜 |= 𝐴 if 𝐴 belongs to 𝒜,
• 𝒜 |= Γ∧ if for every formula 𝐹 in Γ, 𝒜 |= 𝐹 ,
• 𝒜 |= Γ∨ if there is a formula 𝐹 in Γ such that 𝒜 |= 𝐹 ,
• 𝒜 |= 𝐹 → 𝐺 if 𝒜 ̸|= 𝐹 or 𝒜 |= 𝐺.

An interpretation satisfies a set Γ of formulas if it satisfies every formula in Γ. We say that a
set 𝒜 of atoms is a ⊆-minimal model of an infinitary formula 𝐹 , if 𝒜 |= 𝐹 and there is no ℬ
that satisfies both ℬ |= 𝐹 and ℬ ⊂ 𝒜.

Stable Models The FT-reduct 𝐹𝒜 of an infinitary formula 𝐹 with respect to a set 𝒜 of atoms
is defined recursively. If 𝒜 ̸|= 𝐹 then 𝐹𝒜 is ⊥; otherwise,

• for every ground atom 𝐴, 𝐴𝒜 is 𝐴
• (Γ∧)𝒜 = {𝐺𝒜 | 𝐺 ∈ Γ}∧,
• (Γ∨)𝒜 = {𝐺𝒜 | 𝐺 ∈ Γ}∨,
• (𝐺 → 𝐻)𝒜 is 𝐺𝒜 → 𝐻𝒜.

We say that a set 𝒜 of ground atoms is a FT-stable model of an infinitary formula 𝐹 if it is
a ⊆-minimal model of 𝐹𝒜. We say that a set 𝒜 of ground atoms is a gringo answer set of a
program Π if 𝒜 a FT-stable model of 𝜏Π where 𝜏 is the translation from logic programs to
infinitary formulas defined by Gebser et al. [29].

5. First-order characterization of the Abstract Gringo Semantics

The first-order characterization of the Abstract Gringo Semantics proposed here relies on the
stable model semantics with intensional functions [28]. Our presentation follows the definition
in terms of of equilibrium logic [32] described by Bartholomew and Lee [33, Section 3.3].



Stable Model Semantics with Intensional Functions. Let 𝐼 and 𝐻 be two interpretations
of a signature 𝜎 and 𝒫 and ℱ respectively be sets of predicate and function constants of 𝜎. We
write 𝐻 ≤𝒫ℱ 𝐼 if

• 𝐻 and 𝐼 have the same universe for all sorts;
• 𝑝𝐻 ⊆ 𝑝𝐼 for every predicate constant 𝑝 in 𝑃 and 𝑝𝐻 = 𝑝𝐼 for every predicate constant 𝑝

not in 𝑃 ;
• 𝑓𝐻 ̸= 𝑓 𝐼 for every function constant 𝑝 in 𝐹 and 𝑝𝐻 = 𝑝𝐼 for every function constant 𝑓

not in 𝐹 ;

We write 𝐻 <𝒫ℱ 𝐼 if 𝐻 ≤𝒫ℱ 𝐼 and 𝐻 ̸= 𝐼 .
Let 𝒫 and ℱ be sets of predicate and function constant of 𝜎, that we consider intensional. An

ht-interpretation of 𝜎 is a pair ⟨𝐻, 𝐼⟩, where 𝐻 and 𝐼 are interpretation of 𝜎 such that 𝐻 ≤𝒫ℱ 𝐼 .
(In terms of Kripke models with two sorts, 𝐼 is the there-world, and 𝐻 is the here-world of a
non-total interpretation). The satisfaction relation |=ℎ𝑡 between HT-interpretation ⟨𝐻, 𝐼⟩ of 𝜎
and a sentence 𝐹 over 𝜎𝐼 is defined recursively as follows:

• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝑝(t), if 𝐼 |= 𝑝(t) and 𝐻 |= 𝑝(t);
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝑡1 = 𝑡2 if 𝑡𝐼1 = 𝑡𝐼2 and 𝑡𝐻1 = 𝑡𝐻2 ;
• ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 ⊥;
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ∧𝐺 if ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 and ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺;
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ∨𝐺 if ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺;
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 → 𝐺 if

(i) 𝐼 |= 𝐹 → 𝐺, and
(ii) ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐹 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺,

• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 ∀𝑋 𝐹 (𝑋) if ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 (𝑑*) for each 𝑑 ∈ |𝐼|𝑠, where 𝑠 is the sort of 𝑋 ;
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 ∃𝑋 𝐹 (𝑋) if ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 (𝑑*) for some 𝑑 ∈ |𝐼|𝑠, where 𝑠 is the sort of 𝑋 .

If ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 holds, we say that ⟨𝐻, 𝐼⟩ satisfies 𝐹 and that ⟨𝐻, 𝐼⟩ is an ht-model of 𝐹 . If two
formulas have the same ht-models then we say that they are ht-equivalent.

An ht-interpretation ⟨𝐻, 𝐼⟩ is said to be standard if both 𝐻 and 𝐼 are standard.

Proposition 2. A standard ht-interpretation ⟨𝐻, 𝐼⟩ of 𝜎* satisfies (11) iff 𝐼 satisfies the condition
stated in Proposition 1 and, in addition, ⟨𝐻, 𝐼⟩ satisfies the following condition:

set |𝐸/X|(x)
𝐻 is the set of all tuples of form ⟨(𝑡1)XY

xy , . . . , (𝑡𝑘)
XY
xy ⟩ such that

⟨𝐻, 𝐼⟩ satisfies (𝑙1)XY
xy ∧ · · · ∧ (𝑙𝑚)XY

xy

where x and y are lists of ground program terms of the same length as X and Y respectively.

About a model 𝐼 of a setΓ of sentences over𝜎𝐼 we say it is ht-stable if every ht-interpretation ⟨𝐻, 𝐼⟩
with 𝐻 <𝒫ℱ 𝐼 does not satisfy Γ.

Now we define the first-order counterpart of gringo answer sets defined in the previous
section. For an interpretation 𝐼 of 𝜎*, by Ans(𝐼), we denote the set of ground atoms that are
satisfied by 𝐼 and whose predicate symbol is not a comparison. If 𝐼 is a standard ht-stable model
of SCA ∪ 𝜏*Π, we say that Ans(𝐼) is a fo-gringo answer set of Π.

Theorem 1. The fo-gringo answer sets of any program coincide with its gringo answer sets.



6. The dlv semantics

Similarly to the Abstract Gringo semantics, the dlv semantics can be stated in terms of a the
same translation 𝜏 to infinitary formulas, but using a different reduct [34].

FLP-stable models are defined for sets of implications rather than arbitrary formulas. Let Γ be
a set of infinitary formulas of the form 𝐺 → 𝐻 , where 𝐻 is a disjunction of propositional atoms
from 𝜎. The FLP-reduct 𝐹𝐿𝑃 (Γ,𝒜) of Γ w.r.t. an interpretation 𝒜 is the set of all formulas
𝐺 → 𝐻 from Γ such that 𝒜 satisfies 𝐺. A set 𝒜 of ground atoms is an FLP-stable model of Γ if
it is a ⊆-minimal model of 𝐹𝐿𝑃 (Γ, 𝐼). We say that a set 𝒜 of ground atoms is a dlv answer set
of a program Π if 𝒜 a FLP-stable model of 𝜏Π.

First-order characterization of the dlv semantics. For the dlv semantics we introduce a
new entailment relation |=𝑑𝑙𝑣 , which is variation of the here-and-there entailment relation |=ℎ𝑡

defined above. This relation is defined recursively, analogously to the relation |=ℎ𝑡, with the
only difference being the implication case:

• ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 𝐹 → 𝐺 if

(i) 𝐼 |= 𝐹 → 𝐺, and
(ii) 𝐻 ̸|= 𝐹 or 𝐼 ̸|= 𝐹 or both 𝐻 |= 𝐺 and 𝐼 |= 𝐺;

If ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 holds, we say that ⟨𝐻, 𝐼⟩ dlv-staisfies 𝐹 and that ⟨𝐻, 𝐼⟩ is an dlv-model of 𝐹 .

Proposition 3. A standard ht-interpretation ⟨𝐻, 𝐼⟩ of 𝜎* dlv-staisfies (11) iff 𝐼 satisfies the
condition stated in Proposition 1 and, in addition, 𝐻 satisfies the following condition:

set |𝐸/X|(x)
𝐻 is the set of all tuples of form ⟨(𝑡1)XY

xy , . . . , (𝑡𝑘)
XY
xy ⟩ such that

𝐻 satisfies (𝑙1)XY
xy ∧ · · · ∧ (𝑙𝑚)XY

xy

where x and y are lists of ground program terms of the same length as X and Y respectively.

About a model 𝐼 of a setΓ of sentences, we say it is dlv-stable if there is no ht-interpretation ⟨𝐻, 𝐼⟩
with 𝐻 <𝒫ℱ 𝐼 and ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 Γ. If 𝐼 is a dlv-stable model of SCA ∪ 𝜏*Π, we say that Ans(𝐼)
is a fo-dlv answer set of Π.

The following conjecture about the relation between dlv answer sets and fo-dlv answer sets
is a matter of ongoing work:

Conjecture 1. The fo-dlv answer sets of any program coincide with its dlv answer sets.

7. Conclusion

This work presents a characterization of recursive aggregates that does not rely on grounding.
For this, we use the same translation from logic programs to first-order formulas described
by Fandinno et al. [35], but we rely on semantics that treat function symbols corresponding
to set symbols as intensional. Recall that these functions map ground terms to sets of tuples
of ground terms - each of these tuples must satisfy the associated conditions present in the
aggregate element. Interestingly, for the semantics of the solver clingo, this particular class of



function symbols behaves in a truly analogous way to intensional predicate symbols; namely,
the constructed set in the here-world is a subset of the constructed set in the there-world, for
any arguments to the function. This is not ordinarily the case for intensional functions nor does
it seem to be the case for the semantics of the solver dlv.

Another interesting outcome of this work is Conjecture 1. The implication of this conjecture
(if proven) is that the differences between recursive aggregates in clingo and dlv are not
actually rooted in aggregates themselves. In both solvers, aggregates are the same intensional
functions on sets of tuples, but which tuples belong to these sets varies between solvers due
to differences in their treatment of implication and negation. The proof of this conjecture is a
matter of ongoing work.

The results presented in this paper bring us closer to a long-term goal of using first-order
reasoning tools to automatically verify properties of programs with aggregates. The next step
is to prove Conjecture 1 and explore its implications. Subsequent future work will include
extending results on strong equivalence to the class of programs studied here.
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A. Proof of Results

Lemma 1. Let 𝐸 be an aggregate element of the form (5) with free variables X and bound
variables Y and let 𝐼 be a standard interpretation. Let x be a list of ground terms of sort 𝑠prg of
the same length as X, 𝑑tuple a domain element of sort tuple, 𝑙′𝑖 = (𝑙𝑖)

X
x and 𝑡′𝑖 = (𝑡𝑖)

X
x . Then, 𝐼

satisfies

𝑑*tuple ∈ set |𝐸|(x) ↔ ∃Y
(︀
𝑑*tuple = tuple (𝑡′1, . . . , 𝑡

′
𝑚) ∧ 𝑙′1 ∧ · · · ∧ 𝑙′𝑛

)︀
(13)

iff the first of the following three conditions is equivalent to the conjunction of the other two:

1. 𝑑tuple belongs to set |𝐸|(x)
𝐼 ,

2. there is a list c of domain elements of sort 𝑠prg of the same length as Y such that
𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐼 and 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)

Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y

and y = c*.

Proof. 𝐼 satisfies (13) iff condition 1 is equivalent to:

𝐼 satisfies ∃Y (𝑇 = tuple (𝑡′1, . . . , 𝑡
′
𝑚) ∧ 𝑙′1 ∧ · · · ∧ 𝑙′𝑛)

Furthemore, the latter holds iff there is a list c of domain elements of sort 𝑠prg such that

𝑑tuple = tuple (𝑡′′1, . . . , 𝑡
′′
𝑚)𝐼 = tuple (𝑡′′1, . . . , 𝑡

′′
𝑚)𝐻 = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)𝐼⟩

and 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with y = c* iff condition 2 holds.
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Lemma 2. Let 𝐸 be an aggregate element of the form (5) with free variables X and bound
variables Y and let 𝐼 be a standard interpretation. Let x be a list of ground terms of sort 𝑠prg of
the same length as X, 𝑙′𝑖 = (𝑙𝑖)

X
x and 𝑡′𝑖 = (𝑡𝑖)

X
x . Then, 𝐼 satisfies

∀𝑇
(︀
𝑇 ∈ set |𝐸|(x) ↔ ∃Y (𝑇 = tuple (𝑡′1, . . . , 𝑡

′
𝑚) ∧ 𝑙′1 ∧ · · · ∧ 𝑙′𝑛)

)︀
(14)

iff set |𝐸|(x)
𝐼 is the set of all tuples of the form ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)𝐼⟩ s.t. 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with

𝑡′′𝑖 = (𝑡′𝑖)
Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y and y a list of ground terms of sort 𝑠prg of the same length as Y.

Proof. Left-to-right. Assume that 𝐼 satisfies (14) and pick any domain element 𝑑tuple of sort 𝑠tuple .
Then, 𝐼 satisfies (13) and, by Lemma 1, 𝑑tuple belongs to set |𝐸|(x)

𝐼 iff there is a list c of domain
elements of sort 𝑠prg of the same length as Y such that 𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐼 and 𝐼
satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)

Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y and y = c*. Then, the rigth-hand side of

the iff holds.

Right-to-left. Assume that set |𝐸|(x)
𝐼 is the set of all tuples of the form ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)𝐼⟩ such

that 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 for some list y of ground terms of sort 𝑠prg of the same length
as Y. Pick any domain element 𝑑tuple of sort 𝑠tuple . By Lemma 1, 𝐼 satisfies (13) and, thus, 𝐼
satisfies (14).

Proof of Proposition 1. Pick any list c of domain elements of sort 𝑠prg and let x = c*. Then,
the result follows directly by Lemma 2.

Lemma 3. ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ↔ 𝐺 iff

• 𝐼 |= 𝐹 ↔ 𝐺, and
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺.

Proof. ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ↔ 𝐺
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 → 𝐺 and ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺 → 𝐹
iff both

• 𝐼 |= 𝐹 → 𝐺 and either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐹 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺, and
• 𝐼 |= 𝐺 → 𝐹 and either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐺 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹

iff

• 𝐼 |= 𝐹 → 𝐺 and 𝐼 |= 𝐺 → 𝐹 , and
• either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐹 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺, and
• either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐺 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹

iff

• 𝐼 |= 𝐹 ↔ 𝐺, and
• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺.

Lemma 4. If ⟨𝐻, 𝐼⟩ is a standard ht-interpretation, then set |𝐸/X|(x)
𝐻 is a subset of set𝐸/X(x)𝐼

for every set symbol 𝐸/X and list x of ground terms of the same length as X.



Proof. Pick any element 𝑑tuple of set |𝐸/X|(x)
𝐻 . Since ⟨𝐻, 𝐼⟩ is a standard ht-interpretation, it

follows that 𝐻 is a standard interpreation and, thus, that the pair (𝑑tuple , set |𝐸/X|(x)
𝐻) belongs

to ∈𝐻 . Hence, (𝑑tuple , set |𝐸/X|(x)
𝐻) also belongs to ∈𝐼 and, thus, 𝑑tuple of set |𝐸/X|(x)

𝐼 .

Lemma 5. Let 𝐸 be an aggregate element of the form (5) with free variables X and bound
variables Y and let ⟨𝐻, 𝐼⟩ be a standard ht-interpretation. Let x be a list of ground terms of
sort 𝑠prg of the same length as X, 𝑑tuple a domain element of sort tuple, 𝑙′𝑖 = (𝑙𝑖)

X
x and 𝑡′𝑖 = (𝑡𝑖)

X
x .

Then, ⟨𝐻, 𝐼⟩ satisfies (13) iff the the following two conditions are equivalent:

1. 𝑑tuple belongs to set |𝐸|(x)
𝐼 ,

2. there is a list c of domain elements of sort 𝑠prg of the same length as Y such that
𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐼 and 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)

Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y

and y = c*,

and the the following two conditions are aslo equivalent:

3. 𝑑tuple belongs to set |𝐸|(x)
𝐻 ,

4. there is a list c of domain elements of sort 𝑠prg of the same length as Y such that
𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐻 and ⟨𝐻, 𝐼⟩ satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)

Y
y and 𝑙′′𝑖 =

(𝑙′𝑖)
Y
y and y = c*.

Proof. From Lemma 3, ⟨𝐻, 𝐼⟩ satisfies (13) iff 𝐼 satisfies (13) and the following two conditions
are equivalent:

5. ⟨𝐻, 𝐼⟩ satisfies 𝑑*tuple ∈ set |𝐸|(x);
6. ⟨𝐻, 𝐼⟩ satisfies ∃Y (𝑇 = tuple (𝑡′1, . . . , 𝑡

′
𝑚) ∧ 𝑙′1 ∧ · · · ∧ 𝑙′𝑛)

Furthemore, by Lemma 1, 𝐼 satisfies (13) iff Conditions 1 and 2 are equivalent. Hence, ⟨𝐻, 𝐼⟩
satisfies (13) iff Conditions 1 and 2 are equivalent, and Conditions 5 and 6 are equivalent.

On the one hand, condition 6 is equivalent to conjuntion of conditions 1 and 3. On the other
hand, condition 6 holds iff there is a list c of domain elements of sort 𝑠prg such that

𝑑tuple = tuple (𝑡′′1, . . . , 𝑡
′′
𝑚)𝐼 = tuple (𝑡′′1, . . . , 𝑡

′′
𝑚)𝐻 = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)𝐼⟩

and ⟨𝐻, 𝐼⟩ satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with y = c* iff condition 4 holds. Therefore, ⟨𝐻, 𝐼⟩ satis-
fies (13) iff

• Conditions 1 and 2 are equivalent, and
• Condition 4 is equivalent to the conjunction of conditions 1 and 3.

Finally, note that by Lemma 4 condition 3 implies 1 and the result holds.

Lemma 6. Let 𝐸 be an aggregate element of the form (5) with free variables X and bound
variables Y and let 𝐼 be a standard interpretation. Let x be a list of ground terms of sort 𝑠prg of the
same length as X, 𝑙′𝑖 = (𝑙𝑖)

X
x and 𝑡′𝑖 = (𝑡𝑖)

X
x . Then, ⟨𝐻, 𝐼⟩ satisfies (14) iff 𝐼 satisfies the condition

stated in Lemma 2 and, in addition, set |𝐸|(x)
𝐻 is the set of all tuples of the form ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)𝐼⟩

s.t. 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)
Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y and y a list of ground terms of sort 𝑠prg

of the same length as Y.



Proof. Left-to-right. Assume that ⟨𝐻, 𝐼⟩ satisfies (14) and pick any domain element 𝑑tuple of
sort 𝑠tuple . Then, ⟨𝐻, 𝐼⟩ satisfies (13) and the result follows immediately by Lemma 5.

Right-to-left. Pick any domain element 𝑑tuple of sort tuple. The conditions of Lemma 5 are
satisfied and the result follows by this lemma.

Proof of Proposition 2. Pick any list c of domain elements of sort 𝑠prg and let x = c*. Then,
the result follows directly by Lemma 2.

A.1. Proof of Theorem 1

First-order interpretations and infinitary formulas. We can extend the satisfaction
relation for ht-interpretations can be extended to infinitary formulas by adding the following
two conditions to the definition for first-order formulas:

• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 Γ
∧ if for every formula 𝐹 in Γ, ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ,

• ⟨𝐻, 𝐼⟩ |=ℎ𝑡 Γ
∨ if there is a formula 𝐹 in Γ such that ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 ,

We write 𝐼 |= 𝐹 if ⟨𝐼, 𝐼⟩ |=ℎ𝑡 𝐹 .
In the following, if 𝐼 is an interpretation, then ℐ denotes the set of ground atomic formulas

satisfied by 𝐼 .

Proposition 4. Let 𝜎𝑝 be a propositional signature consisting of all the ground atomic formulas
of first-order signature 𝜎. Let 𝐹 be a an infinitary formula of 𝜎𝑝. Then,

𝐼 |= 𝐹 iff ℐ |= 𝐹

⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹 iff ℋ |= 𝐹 ℐ

Proof. We proceed by induction on the rank 𝑟 of 𝐹 . For a formula 𝐹 of rank 𝑟+ 1, assume that,
for all formulas 𝐺 of lesser rank than 𝐹 occurring in 𝐹 , ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺 iff ℋ |= 𝐺ℐ .

Base Case: 𝑟 = 0, 𝐹 is a ground atomic formula. Then, ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹
iff 𝐻 |= 𝐹 and 𝐼 |= 𝐹
iff 𝐻 |= 𝐹 and 𝐹 ℐ = 𝐹
iff ℋ |= 𝐹 ℐ

Induction Step:
Case 1: Formula 𝐹 of rank 𝑟 + 1 has form Γ∧. Then, ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹

iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺 for every formula 𝐺 in Γ (by definition)
iff ℋ |= 𝐺ℐ for every formula 𝐺 in Γ (by induction hypothesis)
iff ℋ |= {𝐺ℐ | 𝐺 ∈ Γ}∧
iff ℋ |= 𝐹 ℐ

Case 2: Formula 𝐹 of rank 𝑟 + 1 has form Γ∨. Then, ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺 for some formula 𝐺 in Γ (by definition)
iff ℋ |= 𝐺ℐ for this certain formula 𝐺 in Γ (by induction hypothesis)
iff ℋ |= {𝐺ℐ | 𝐺 ∈ Γ}∨
iff ℋ |= 𝐹 ℐ



Case 3: Formula 𝐹 of rank 𝑟 + 1 has form 𝐺1 → 𝐺2. Then, ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹
iff 𝐼 |= 𝐺1 → 𝐺2 and ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐺1 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺2 (by definition)
iff ⟨𝐼, 𝐼⟩ |=ℎ𝑡 𝐺1 → 𝐺2 and ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐺1 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺2 (by definition)
iff ℐ |= 𝐺ℐ

1 → 𝐺ℐ
2 and ℋ ̸|= 𝐺ℐ

1 or ℋ |= 𝐺ℐ
2 (by induction hypothesis)

iff ℐ |= 𝐺1 → 𝐺2 and ℋ ̸|= 𝐺ℐ
1 or ℋ |= 𝐺ℐ

2

iff ℐ |= 𝐺1 → 𝐺2 and ℋ |= 𝐺ℐ
1 → 𝐺ℐ

2

iff 𝐹 ℐ = 𝐺ℐ
1 → 𝐺ℐ

2 and ℋ |= 𝐺ℐ
1 → 𝐺ℐ

2

iff ℋ |= 𝐹 ℐ

An interpretation that satisfies the condition of Proposition 1 for every set symbol 𝐸/X
in 𝒮 is called an agg-interpretation. Similarly, a ht-interpretation that satisfies the condition of
Proposition 2 for every set symbol 𝐸/X in 𝒮 is called an agg-ht-interpretation. A model that is
an agg-interpretation is called an agg-model and a ht-model that is an agg-ht-interpretation is
called an agg-ht-model.

Lemma 7. Let ⟨𝐻, 𝐼⟩ be an agg-ht-interpretation. Then, 𝐻 <𝒫ℱ 𝐼 iff 𝐻 <𝒫∅ 𝐼 .

Proof. Right-to-left. 𝐻 <𝒫∅ 𝐼 means that there is a predicate symbol 𝑝 such that 𝑝𝐻 ⊂ 𝑝𝐼 and,
thus, 𝐻 <𝒫ℱ 𝐼 also holds. Lert-to-right. 𝐻 <𝒫ℱ 𝐼 means that on of the following holds

• 𝑝𝐻 ⊂ 𝑝𝐼 for some intensional predicate symbol 𝑝; or
• 𝑓𝐻 ̸= 𝑓 𝐼 for some intensional function symbol 𝑓 .

The first immediately implies that 𝐻 <𝒫∅ 𝐼 also holds. For the latter, 𝑓 must be of the
form set |𝐸/X| for some aggregate element 𝐸. Therefore, the set of the set of all tuples of
form ⟨(𝑡1)XY

xy , . . . , (𝑡𝑘)
XY
xy ⟩ such that 𝐼 satisfies (𝑙1)XY

xy ∧ · · · ∧ (𝑙𝑚)XY
xy and the set of all tuples

of form ⟨(𝑡1)XY
xy , . . . , (𝑡𝑘)

XY
xy ⟩ such that ⟨𝐻, 𝐼⟩ satisfies (𝑙1)XY

xy ∧· · ·∧(𝑙𝑚)XY
xy must be different.

This means that 𝑝𝐻 ̸= 𝑝𝐼 for some predicate symbols 𝑝 and, thus, 𝑝𝐻 ⊂ 𝑝𝐼 and 𝐻 <𝒫∅ 𝐼
follow.

We say that an agg-model 𝐼 of an infinitary formula 𝐹 is an FT-agg-stable model of 𝐹 if there
is no agg-ht-interpretation ⟨𝐻, 𝐼⟩ with 𝐻 <𝒫ℱ 𝐼 such that ⟨𝐻, 𝐼⟩ satisfies 𝐹 .

In the following two Lemmas, 𝐼 is an agg-interpretationand ℐ is the set of ground atomic
formulas satisfied by 𝐼 .

Lemma 8. If ℐ is a FT-stable model of 𝐹 , then 𝐼 is a FT-agg-stable model of 𝐹 .

Proof. Since 𝐼 is a FT-stable model of 𝐹 , we get that 𝐼 satisfies 𝐹 and, thus, 𝐼 is an agg-model 𝐼
of 𝐹 . Suppose, for the sake of contradiction, that there is an agg-ht-interpretation ⟨𝐻, 𝐼⟩
with 𝐻 <𝒫ℱ 𝐼 such that ⟨𝐻, 𝐼⟩ satisfies 𝐹 . Then, by Proposition 4, it follows that ℋ |= 𝐹 ℐ .
Furthermore, by Proposition 7, it follows that 𝐻 <𝒫∅ 𝐼 and, thus, ℋ ⊂ ℐ . This is a contradiction
with the assumption that ℐ is a FT-stable model of 𝐹 .

Lemma 9. Let 𝐹 be a an infinitary formula that does not contain function symbols corresponding
to set symbols. Then, ℐ is a FT-stable model of 𝐹 iff 𝐼 is FT-agg-stable model of 𝐹



Proof. The left-to-right direction follows by Lemma 8. For the right-to-left direction, assume
that 𝐼 is an FT-agg-stable model of 𝐹 . Then, 𝐼 satisfies 𝐹 and, by Proposition 4, it follows that ℐ
is a model of 𝐹 . Suppose, for the sake of contradiction, that ℐ is a FT-stable model of 𝐹 . Then,
there is some model 𝒥 of 𝐹 ℐ such that 𝒥 ⊂ ℐ . Let 𝐻 be an agg-interpretation such that

• 𝐻 has the same domain as 𝐼 ,
• for every ground atomic formula 𝑝(t) that does not function symbols corresponding to

set symbols, 𝑝(t)𝐻 is true iff 𝑝(t) belongs to 𝒥 .

Then, 𝐻 <𝒫∅ 𝐼 and, from Proposition 7, we get that 𝐻 <𝒫ℱ 𝐼 . Since 𝐼 is an FT-agg-stable model
of 𝐹 , it follows that ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐹 . From Proposition 4, this implies that ℋ ̸|= 𝐹 ℐ where ℋ
is the set of ground atomic formulas satisfied by 𝐻 . However, 𝒥 and ℋ agree on all atoms
occurring in 𝐹 , so this is a contradiction with the fact that 𝒥 is a model of 𝐹 ℐ .

Infinitary grounding The grounding of a first order sentence 𝐹 with respect to an interpreta-
tion 𝐼 and sets 𝒫 and ℱ of intensional predicate and function symbols is defined as follows:

• gr𝒫ℱ𝐼 (⊥) = ⊥;
• gr𝒫ℱ𝐼 (𝑝(t)) = 𝑝((t𝐼)*) if 𝑝(t) contains intensional symbols;
• gr𝒫ℱ𝐼 (𝑝(t)) = ⊤ if 𝑝(t) does not contain intensional symbols and 𝐼 |= 𝑝(t); and gr𝒫ℱ𝐼 (𝑝(t)) = ⊥

otherwise;
• gr𝒫ℱ𝐼 (𝑡1 = 𝑡2) = (𝑡1 = 𝑡2) if 𝑡1 or 𝑡2 contain intensional symbols;
• gr𝒫ℱ𝐼 (𝑡1 = 𝑡2) = ⊤ if 𝑡1 and 𝑡2 do not contain intensional symbols and 𝑡𝐼1 = 𝑡𝐼2 and ⊥

otherwise;
• gr𝒫ℱ𝐼 (𝐹 ⊗𝐺) = gr𝒫ℱ𝐼 (𝐹 )⊗ gr𝒫ℱ𝐼 (𝐺) if ⊗ is ∧, ∨, or →;
• gr𝒫ℱ𝐼 (∃𝑋 𝐹 (𝑋)) = {gr𝒫ℱ𝐼 (𝐹 (𝑢)) | 𝑢 ∈ |𝐼|𝑠}∨ if 𝑋 is a variable of sort 𝑠;
• gr𝒫ℱ𝐼 (∀𝑋 𝐹 (𝑋)) = {gr𝒫ℱ𝐼 (𝐹 (𝑢)) | 𝑢 ∈ |𝐼|𝑠}∧ if 𝑋 is a variable of sort 𝑠;

For a first order theory Γ, we define gr𝒫ℱ𝐼 (Γ) = {gr𝒫ℱ𝐼 (𝐹 ) | 𝐹 ∈ Γ}∧.
In the following, we write gr 𝐼(𝐹 ) instead of gr𝒫ℱ𝐼 (𝐹 ) when clear by the context.

Lemma 10. An interpretation 𝐼 satisfies a sentence 𝐹 over 𝜎𝐼 iff 𝐼 satisfies gr 𝐼(𝐹 ).

Proof. By induction on 𝐹 .

Case 1: 𝐹 is an atomic sentence. Then, gr 𝐼(𝐹 ) = 𝐹 and the result is trivial.

Case 2: 𝐹 is ∀𝑋𝐺(𝑋) with 𝑋 a variable of sort 𝑠. Then, gr 𝐼(𝐹 ) = {gr 𝐼(𝐺(𝑑*)) | 𝑑* ∈ |𝐼|𝑠}∧
and

⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺(𝑑*) for each 𝑑 ∈ |𝐼|𝑠
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 gr 𝐼(𝐺(𝑑*)) for each 𝑑 ∈ |𝐼|𝑠 (induction)
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 gr 𝐼(𝐹 ).

The case where 𝐹 is ∃𝑋𝐺(𝑋) is analogous to Case 2. The remaining cases where 𝐹 is 𝐺1 ∧𝐺2,
𝐺1 ∨𝐺2 or 𝐹1 → 𝐹2 follow immediately by induction.



Lemma 11. An ht-interpretation ⟨𝐻, 𝐼⟩ satisfies a sentence 𝐹 over 𝜎𝐼 iff ⟨𝐻, 𝐼⟩ satisfies gr 𝐼(𝐹 ).

Proof. By induction on𝐹 similar to Lemma 10. We show here the only case where𝐹 is𝐺1 → 𝐺2.
Then, gr 𝐼(𝐹 ) is gr𝒫ℱ𝐼 (𝐺1) → gr 𝐼(𝐺2) and

⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐹
iff 𝐼 |= 𝐹 and either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐺1 or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝐺2

iff 𝐼 |= gr 𝐼(𝐹 ) (Lemma 10) and either ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 gr
𝒫ℱ
𝐼 (𝐺1)

or ⟨𝐻, 𝐼⟩ |=ℎ𝑡 gr 𝐼(𝐺2) (induction)
iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 gr 𝐼(𝐹 ).

We say that an agg-model 𝐼 of set Γ of a first-order sentences is an agg-stable model of Γ if
there is no agg-ht-interpretation ⟨𝐻, 𝐼⟩ with 𝐻 <𝒫ℱ 𝐼 such that ⟨𝐻, 𝐼⟩ satisfies 𝐺𝑎𝑚𝑚𝑎.

Lemma 12. Let Γ be a set of first-order sentences. Then, 𝐼 is a agg-stable model of Γ iff 𝐼 is an
FT-agg-stable model of gr 𝐼(Γ).

Proof. First, note that by Lemma 10, it follows that 𝐼 is agg-model ofΓ iff 𝐼 is an agg-interpretation
and 𝐼 |= Γ iff 𝐼 is agg-modelof gr 𝐼(Γ). Then, 𝐼 is a agg-stable model of Γ if there is no ⟨𝐻, 𝐼⟩
with 𝐻 <𝒫ℱ 𝐼 that satisfies Γ iff there is no ⟨𝐻, 𝐼⟩ with 𝐻 <𝒫ℱ 𝐼 that satisfies gr 𝐼(Γ)
(Lemma 11) iff 𝐼 is a FT-agg-stable model of gr 𝐼(Γ).

Lemma 13. Let 𝐼 be an agg-interpretation and op be an operation name.
Then, 𝐼 satisfies op(set |𝐸/X|(x)) ≺ 𝑢 iff 𝐼 satisfies

⋀︁
Δ∈𝜒

⎛⎜⎝ ⋀︁
y∈Δ

lXY
xy →

⋁︁
y∈Ψ𝐸X

x
∖Δ

lXY
xy

⎞⎟⎠ (15)

where 𝜒 is the set of subsets Δ of Ψ𝐸X
x

that do not justify aggregate atom op{𝐸X
x } ≺ 𝑢.

Proof. Let Y be the list of variables occurring in 𝐸 that do not occur in X. Let Δ𝐼 = {y ∈
Ψ𝐸X

x
| 𝐼 |= lXY

xy } and 𝐹𝐼 be the formula⋀︁
y∈Δ𝐼

lXY
xy →

⋁︁
y∈Ψ𝐸∖Δ𝐼

lXY
xy

Then, 𝐼 ̸|= 𝐹𝐼 and
set |𝐸/X|(x)

𝐼 = {tXY
xy | y ∈ Δ𝐼} = [Δ𝐼 ].

Consequently, we have

𝐼 |= (15) iff 𝐹𝐼 is not a conjunctive term of (15)

iff Δ𝐼 justifies op(set |𝐸/X|(x)) ≺ 𝑢

iff 𝐼 |= op|([Δ𝐼 ]
*) ≺ 𝑢

iff 𝐼 |= op(set |𝐸/X|(x)) ≺ 𝑢



Lemma 14. Let ⟨𝐻, 𝐼⟩ be an agg-ht-interpretation and op be an operation name. Then, ⟨𝐻, 𝐼⟩
satisfies op(set |𝐸/X|(x)) ≺ 𝑢 iff ⟨𝐻, 𝐼⟩ satisfies

⋀︁
Δ∈𝜒

⎛⎜⎝ ⋀︁
y∈Δ

lXY
xy →

⋁︁
y∈Ψ𝐸X

x
∖Δ

lXY
xy

⎞⎟⎠ (16)

where 𝜒 is the set of subsets Δ of Ψ𝐸X
x

that do not justify aggregate atom op{𝐸X
x } ≺ 𝑢.

Proof. Let us denote op(set |𝐸/X|(x)) ≺ 𝑢 as 𝐴 in the following.

Case 1: 𝐼 ̸|= 𝐴. By Lemma 13, it follows that 𝐼 ̸|= (16). Therefore, ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 𝐴 and ⟨𝐻, 𝐼⟩ ̸|=ℎ𝑡 (16).

Case 2: 𝐼 |= 𝐴. By Lemma 13, it follows that 𝐼 |= (16). Let

Δ⟨𝐻,𝐼⟩ = {y ∈ Ψ𝐸X
x
| ⟨𝐻, 𝐼⟩ |=ℎ𝑡 l

XY
xy }

and 𝐹⟨𝐻,𝐼⟩ be the formula ⋀︁
y∈Δ⟨𝐻,𝐼⟩

lXY
xy →

⋁︁
y∈Ψ𝐸∖Δ⟨𝐻,𝐼⟩

lXY
xy

Then, ⟨𝐻, 𝐼⟩ ̸|= 𝐹⟨𝐻,𝐼⟩ and

set |𝐸/X|(x)
𝐻 = {tXY

xy | y ∈ Δ⟨𝐻,𝐼⟩} = [Δ⟨𝐻,𝐼⟩].

Consequently, we have

⟨𝐻, 𝐼⟩ |= (16) iff 𝐼 |= (16) and

𝐹⟨𝐻,𝐼⟩ is not a conjunctive term of (16)

iff 𝐹⟨𝐻,𝐼⟩ is not a conjunctive term of (16)

iff Δ⟨𝐻,𝐼⟩ justifies op(set |𝐸/X|(x)) ≺ 𝑢

iff 𝐻 |= op|([Δ⟨𝐻,𝐼⟩]
*) ≺ 𝑢

iff 𝐻 |= op(set |𝐸/X|(x)) ≺ 𝑢

iff 𝐻 |= 𝐴

iff ⟨𝐻, 𝐼⟩ |= 𝐴

Lemma 15. Let Π be a program, 𝒫 be the set of all predicate symbols in 𝜎* other than comparisons,
ℱ be the set of all function symbols corresponding set symbols. Then,

⟨𝐻, 𝐼⟩ |=ℎ𝑡 𝜏Π iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 gr
𝒫ℱ
𝐼 (𝜏*Π)

for every agg-ht-interpretation ⟨𝐻, 𝐼⟩.

Proof. Recall that comparisons are not intensional in the definition of the stable models of
a program, that is, they do not belong to 𝒫 . Then, it is easy to see that 𝜏Π can be obtained



from gr𝒫ℱ𝐼 (𝜏*Π) by replacing each occurrence of op(set |𝐸/X|(x)) ≺ 𝑢, where op is an oper-
ation name, by its corresponding formula of the form of (15): Here 𝜒 is the set of subsets Δ
of Ψ𝐸X

x
that do not justify op(set |𝐸/X|(x)). Hence, it is enough to show that

⟨𝐻, 𝐼⟩ |=ℎ𝑡 op(set |𝐸/X|(x) ≺ 𝑢) iff ⟨𝐻, 𝐼⟩ |=ℎ𝑡 (15)

This follows from Lemma 15.

In the following two Lemmas, Π is a program, 𝒫 is the set of all predicate symbols in 𝜎*

other than comparisons, ℱ is the set of all function symbols corresponding set symbols, and
let 𝐼 be an agg-interpretation.

Lemma 16. 𝐼 is an FT-agg-stablemodel of 𝜏Π iff it is an FT-agg-stablemodel of gr 𝐼(𝜏*Π).

Proof. By Lemma 15, 𝜏Π and gr 𝐼(𝜏
*Π) have the same agg-ht-models.

Lemma 17. ℐ is an FT-stable model of 𝜏Π iff 𝐼 is an agg-stable model of 𝜏*Π.

Proof. ℐ is an FT-stable model of 𝜏Π
iff 𝐼 is an FT-agg-stable model of 𝜏Π (Lemma 9)
iff 𝐼 is an FT-agg-stable model of gr 𝐼(𝜏

*Π) (Lemma 16)
iff 𝐼 is an agg-stable model of 𝜏*Π. (Lemma 12)

Lemma 18. A set 𝒜 of ground atoms is an FT-stable model of 𝜏Π iff there is some 𝐼 agg-stable
model of 𝜏*Π such that 𝒜 = Ans(𝐼).

Proof. The right-to-left direction follows directly from Lemma 17 by taking noting that there
are no comparison symbols in 𝜏Π. For the left-to-right direction let 𝐼 be an agg-interpretation
such that 𝑝(t)𝐼 is true iff 𝑝(t) belongs to 𝒜. Then, 𝒜 is the set of all ground atoms in ℐ that do
not contain comparison symbols and, since 𝜏Π does not contain comparison symbols, it follows
that ℐ is a FT-stable model of 𝜏Π too. The result follows now by Lemma 17.

Lemma 19. 𝐼 is a stable model of SCA ∪ Γ iff 𝐼 is a agg-stable model of Γ.

Proof. By definition, 𝐼 is a agg-stable model of Γ iff 𝐼 is an agg-model of Γ and there is no
agg-ht-interpretation ⟨𝐻, 𝐼⟩ with 𝐻 <𝒫ℱ 𝐼 such that ⟨𝐻, 𝐼⟩ satisfies Γ iff (Propositions 1 and 2)
iff 𝐼 is a model of SCA ∪ Γ and there is no agg-ht-interpretation ⟨𝐻, 𝐼⟩ with 𝐻 <𝒫ℱ 𝐼 such
that ⟨𝐻, 𝐼⟩ satisfies SCA ∪ Γ iff 𝐼 is a stable model of SCA ∪ Γ.

Proof of Theorem 1. Let Π be a program. Then,
𝒜 is a gringo answer set of Π.

iff 𝒜 is an FT-stable model of 𝜏Π
iff (Lemma 18) there is an agg-stable model 𝐼 of 𝜏*Π such that Ans(𝐼) = 𝒜
iff (Lemma 19) there is an stable model 𝐼 of SCA ∪ 𝜏*Π such that Ans(𝐼) = 𝒜
iff 𝒜 is a fo-gringo answer set of Π

Lemma 20. ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 𝐹 ↔ 𝐺 iff



• 𝐼 |= 𝐹 ↔ 𝐺, and
• 𝐻 |= 𝐹 and 𝐼 |= 𝐹 iff 𝐻 |= 𝐺 and 𝐼 |= 𝐺.

Proof. ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 𝐹 ↔ 𝐺
iff ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 𝐹 → 𝐺 and ⟨𝐻, 𝐼⟩ |=𝑑𝑙𝑣 𝐺 → 𝐹
iff both

• 𝐼 |= 𝐹 → 𝐺 and either 𝐻 ̸|= 𝐹 or 𝐼 ̸|= 𝐹 or both 𝐻 |= 𝐺 and 𝐼 |= 𝐺, and
• 𝐼 |= 𝐺 → 𝐹 and either 𝐻 ̸|= 𝐺 or 𝐼 ̸|= 𝐺 or both 𝐻 |= 𝐹 and 𝐼 |= 𝐹 ;

iff

• 𝐼 |= 𝐹 → 𝐺 and 𝐼 |= 𝐺 → 𝐹 , and
• either 𝐻 ̸|= 𝐹 or 𝐼 ̸|= 𝐹 or both 𝐻 |= 𝐺 and 𝐼 |= 𝐺, and
• either 𝐻 ̸|= 𝐺 or 𝐼 ̸|= 𝐺 or both 𝐻 |= 𝐹 and 𝐼 |= 𝐹 ;

iff

• 𝐼 |= 𝐹 ↔ 𝐺, and
• 𝐻 |= 𝐹 and 𝐼 |= 𝐹 implies 𝐻 |= 𝐺 and 𝐼 |= 𝐺, and
• 𝐻 |= 𝐺 and 𝐼 |= 𝐺 implies 𝐻 |= 𝐹 and 𝐼 |= 𝐹 ;

iff

• 𝐼 |= 𝐹 ↔ 𝐺, and
• 𝐻 |= 𝐹 implies 𝐻 |= 𝐺, and
• 𝐻 |= 𝐺 implies 𝐻 |= 𝐹 ;

iff

• 𝐼 |= 𝐹 ↔ 𝐺, and
• 𝐻 |= 𝐹 ↔ 𝐺.

Lemma 21. Let 𝐸 be an aggregate element of the form (5) with free variables X and bound
variables Y and let ⟨𝐻, 𝐼⟩ be a standard ht-interpretation. Let x be a list of ground terms of
sort 𝑠prg of the same length as X, 𝑑tuple a domain element of sort tuple, 𝑙′𝑖 = (𝑙𝑖)

X
x and 𝑡′𝑖 = (𝑡𝑖)

X
x .

Then, ⟨𝐻, 𝐼⟩ dlv-staisfies (13) iff the the following two conditions are equivalent:
1. 𝑑tuple belongs to set |𝐸|(x)

𝐼 ,
2. there is a list c of domain elements of sort 𝑠prg of the same length as Y such that

𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐼 and 𝐼 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)
Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y

and y = c*,

and the the following two conditions are aslo equivalent:
3. 𝑑tuple belongs to set |𝐸|(x)

𝐻 ,
4. there is a list c of domain elements of sort 𝑠prg of the same length as Y such that

𝑑tuple = ⟨(𝑡′′1)𝐼 , . . . , (𝑡′′𝑚)⟩𝐻 and 𝐻 satisfies 𝑙′′1 ∧ · · · ∧ 𝑙′′𝑛 with 𝑡′′𝑖 = (𝑡′𝑖)
Y
y and 𝑙′′𝑖 = (𝑙′𝑖)

Y
y

and y = c*.

Proof. From Lemma 20, ⟨𝐻, 𝐼⟩ dlv-staisfies (13) iff both 𝐻 and 𝐼 satisfy (13). The result follows
now by Lemma 1.

Proof of Proposition 3. Pick any list c of domain elements of sort 𝑠prg and let x = c*. Then,
the result follows directly by Lemma 21.
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