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Abstract

Liftable probabilistic logic programs are a recently proposed restriction of probabilistic logic programs
that impose a particular structure on the clauses such that inference can be performed in a lifted way. In
this paper, we discuss a work in progress to perform link prediction in knowledge graphs by learning
liftable probabilistic logic programs via regularization.
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1. Proposed Approach

Probabilistic Logic Programming [1] is one of the possible choices to express uncertainty with a
logic-based language. A Logic Program with Annotated Disjunction [2] allows logical rules of
the form:

hi:m;.0 3 hy s - —=b1, ..., by

with the meaning that, if the conjunction of literals b; (the body) is true, then h; can be selected
with probability 7y, ..., hy, with probability m,,, where ) . m; = 1. If the sum of the 7; is
less than 1, an additional implicit head atom is considered, with probability 1 — ). m;. To
perform inference, these programs are converted into a compact form through a process called
knowledge compilation [3]. In this new form, inference is much cheaper, but still remains in
the #P complexity class.

The authors of [4] proposed liftable probabilistic logic programs. These programs contain
only rules of the form

h:m:—=by,..., by

The atom h has a distinguished predicate ¢/n, called target, and all the rules in the program
have only ¢/n in the head. The literals b; are defined by means of certain facts and rules (i.e.,
non probabilistic) built over input predicates. The computation of the probability of an atom
q for the target predicate ¢/n (i.e., of a ground instantiation ¢ of ¢/n) in a program with only
these type of rules can be performed without knowledge compilation: first, we find the number
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of ground instantiations of the clauses with ¢ in the head and the body true. Each of these
instantiations corresponds to a Boolean random variable X; that is true with probability ;
and false with probability 1 — 7;. Due to the structure of the clauses, the query g is true if at
least one of the Xj is true. To compute the probability of ¢ we can notice that all the X;s are
mutually independent and that the probability that none of these is true is [[;- (1 — m;)™
where m; is the number of ground instantiations for a rule R; and n is the total number of
probabilistic clauses. The probability that q is true can be computed as 1 minus the probability
that it is false. Thatis, P(¢) = 1 — []},(1 — m;)™. Overall, we just need to know the number
of instantiations with the body true to compute the probability of a query.

This language, and probabilistic logic languages in general, are useful in the context of
machine learning where usually we are given a set of interpretations (often called mega-
interpretations) that define the input predicates. Each mega-interpretation is associated with a
set of positive and negative examples, that are a set of atoms for the target predicate whose
probabilities should be maximized and minimized respectively.

Knowledge Graph (KG) completion is a research field that attracted a lot of interest in
the last years, with several approaches [5, 6, 7, 8, 9]. A knowledge graph is a set of triples
(s, p, 0) where s is the subject, p is the predicate, and o is the object. An example of a triple
is (bob, likes, gardening). The knowledge graph completion task requires learning rules to
predict the object or the subject given the predicate and the subject or the object respectively.
These rules are usually in the form of First Order Rules with associated weights.

In this paper, we propose to learn liftable probabilistic logic programs for knowledge graph
completion. The pipeline is the following: first, we define an appropriate language bias, i.e., a
set of templates that specify the form of the learnable rules, such as the target predicate, its
arity, and the literals that can appear in the body by means of mode declarations in the style of
Progol [10]. Then, we iteratively apply LIFTCOVER+, a modified version of LIFTCOVER [4], to
learn a program and its parameters (i.e., the probabilities of the head atoms). The goal of the
learning task is to maximize the log likelihood of the examples, i.e., solve

argmaxp Z logP(e;) + Z log(1 — P(e;))

ecet e€e™

where e™ and e~ are respectively positive and negative examples and P is the program. Negative
examples can be generated starting from some ground atoms from the KG of interest by changing
the subject or the object. To search for candidate programs, LIFTCOVER+ performs a beam
search over the space of clauses defined by the language bias. At the end of the clause search
phase a set of promising clauses is found. Recently, the authors of [11] proposed to adopt
regularization during the learning of hierarchical probabilistic logic programs, another restriction
of probabilistic logic programs where rules are organized in a hierarchical way, where the goal
is to set as many parameters as possible to 0, to keep only the relevant clauses. To learn the
structure, LIFTCOVER+ learns the parameters with regularization over the program containing
all promising clauses. After parameter learning, the clauses with a probability below a fixed
threshold are discarded. In this sense it differs from LIFTCOVER, which learned the structure
using greedy search.



Parameter learning involves the following objective function

argmaz, Z logP(e;) + Z log(1 — P(e;))

ecet e€e™

that can be solved either with EM or gradient descent. In the first case, we can apply L1, L2 or
Bayesian regularization. The L1 and L2 objective functions for the Maximization phase of EM
are respectively [11]

Ji(m) = Ny - logm + Ng - log(1 — 7) — v

and

Jo(m) = Ny - logm + Ny - log(1 — ) — %712

where Ny and Nj are respectively the expected values for the number of times the variable
associated with each rule takes value false and true and 7 is the value of the parameters
(probabilities) and +y is a hyperparameter. The value of 7 that maximizes J; and J can be
analytically computed [11]. Differently, Bayesian regularization [12] consists in a Bayesian
update of the parameters assuming a prior that takes the form of a Dirichlet with parameters
[a, b].

In the case of gradient descent, we can apply L1 or L2 regularization to the loss function to
minimize that become respectively [11]

N k
errpy = Z —yi - logP(e;) — (1 —y;) - log(1 — P(e;)) + vz |7
=1 i=1

and

k
>
i=1

where N is the total number of examples, y; indicates whether an example is positive (y; = 1) or
negative (y; = 0), k is the number of parameters (the probabilities of the clauses), m; represents
the parameters of the clauses, e; is the i-th example, and 7 is a hyperparameter.

Preliminary experiments have shown that naively applying LIFTCOVER+ to commonly used
KG datasets is not feasible, because the clause search space is too broad: the resulting programs
have very low performance. Thus, we are investigating approaches based on learning chain

N
errpy = Z —y; - logP(e;) — (1 — y;) - log(1 — P(e;)) +
i=1

o2

rules of increasing length, as in [13]: at each iteration, we learn a set of rules of a fixed length
together with their parameters and apply regularization to prune the ones with negligible
probability. Then, we increase the rule length and continue this process until a certain accuracy
is reached.
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