
Resolution of Analogies Between Strings in the Case
of Multiple Solutions
Xulin Deng, Yves Lepage

Waseda University, Japan

Abstract
The verification and resolution of formal analogies between strings focuses on the character sequences,
disregarding the underlying semantics of the sequences. Our approach to these two tasks employs
an algorithm based on edit distance. A previous version was limited in that it provided only a single
solution for an analogy equation, even when multiple valid solutions existed. We enhance the algorithm
to generate all possible solutions. The previous algorithm traversed edit distance matrices only once.
Consequently, it could only yield one solution for an analogy puzzle, even in cases of multiple solutions
were viable. In order to deliver all possible solutions for analogies, we introduce a recursive approach. By
recursively exploring all traces in the edit distance matrices, our newer version is capable of generating
and outputting all feasible solutions.

Keywords
Analogy, Multiple solutions, Data Generation, Strings

1. Background

In this paper, we deal with formal analogies between strings, i.e., sequences of characters, like
the ones described in [1]. We do not address analogy learning, nor semantic analogies [2]. An
analogy is a relation between four terms; it is noted by A : B :: C : D, commonly read as “𝐴
is to 𝐵 as 𝐶 is to 𝐷”. As said above, in this paper, the terms will be strings.

Analogy between strings can be applied in the field of natural language processing for tasks
like transliteration [3, 4], morphology [5, 6, 7] or even machine translation [8, 9]. Methods
to solve analogies are basic functions in such previous work. Several approaches have been
proposed [4, 10, 11].

In the previous work by [10], which serves as the foundation of this paper, the algorithm
demonstrated a high level of accuracy in providing precise answers for the majority of cases,
with the exception of instances involving reduplication and permutation because this algorithm
lacked the capability to address these particular linguistic phenomena [12]. But, in addition, in
scenarios where analogy puzzles have multiple potential solutions, the algorithm was limited to
generating a single answer. Consequently, this limitation introduced inaccuracy was a handicap
for comparison with other proposals.

In the work conducted by [11], a complexity-based algorithm for solving analogies is intro-
duced. The authors provide a comprehensive table presenting the proportion of correct solutions

ICCBR ATA’23: Workshop on Analogies: From Theory to Applications – AR & CBR Tools for Metric and Representation
Learning at ICCBR2023, July 17 – 20, 2023, Aberdeen, Scotland
$ origamisama@akane.waseda.jp (X. Deng); yves.lepage@waseda.jp (Y. Lepage)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:origamisama@akane.waseda.jp
mailto:yves.lepage@waseda.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Xulin Deng et al. ICCBR’23 Workshop Proceedings

Language Number of analogies
Method

Complexity [11] Distance [10] Shuffle [7]

Arabic 165,113 87.18% 93.33% 81.91%
Finnish 313,011 93.69% 92.76% 78.75%
Georgian 3,066,273 99.35% 97.54% 88.42%
German 730,427 98.84% 96.21% 95.42%
Hungarian 2,912,310 95.71% 92.61% 86.02%
Maltese 28,365 96.38% 84.72% 91.84%
Navajo 321,473 81.21% 86.87% 78.95%
Russian 552,423 96.41% 97.26% 95.46%
Spanish 845,996 96.73% 96.13% 94.42%
Turkish 245,721 89.45% 69.97% 70.06%

Total 9,181,112 96.41% 94.34% 87.93%

Table 1
Table copied from [11] showing the accuracies of three approaches to solving morphological analogies
in various languages.

for a dataset of analogy equations, compiled by [13] from the Sigmorphon Analogy Dataset,
and recognized as the most extensive dataset available for this purpose. Table 1 reproduces this
table. It gives the accuracy per language.

The Shuffle algorithm proposed by [4] is another algorithm employed for solving analogies.
On the other hand, the Distance algorithm being referred to is the baseline of our paper.

In Table 1, it is evident that the complexity algorithm outperforms the Distance algorithm in
terms of accuracy. This may be attributed to the fact that the Distance algorithm fails to deliver
certain solutions, which results in a lower overall performance.

By correcting the limitation of the Distance algorithm, it is hoped that an increase in accuracy
will be obtained.

In the Sigmorphon Analogy Dataset, the provided answers for certain analogy puzzles do
not encompass all potential solutions. This is illustrated by the following example.

asked : ask :: seemed : 𝑥
⇒ 𝑥 = seem or seme

The dataset suggests that the correct answer to this analogy is “seem”. It does not consider
“seme” as a solution. However, theoretically, “seme” satisfies the criteria for solving analogies
adopted by the Distance algorithm and should be identified as a potential answer. The previous
version of the Distance algorithm outputs only one of the solutions. Consequently, there is a
need to propose an algorithm that would generate the two possible answers for this analogy,
including the one that is not recognized by the dataset as a solution.

2

Xulin Deng et al. ICCBR’23 Workshop Proceedings

2. Proposal: Recursive version for the Distance algorithm

In order to deliver all possible solutions for an analogy puzzle, we first examine why the previous
algorithm delivers only a single solution. Let us consider an example analogy puzzle:

aa : ab :: aaa : 𝑥
⇒ 𝑥 = ?

The processing of the Distance algorithm involves several steps. Firstly, it checks whether
the analogy puzzle satisfies a specific constraint, namely whether all the letters in the string
𝑎𝑎 appear either in the string 𝑎𝑏 or teh string 𝑎𝑎𝑎. Once this constraint is met, the algorithm
proceeds to compute edit distance matrices [14] between the strings 𝑎𝑎 and 𝑎𝑏, as well as
between the strings 𝑎𝑎 and 𝑎𝑎𝑎. The result is illustrated below. The string 𝑎𝑎 appears as a
vertical axis around which the matrices are built. Notice that, consequently, the string 𝑎𝑏 is
written from right to left for symmetry reasons.

𝑏 𝑎 𝑎 𝑎 𝑎
· 0 𝑎 0 1 ·
1 · 𝑎 · 0 1

Then the algorithm computes the edit distance traces [15] in each of the edit distance matrices,
so as to deliver an answer by establishing a correspondence between the two traces found.

𝑏 𝑎 𝑎 𝑎 𝑎
· 0 𝑎 0 1 ·
1 · 𝑎 · 0 1

The established correspondence can be visualised in the following table, where actions
that consist in outputting one character at a time in the solution, are taken according to the
correspondence between the two traces, relying on the directions followed along the traces.

𝑑𝑖𝑟𝐴𝐵 𝑑𝑖𝑟𝐴𝐶 do

diagonal diagonal copy 𝑏
diagonal horizontal copy 𝑎
diagonal diagonal copy 𝑎

As a result, the algorithm delivers the solution 𝑎𝑎𝑏. The algorithm explores the traces only
once and stops. Consequently, it does not output other possible solutions: 𝑎𝑎𝑏 and 𝑎𝑏𝑎.

To get the solution 𝑎𝑏𝑎, the algorithm needs to follow the following steps, indicated in the
following table, similar to the previous one above.

𝑑𝑖𝑟𝐴𝐵 𝑑𝑖𝑟𝐴𝐶 do

diagonal horizontal copy a
diagonal diagonal copy b
diagonal diagonal copy a

3

Xulin Deng et al. ICCBR’23 Workshop Proceedings

The traces that have been followed in this table, are other paths that allow to still get the
minimal edit distances between 𝑎𝑎 and 𝑎𝑏 on the one hand, and between 𝑎𝑎 and 𝑎𝑎𝑎 on the
other hand. The edit distance matrices are the same matrices as above, but the traces are
different. Here, in fact, only the trace between 𝑎𝑎 and 𝑎𝑎𝑎 is different.

𝑏 𝑎 𝑎 𝑎 𝑎
· 0 𝑎 0 1 ·
1 · 𝑎 · 0 1

The new trace shown here is not computed by the algorithm, although it corresponds to
a minimal edit distance between the strings involved in the analogy puzzle. The reason for
the algorithm to provide only one solution is that it simply does not produce and explore all
possible traces within the matrices.

To address this limitation, we propose to implement a recursive version of the Distance
algorithm. By adopting a recursive approach, the algorithm will go beyond the initial trace it
finds and backtrack to the beginning, thereby exploring alternative traces. This modification
will allow the algorithm to consider multiple traces and generate a other solutions for the same
analogy puzzle.

It is important to note that while the main idea of the algorithm remains the same, the
proposed change lies in the implementation of the algorithm. The recursive version enhances
the algorithm’s capability to explore and generate a more comprehensive set of traces, thus
improving the overall solution output for the analogy puzzle, that is its recall.

3. Generation of Data for the Experiments

We evaluate our work by performing experiments on the previously introduced Sigmorphon
Analogy Dataset. In addition, we use automatically generated data, for which we control the
number of solutions, so as to ensure that the new version of the Distance algorithm actually
outputs the exact number of possible solutions for a given analogy puzzle and that the solutions
are exact.

The Distance algorithm relies on a definition of analogy given in [10]. By noting the distance
between two strings 𝐴 and 𝐵 by 𝑑(𝐴,𝐵) and the count of a character 𝑎 in a string 𝐴 by |𝐴|𝑎,
this definition is as follows:

𝐴 : 𝐵 :: 𝐶 : 𝐷 ⇒

⎧⎨⎩
𝑑(𝐴,𝐵) = 𝑑(𝐶,𝐷)
𝑑(𝐴,𝐶) = 𝑑(𝐵,𝐷)

|𝐴|𝑎 + |𝐷|𝑎 = |𝐵|𝑎 + |𝐶|𝑎, ∀𝑎
(1)

In order to cross-check the validity of our new recursive version of the Distance algorithm, we
choose to generate our additional test data based on another definition of analogy between
strings, namely the one given in [4]. According to this definition, 𝐷 is a solution to the analogy
puzzle 𝐴 : 𝐵 :: 𝐶 : ? if 𝐷 is a string that belongs to the shuffle string of the strings 𝐵 and
𝐶 , from which all the characters of string 𝐴 have been discarded in the same order. If we
denote with 𝐵 ∙ 𝐶 the shuffle of strings 𝐵 and 𝐶 , and the discarding operation with ∖, then
this definition states:

𝐷 ∈ (𝐵 ∙ 𝐶) ∖𝐴 (2)

4

Xulin Deng et al. ICCBR’23 Workshop Proceedings

3.1. Analogy puzzles with no solution

Based on the observation at the foundation of the definition of analogy between strings by
distance [10, p. 731], and similarly, based on the definition by shuffle [16, p. 123], we can state
that, if an analogy has solutions, all the characters in 𝐴 should appear in 𝐵 and 𝐶 at least once.
Consequently, generating analogy puzzles which have no solution can be done by the following
procedure which basically enforces a character in 𝐴 to appear in neither 𝐵 nor in 𝐶 .

– Step 1: Randomly generate a string 𝐴.

– Step 2: Randomly select a character, delim, in 𝐴 which will not appear in 𝐵 or 𝐶 .

– Step 3: Randomly generate strings 𝐵 and 𝐶 that do not contain the character selected in –
Step 2:.

Below is an instance of the above generation process to get an analogy without any solution.

– Step 1: 𝐴← abcd.

– Step 2: delim← a.

– Step 3: 𝐵,𝐶 ← bc, efgc (𝐵 and 𝐶 do not contain delim = a).

With these values, the following analogy puzzle has no solution:

abcd : bc :: efgc : 𝑥
⇒ 𝑥 = no solution

3.2. Analogy puzzles with only one solution

3.2.1. Analogy puzzles with only one solution, the empty string

As mentioned earlier, in the case of an analogy with solutions, every character present in string
𝐴 must also appear in either string 𝐵 or string 𝐶 . Consequently, to create an analogy with
only one solution that is the empty string, it suffices to create 𝐵 and 𝐶 from 𝐴 by distributing
each character in 𝐴 either in 𝐵 or in 𝐶 , in the same order. As a result, all characters from 𝐴 are
found in 𝐵 or 𝐶 . In this setting, for the shuffle explanation, 𝐵 ∙ 𝐶 = 𝐴 ∙𝐷 implies that 𝐷 is
the empty string. For the distance explanation, because of the counts of characters in 𝐴 and 𝐷
being equal to those in 𝐵 and 𝐶 , this also implies that 𝐷 is the empty string.

A degenerated case of the above is to split 𝐴 into two parts, the left and the right parts, i.e., 𝐵
is a prefix of 𝐴 and 𝐶 is the remaining suffix of 𝐴. This makes the analogy 𝐵.𝐶 : 𝐵 :: 𝐶 : 𝜀.

3.2.2. Analogy puzzles with only one solution, which is not the empty string

Drawing upon the approach of generating analogy puzzles with an empty string solution, it
becomes feasible to incorporate additional sub-strings within both 𝐵 and 𝐶 . These sub-strings
are concatenated in the sequential order of their insertion into 𝐵 and 𝐶 , ultimately forming the
solution to the analogy puzzle, denoted as 𝐷.

5

Xulin Deng et al. ICCBR’23 Workshop Proceedings

• Divide 𝐴 into a prefix and a suffix 𝐵′ and 𝐶 ′, i.e., 𝐴 = 𝐵′.𝐶 ′.

• Create additional sub-strings that do not share any character with 𝐴.

• Insert the additional sub-strings into 𝐵′ or 𝐶 ′.

In the last step, the following constraints are crucial in guaranteeing the uniqueness of the
solution:

• No additional sub-string should be added as a suffix of 𝐵′;

• No additional sub-string should be added as a prefix of 𝐶 ′.

To justify these constraints, consider the following analogy puzzle:

abcd : ab :: cd : 𝑥
⇒ 𝑥 = ?

Here, the prefix is 𝐵′ = 𝑎𝑏 and the suffix is 𝐶 ′ = 𝑐𝑑. Let us denote the additional sub-strings
by 𝑀 and 𝑁 . We insert 𝑀 into the middle of string 𝐵′. We insert 𝑁 at the beginning of string
𝐶 ′, which does not respect the constraint given above. Clearly, because of that, the obtained
analogy puzzle has possibly several solutions:

abcd : aMb :: Ncd : 𝑥
⇒ 𝑥 = any string in M ∙N

Hence, the procedure for generating analogy puzzles that possess a unique solution can be
outlined as follows:

– Step 1: Randomly generate a string 𝐴 and select a position to divide 𝐴 into prefix 𝐵′ and
suffix 𝐶 ′.

– Step 2: Create any number of sub-strings randomly, each without any of the characters
in 𝐴.

– Step 3: Insert the sub-strings into 𝐵′ and 𝐶 ′ and get 𝐵 and 𝐶 , respecting the constraints:

• no sub-string is inserted as a suffix of the prefix 𝐵′.

• no sub-string is inserted as a prefix of the suffix 𝐶 ′.

Here is a generation instance following the above procedure:

– Step 1: Generate a string 𝐴 = abcd. Select the position of a character, for instance, "c" to
divide 𝐴 into prefix abc and suffix d.

– Step 2: Create three sub-strings op, mn and opmn.

– Step 3: Insert the sub-strings respecting the constraints. For instance, get 𝐵 = amnbopc
and 𝐶 = dopmn.

6

Xulin Deng et al. ICCBR’23 Workshop Proceedings

𝐷 is necessarily the concatenation of the sub-strings in the order they have been inserted in the
prefix and suffix of 𝐴, which is unique. Hence, 𝐷 is unique. As a result the obtained analogy
puzzle has only one unique solution:

abcd : amnbopc :: dopmn : 𝑥
⇒ 𝑥 = mnopopmn

3.3. Analogy puzzles with several solutions

As explained in the section regarding the generation of analogy puzzles with only one solution,
certain constraints serves as a means of ensuring solution uniqueness. However, in the absence
of such constraints, alternative methodologies can be employed to generate analogy puzzles
with multiple solutions.

There are primarily two constraints we previously mentioned, which are:

1. Position:
No additional sub-string should be added as a suffix of 𝐵′, and no additional sub-string
should be added as a prefix of 𝐶 ′.

2. Character:
Create additional sub-strings that do not share any character with 𝐴.

3.3.1. Without the position constraint

Let us consider a slight variation of the example given in section 3.2.2 that ignores the constraint
on position:

abcd : abM :: Ncd : 𝑥
⇒ 𝑥 = any string in M ∙ N

In this analogy puzzle, we denote the additional sub-strings by 𝑀 and 𝑁 . We add 𝑀 as the
suffix of 𝐵′ and 𝑁 as the prefix of 𝐶 ′, which has the consequence that the analogy puzzle has
potentially several solutions.

Hence, a first possible procedure for generating analogy puzzles that possess several solutions
can be outlined as follows:

– Step 1: Randomly generate a string 𝐴 and select a position to divide 𝐴 into prefix 𝐵′ and
suffix 𝐶 ′.

– Step 2: Create two sub-strings randomly, each without any of the characters in 𝐴. To ensure
that 𝑀.𝑁 contains two or more elements, we impose that each of the two sub-strings
contains at least two different characters.

– Step 3: Add one sub-string as the suffix of 𝐵′ and another as the prefix of 𝐶 ′ to get 𝐵 and 𝐶 .

7

Xulin Deng et al. ICCBR’23 Workshop Proceedings

3.3.2. Without the character constraint

Here is an example that ignores the character constraint:

abcd : aOb :: cMdNcMdN : 𝑥
⇒ 𝑥 = any string in OcMdNcMdN ∖ cd

In this analogy puzzle, we denote the additional sub-strings by 𝑂, 𝑀 , and 𝑁 . We insert 𝑂
into string 𝐵′, insert 𝑀 and 𝑁 into string 𝐶 ′ and repeat 𝐶 ′ several times to get 𝐶 . This creates
an analogy puzzle with several solutions because of the multiple possibilities to erase 𝑐𝑑 from
𝐶 .

Hence, a second procedure for generating analogy puzzles that possess several solutions can
be outlined as follows:

– Step 1: Randomly generate a string 𝐴 and select a position to divide 𝐴 into prefix 𝐵′ and
suffix 𝐶 ′.

– Step 2: Create any number of sub-strings randomly, each without any of the characters
in 𝐴.

– Step 3: Insert the sub-strings into 𝐵′ and 𝐶 ′ and get 𝐵 and 𝐶 ′′, respecting the constraints:

• no sub-string is inserted as a suffix of the prefix 𝐵′.

• no sub-string is inserted as a prefix of the suffix 𝐶 ′.

– Step 4: Repeat 𝐶 ′′ any number of times to get 𝐶 .

4. Experiments

We run both the previous version of the Distance algorithm and its new recursive version on
the above-mentioned data sets, i.e., the Signmorphon ananlogy datatset and the datasets of
analogy puzzles with zero, one only or several solutions. We measure their processing time,
precision, recall, and F-measure.

The results given in Table 2 show that, while the recursive version may exhibit a longer pro-
cessing time in average compared to the previous version, its recall is 100% on the automatically
generated testsets, and higher (98.5%) than the previous version (92.2%) on the Sigmorphon
Analogy Dataset. We conclude that the recursive version successfully delivers almost all of the
solutions of the analogy puzzles contained in our datasets.

We also compare the results to the methods in [11], [4], and [10]. For that we add the results
of the new recursive version on the Sigmophon Analogy data set to Table 1 to obtain Table 1.

The comparative analysis on the Sigmorphon Analogy Dataset reveals that, except for one
language, Spanish, the new version of the Distance algorithm introduced in this paper consis-
tently outperforms the three alternative methods. Thanks to its higher recall, this new version
demonstrates superior performance.

This observation suggests that the relatively poorer performance of the previous Distance
algorithm can be attributed to its failure to capture all the possible solutions for certain analogy

8

Xulin Deng et al. ICCBR’23 Workshop Proceedings

Algorithm Dataset
Average
time (𝜇s) Precision (%) Recall (%) F-measure

previous
Sigmorphon

1.40 92.0 92.2 92.0
recursive 565.00 34.8 98.5 51.2

previous
Zero solution

0.17 100.0 100.0 100.0
recursive 0.26 100.0 100.0 100.0

previous
One solution

0.63 97.2 81.9 88.9
recursive 1.38 99.7 100.0 99.8

previous
Several solutions

1.26 96.7 30.7 46.6
recursive 1.83 99.4 100.0 99.7

Table 2
Assessment of previous and recursive versions of the Distance algorithm on the four different data sets.
Of more importance to us is the recall.

Language Number of analogies
Method

Complexity [11] Distance [10] Shuffle [7] Recursive

Arabic 165,113 87.18% 93.33% 81.91% 98.91%
Finnish 313,011 93.69% 92.76% 78.75% 97.13%
Georgian 3,066,273 99.35% 97.54% 88.42% 99.85%
German 730,427 98.84% 96.21% 95.42% 99.81%
Hungarian 2,912,310 95.71% 92.61% 86.02% 98.62%
Maltese 28,365 96.38% 84.72% 91.84% 98.17%
Navajo 321,473 81.21% 86.87% 78.95% 97.45%
Russian 552,423 96.41% 97.26% 95.46% 99.48%
Spanish 845,996 96.73% 96.13% 94.42% 96.19%
Turkish 245,721 89.45% 69.97% 70.06% 98.63%

Total 9,181,112 96.41% 94.34% 87.93% 98.50%

Table 3
Table 1 with the results obtained by the recursive version of the Distance algorithm proposed in this
paper. Best results in boldface.

puzzles. The absence of these solutions significantly impacted the recall. Conversely, the
new recursive algorithm addresses this limitation by delivering a more comprehensive set
of solutions, resulting in a higher recall for almost all languages, and consequently a higher
average recall.

5. Limitations: Precision

The precision of the new recursive algorithm on the Sigmorphon Analogy Dataset is not 100%
due to the nature of the approach, which outputs multiple solutions in many cases, whereas the

9

Xulin Deng et al. ICCBR’23 Workshop Proceedings

Sigmorphon Analogy Dataset only expects a single solution.
For instance, consider the following analogy:

fakurātu : ustrāliyyātu :: fakūrun : 𝑥
⇒ 𝑥 = ustrāliyyun or ustrliyyāun

According to the Sigmorphon Analogy Dataset, the expected answer for this analogy is
ustrāliyyun. However, theoretically, the answer ustrliyyāun is also a possible solution. Although
it satisfies the definition of analogy on which our algorithm is based, it is not considered a valid
solution within this particular linguistic context.

As mentioned in the section discussing the production of the automatically generated analogy
puzzles, these additional solutions can be seen as “noise” since they do not align with the general
notion of what constitutes a solution. Evaluating the effectiveness of our approach becomes
problematic when using only the Sigmorphon Analogy Dataset, as it primarily focuses on a
single expected solution rather than capturing the full scope of potential solutions. Testing
solely on the Sigmorphon Analogy Dataset may not provide a comprehensive evaluation of
whether our goals have been achieved.

6. Conclusion

In this paper, we built upon an existing algorithm for solving analogies. Our objective was
to make this algorithm deliver all solutions for an analogy puzzle when there are multiple
solutions. To accomplish this, we introduced recursivity to systematically explore all possible
edit distance traces in the representation of analogy puzzles by edit distance matrices. Thanks
to this we are able to enumerate all possible solutions of an analogy puzzle.

To evaluate the effectiveness of our proposal, we generated a dataset comprising analogies
with different characteristics, i.e., cases with no solution, cases with one solution, and cases
with multiple solutions. We presented the methods adopted to automatically produce analogy
puzzles in all these different cases. The generated dataset allowed us to conduct an analysis on
specific cases and ascertain the ability of our recursive version of the algorithm to deliver all
existing solutions. Experiments demonstrated that our proposed new version of the algorithm
successfully achieves this goal.

To summarize, by introducing a recursive approach we could expand the scope in solutions
and could increase the performance of the Distance algorithm on the dataset of analogy puzzles
extracted from the Sigmorphon Analogy Dataset.

Acknowledgments

This paper has been partially supported by the JSPS project Kakenhi Kiban C no 21K12038
entitled “Theoretically founded algorithms for the automatic production of analogy tests in
Natural Language Pocessing”.

10

Xulin Deng et al. ICCBR’23 Workshop Proceedings

References

[1] D. R. Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Funda-
mental Mechanisms of Thought, Basic Books, Inc., New York, NY, USA, 1996.

[2] R. R. Hoffman, Monster analogies, AI magazine 16 (1995) 11–11.
[3] P. Langlais, Mapping source to target strings without alignment by analogical learning:

A case study with transliteration, in: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), 2013, pp. 684–689.

[4] P. Langlais, P. Zweigenbaum, F. Yvon, Improvements in analogical learning: application to
translating multi-terms of the medical domain, in: Proceedings of the 12th Conference
of the European Chapter of the Association for Computational Linguistics (EACL 2009),
Association for Computational Linguistics, Athens, Greece, 2009, pp. 487–495. URL: https:
//www.aclweb.org/anthology/E09-1056.

[5] R. Fam, Y. Lepage, S. Gojali, A. Purwarianti, Indonesian unseen words explained by form,
morphology and distributional semantics at the same time, in: Proceedings of the 23rd
Annual Meeting of the Japanese Association for Natural Language Processing (NLP 2017),
Tsukuba, Japan, 2017, pp. 178–181.

[6] R. Fam, Y. Lepage, S. Gojali, A. Purwarianti, A study of explaining unseen words in
Indonesian using analogical clusters, in: Proceedings of the 15th International Conference
on Computer Applications (ICCA-17), Yangon, Myanmar, 2017, pp. 416–421.

[7] P. Langlais, A. Patry, Translating unknown words by analogical learning, in: Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), 2007, pp. 877–886.

[8] M. Nagao, A framework of a mechanical translation between japanese and english by
analogy principle, Artificial and human intelligence (1984) 351–354.

[9] Y. Lepage, E. Denoual, Purest ever example-based machine translation: Detailed presenta-
tion and assessment, Machine Translation 19 (2005) 251–282.

[10] Y. Lepage, Solving analogies on words: an algorithm, in: Proceedings of the 17th
International Conference on Computational Linguistics and 36th Annual Meeting of
the Association for Computational Linguistics (COLING-ACL’98), volume I, Montréal,
1998, pp. 728–735. doi:10.3115/980845.980967.

[11] P.-A. Murena, M. Al-Ghossein, J.-L. Dessalles, A. Cornuéjols, et al., Solving analogies on
words based on minimal complexity transformation., in: Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2020, pp. 1848–1854.

[12] Y. Lepage, Analogy and formal languages, Electronic Notes in Theoretical Com-
puter Science 53 (2004) 180–191. URL: https://www.sciencedirect.com/science/article/
pii/S1571066105825824. doi:https://doi.org/10.1016/S1571-0661(05)82582-4,
proceedings of the joint meeting of the 6th Conference on Formal Grammar and the 7th
Conference on Mathematics of Language.

[13] Y. Lepage, Character-position arithmetic for analogy questions between word forms., in:
Proceedings of the International Conference on Case-Based Reasonong (ICCBR) (Work-
shops), 2017, pp. 23–32.

[14] E. Ukkonen, Algorithms for approximate string matching, Information and control 64
(1985) 100–118.

11

https://www.aclweb.org/anthology/E09-1056
https://www.aclweb.org/anthology/E09-1056
http://dx.doi.org/10.3115/980845.980967
https://www.sciencedirect.com/science/article/pii/S1571066105825824
https://www.sciencedirect.com/science/article/pii/S1571066105825824
http://dx.doi.org/https://doi.org/10.1016/S1571-0661(05)82582-4

Xulin Deng et al. ICCBR’23 Workshop Proceedings

[15] R. A. Wagner, M. J. Fischer, The string-to-string correction problem, Journal of the ACM
(JACM) 21 (1974) 168–173.

[16] N. Stroppa, F. Yvon, An analogical learner for morphological analysis, in: Proceedings
of the 9th Conference on Computational Natural Language Learning (CoNLL 2005), Ann
Arbor, MI, 2005, pp. 120–127.

12

	1 Background
	2 Proposal: Recursive version for the Distance algorithm
	3 Generation of Data for the Experiments
	3.1 Analogy puzzles with no solution
	3.2 Analogy puzzles with only one solution
	3.2.1 Analogy puzzles with only one solution, the empty string
	3.2.2 Analogy puzzles with only one solution, which is not the empty string

	3.3 Analogy puzzles with several solutions
	3.3.1 Without the position constraint
	3.3.2 Without the character constraint

	4 Experiments
	5 Limitations: Precision
	6 Conclusion

