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Abstract

Question Answering (QA) has gained significant attention in recent years, with transformer-based

models improving natural language processing. However, issues of explainability remain, as it is difficult

to determine whether an answer is based on a true fact or a hallucination. Knowledge-based question

answering (KBQA) methods can address this problem by retrieving answers from a knowledge graph.

This paper proposes a hybrid approach to KBQA called FRED, which combines pattern-based entity

retrieval with a transformer-based question encoder. The method uses an evolutionary approach to

learn SPARQL patterns, which retrieve candidate entities from a knowledge base. The transformer-based

regressor is then trained to estimate each pattern’s expected F1 score for answering the question, resulting

in a ranking of candidate entities. Unlike other approaches, FRED can attribute results to learned SPARQL

patterns, making them more interpretable. The method is evaluated on two datasets and yields MAP

scores of up to 73 percent, with the transformer-based interpretation falling only 4 pp short of an oracle

run. Additionally, the learned patterns successfully complement manually generated ones and generalize

well to novel questions.
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1. Introduction

The field of question answering (QA) has received significant attention, particularly with the rise

of Deep Learning approaches that often focus on large language models. However, while these

models have shown promising results, they suffer from explainability issues and often focus

on knowledge from large text corpora instead of previously extracted and curated knowledge.

Knowledge graphs offer an alternative approach for ML models to conduct transparent reasoning,

leading to the emergence of the field of knowledge base question answering (KBQA), where the

system retrieves the answer to a question not from a text corpus but from a knowledge graph.

As an example, consider the question

“What language did the ancient Babylonians speak?”
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In this case, Babylonians is the entity on which a certain fact is to be retrieved. We refer to this

entity as the source entity in the following. To retrieve the question’s answer, a query in the

well-known query language SPARQL [1] could be used, like this one:

SELECT DISTINCT ?source ?target
WHERE {
?source ns:location.country.languages_spoken ?target .
}

Replacing the ?source variable with the source entity from the question and executing the

query against a knowledge base could deliver the answer Babylonian, to which we refer to as

the target entity. We refer to the above type of SPARQL query as a graph pattern in our work.

In this paper, we present a hybrid approach towards KBQA. We leverage graph patterns in

combination with neural (transformer-based) question interpretation to address the limitations

of large text models and the lack of use of knowledge bases. Given a training set of questions,

each associated with a source entity and answer entities, we use an evolutionary graph pattern

learning algorithm to define a set of graph patterns covering the space of questions represented

in the training set.

Given a new question, we match it to the graph patterns by fusing a neural question rep-

resentation with the graph pattern set. To do so, a transformer-based regressor is trained to

predict graph patterns’ F1 scores when retrieving the input question’s answer, and the resulting

predictions are used to fuse the graph pattern’s result candidate sets. Our main contributions in

this paper are:

1. A novel and explainable hybrid KBQA system, combining two main components: a graph

pattern learner (GPL) and a transformer-based scoring approach. The GPL component

learns graph patterns to query a SPARQL endpoint. The patterns are learned with an

evolutionary algorithm, but can also be complemented with manually created patterns

by experts. Additionally, we propose a novel scoring component fusing the pattern-based

generated candidates based on a transformer architecture to understand the natural

language input question.

2. We conduct extensive experiments on versions of the well-known WebQuestionsSP [2]

and SimpleQuestions [3] datasets. Our experimental results show that our approach

achieves MAP scores of up to 73 %, with the transformer-based interpretation falling only

4 percentage points short of an oracle run.

3. Furthermore, we compare learned and hand-crafted expert patterns, as well as their

combination, and show that the learned patterns successfully complement manually

generated patterns and generalize well to novel questions.

4. To support future research in the area of KBQA, we make our datasets and models publicly

available
1
.

In the following, we provide an overview of related work in Section 2 before providing more

details on our proposed hybrid approach towards KBQA in Section 3. We describe the datasets

used in the experiments in Section 4 and present our experimental results in Section 5. Finally,

we discuss our results in Section 6.

1
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2. Related Work

Information retrieval (IR) based QA relies on corpora of documents to retrieve answers from.

An example are search engines, many of which provide interfaces to IR based QA by indexing

large amounts of web pages, ranking them based on the search query, and retrieving answer

spans from passages. Recently, a spike in research and public interest in large language models

(LLMs) has not only provided an addition to search engines, but to the field of QA in general.

Commercial LLMs, such as ChatGPT
2

and Bard
3
, or open source alternatives such as LLaMA [4],

Alpaca [5] and Dolly
4

have received much attention due to their ability to produce humanlike

responses to open-domain inputs. They rely on large text corpora and sophisticated training

mechanisms incorporating methods from Deep Learning, Reinforcement Learning and expert

annotations. Their fundamental mechanism is to predict the next token which is most likely to

follow the previous tokens of an output and also incorporate the context from a conversation,

i.e., the dialog preceding the current prompt. While these models have demonstrated their

power in text generation, their usage for QA remains disputed: Not only are LLMs intransparent

and not easily explainable with regard to how the model arrived at a certain conclusion, they

are also known to suffer from hallucinations, i.e., cases when an LLM outputs made-up but

seemingly plausible facts not grounded on any training data. Despite recent efforts in faithful
question answering [6], this poses a dangerous drawback for QA applications.

An alternative to this approach is presented by KBQA, which is not only fact grounded, but

also more transparent and explainable, since every answer can be traced back directly to the

underlying KB. KBQA can be divided into two categories: First, methods that directly yield

a ranking of target entities, typically by relying on Deep Learning and/or embeddings of the

knowledge graph. Second (and more similar to our approach), methods that explicitly generate

queries to retrieve information from the underlying KB. Representatives from the latter category

provide advantages with regard to transparency and explainability, as they not only provide

an answer, but also the exact query which retrieved it from the KB. Two examples for each

category are given in the following:

Regarding approaches from the first category, one method that employs Deep Learning on

the knowledge graph is KEQA [7], which leverages KG embeddings and a manually designed

distance metric to perform KBQA. To this end, the underlying KG is embedded using a pre-trained

KG embedding algorithm (e.g., TransE [8] or TransR [9]). A predicate learning model is trained,

which maps a question to a vector in the relation embedding space as the predicted relation

presentation. Similarly, a head entity learning model is trained, which maps a question to a

vector in the entity embedding space as the predicted head entity representation. Furthermore, a

head entity detection model is trained to identify several tokens in the question as the predicted

head entity name, which is used to reduce the number of head entity candidates in the KG. The

output from the three models is used in a manually designed distance metric, which returns

a fact in the KG that minimizes the distance the predicted head entity, predicted relation and

the predicted tail entity, where the latter is predicted using the KG embedding algorithm’s

relation function. KEQA focuses on simple questions referring to a single head entity and a

2

https://chat.openai.com/

3

https://bard.google.com/

4
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single relation and uses the SimpleQuestions [3] dataset.

ReaRev [10] is a recent work achieving start-of-the-art (or nearly) performance on the three

common KBQA datasets WebQuestions [11], ComplexWebQuestions [12] and MetaQA [13].

Question- and KG-representations are aligned in a common latent space for reasoning over

the KG. To this end, the question is decoded into an initial set of instructions, which are dense

representations that are matched against relations in the KG. ReaRev then uses two alternating

steps: The reasoning step uses the instructions to perform a KG traversal and results in a set of

node representations, and the revise step uses the reasoning output to refine the instructions.

During the reasoning step, the execution order of the instructions is decided by the model

on the fly by emulating breadth-first search with graph neural networks. Both steps are used

alternately for 𝑇 times to iteratively refine the resulting node representations. Afterwards, a

binary, GNN-based node classification is performed to select nodes which represent an answer

to the question. Our approach differs from KEQA and ReaRev in that both either rely on Deep

Learning / KG embeddings rather than explicit graph patterns.

Regarding the second category of KBQA systems, one approach based on query construction

is SPBERT [14], which uses an adapted BERT [15] model (named BERT2SPBERT) to construct

a SPARQL query for a given question. To do so, changes in BERT’s self-attention layers are

introduced to allow the model to be used as a decoder, as BERT usually only represents an

encoder. Pre-training of the model employs a massive amount of SPARQL query logs (6.8M) from

the public DBpedia endpoint on two tasks: Masked Language Modeling and Word Structural

Objective. Fine-tuning uses five different datasets in SPARQL query construction: QALD-9 [16],

LC-QuAD [17] and three adaptations of Mon [18].

QUINT [19] learns an ensemble of SPARQL-style query templates from questions and their

answers. During training, questions are mapped to relations and types using lexicons, which

have been created using distant supervision from a corpus of web pages annotated with Freebase

entities. QUINT constructs query templates in three steps: 1. The smallest subgraph containing

all of the question’s and its answer entities is retrieved and converted into a backbone query. 2.

The backbone query is aligned to the question using the lexicons and the question’s dependency

parse tree. 3. A generalization step converts both the question and its corresponding query

into templates. During interference, these templates are matched against a given question

and ranked with a random forest classifier. For evaluation purposes, QUINT uses the datasets

WebQuestions [11] and Free917 [20].

Overall, our approach differs from SPBERT in that it does not generate queries on the fly

but rather learns a repository of graph patterns, and from QUINT since we generate the graph

patterns based on an evolutionary search.

3. Approach

Our approach is illustrated in Figure 1: We assume a set of training questions to be given, each

question 𝑞 containing a single source entity 𝑠 from a knowledge graph. We assume the mention

of the entity in the question to be known, as well as a set of correct answer (or target) entities 𝒯 .

Given this information, our approach features three key components: A graph pattern learner

(GPL, gray) learns typical constellations in the KG between source entities and target entities,

4
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1. Learn Graph
Patterns

training data

source
entities

answer
entities GPL ...

2. Apply Graph
Patterns

question

SPARQL

candidate entities per pattern

graph patterns

3. Predict Patterns’
F1 Scores FRED

Fitness (F1) predictions

4. Score
Candidates Scoring

...
question

text
source
entity

...

ranked entities

1. Renmimbi

2. Simplified Chinese

3. Group of Five

4. BASIC countries

5. Traditional Chinese

...

?source fb:location.country.currency_used ?target

United States 
of America

United States 
dollar

What is the name 
of the currency 
used in China?

China BASIC countries,
Group of Five, 

China-CELAC Forum

Renmimbi simplified Chinese,
traditional Chinese

Figure 1: Our approach learns graph patterns (1.) which retrieve candidates given a target questions

(2.). We rank these candidates (4.) by predicting the goodness-of-fit between the question and each

graph pattern (3.).

resulting in a set of graph patterns 𝒫1, ...,𝒫𝑛. Each pattern is a SPARQL query, and acts as

a function that maps source entities 𝑠 to sets of answer entities 𝒫𝑖(𝑠). For example, given

the source entity s=m.06mt91 (Rihanna), the following pattern could retrieve her nationality:

SELECT DISTINCT ?t WHERE { ?s ns:people.person.nationality ?t.} Other,

more complex patterns could retrieve the names of her albums, etc.

Given an input question, we feed its source entity 𝑠 to all graph patterns, yielding sets of

candidate entities 𝒫1(𝑠), ...,𝒫𝑛(𝑠). The key concern is to estimate which patterns answer the

question “well”, such that their candidates should be prioritized. To do so, we use a trans-

former-based prediction model (yellow) which – given a question 𝑞, source entity 𝑠, and pattern

𝒫𝑖 – estimates the 𝐹1 score of using 𝒫𝑖’s candidate set compared to the question’s true answer

set 𝒯 . We use this estimated score to rank the patterns’ candidates (red).

3.1. Graph Pattern Learning

The foundation of our approach is a set of graph patterns, each a SPARQL query that takes a

source entity (mentioned in a question) and returns a set of target entities. We would like the

overall set of SPARQL patterns to match the true target entities with high recall and precision.

To learn said patterns, we utilize the graph pattern learner (GPL) by Hees et al. [21, 22]: A

population of SPARQL queries is grown by an evolutionary search, which applies various mating

and mutation operations such as inserting and grounding variables, splitting and merging

variables, expanding nodes and simplifying the pattern, among others. As a pattern’s fitness

score, the GPL uses several indicators of the coverage and precision with which the pattern

5
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yields target entities, how well the pattern complements the population, and how complex it is.

As training data, the GPL utilizes a set of pairs of source and target entities. We derive these

pairs from training questions: Assuming that a question features a single source entity 𝑠 and a

limited number of target entities 𝑡1, .., 𝑡𝑚, we derive 𝑚 pairs (𝑠, 𝑡1), ..., (𝑠, 𝑡𝑚). We collect all

these pairs in a ground truth set 𝒢𝒯 . Given this ground truth, we apply the GPL with its default

parameters.

Preprocessing For performance reasons, the number of source-target pairs should be limited

when executing GPL training
5
. Therefore, we partition 𝒢𝒯 into chunks 𝒢𝒯 1, ...,𝒢𝒯 𝐾 and run

a separate GPL training per chunk. To ease the discovery of patterns, we group semantically

similar questions into the same chunk using their relation IDs (as later explained in Section 4).

Alternatively, questions could be clustered based on their text embeddings, for example (which

we leave for future work).

Post-processing Note that the sets of patterns resulting from different chunks may contain

redundant and/or similar patterns. Therefore, we apply clustering with different models and

metrics, and then select the best patterns (with minimal loss in precision) from each cluster as a

representative (for details, refer to [21]). This reduces the overall set of graph patterns by ≈ 91
percent.

3.2. 𝐹1 pREDictor (FRED)

Given a question 𝑞 with source entity 𝑠 and a set of graph patterns, we estimate which patterns

match the question “well”. We measure this goodness-of-fit by the𝐹1 score𝐹1(𝒫(𝑠), 𝒯 ) between

the pattern’s retrieved candidates 𝒫(𝑠) and the true answer entities 𝒯 , i.e. a graph pattern 𝒫
is defined to match a question 𝑞 “well” if it retrieves the desired answer entities 𝒯 with high

precision and recall.

Since the true answer set 𝒯 is unknown in practice, we estimate the 𝐹1 score using a regressor.

This regressor combines a representation of the question 𝑞 (derived by a transformer encoder)

with a representation of the pattern (derived from its 𝐹1 scores on training questions).

Pattern Representation: Given a pattern 𝒫 and 𝑚 training questions with

source entities 𝑠1, ..., 𝑠𝑚 and answer sets 𝒯1, ..., 𝒯𝑚, we collect the pattern’s 𝐹1 scores

𝐹1(𝒫(𝑠1), 𝒯1), ..., 𝐹1(𝒫(𝑠𝑚), 𝒯𝑚) in an 𝑚-dimensional vector p. This vector carries the infor-

mation on which questions the pattern tends to work well, and is used as an embedding for the

pattern. Note that p is usually sparse, since an individual pattern answers a specific type of

question.

Question Representation: We feed the question 𝑞 into a BERT encoder [15]. Following

common practice, we define the question representation q by prepending a special classifier

token at position zero and using this token’s output embedding:

q = 𝐵𝐸𝑅𝑇 (𝑞)0

Also, to obtain a textual representation s of the source entity 𝑠, we average those tokens 𝑡𝑖, ..., 𝑡𝑗

5

This is because the GPL – to evaluate patterns’ fitness during the training process – executes a SPARQL query

against the knowledge graph for each pattern and for all source-target pairs in batch fashion, which can lead to

timeouts.
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that cover 𝑠’s mention in the question:

s =
1

𝑗 − 𝑖+ 1
·

𝑗∑︁
𝑘=𝑖

𝐵𝐸𝑅𝑇 (𝑞)𝑘

Both embeddings q and s feature 𝑑 = 768 dimensions.

Regressor: The regression model combines a question’s text representations q, s with 𝑛
graph pattern representations p1, ...,p𝑛: We first densify each pattern’s representation p𝑖 by

mapping it to the same dimensionality as the text embeddings:

p𝑑𝑒𝑛𝑠𝑒
𝑖 = 𝑡𝑎𝑛ℎ(𝑊 · p𝑖)

where 𝑊 ∈ R2𝑑×𝑚
is a learned matrix. We then collect all patterns’ dense embeddings in a

matrix P𝑑𝑒𝑛𝑠𝑒 ∈ R2𝑑×𝑛
and predict all patterns’ 𝐹1 scores as:

�̂� 1(q, s,P
𝑑𝑒𝑛𝑠𝑒) = 𝜎

(︁(︁
(q ∘ s) ·P𝑑𝑒𝑛𝑠𝑒

)︁
·𝑊 ′

)︁
where ∘ denotes vector concatenation, 𝜎 is the sigmoid function, and 𝑊 ′ ∈ R𝑛×𝑛

is another

learned matrix. This results in 𝑛 scores that approximate the 𝐹1 predictions for the 𝑛 graph

patterns.

Training: We train the regressor (including all BERT parameters, 𝑊 and 𝑊 ′
) in a supervised

fashion on a set of target questions: Given a set of 𝑚 questions and 𝑛 graph patterns, we obtain

𝑚× 𝑛 training samples, since the answer sets 𝒯 of training questions are known, and we can

compute patterns’ true 𝐹1 scores as ground truth. We start training from a pre-trained BERT

encoder, and minimize a weighted mean squared error loss, whereas we assign a 10 times higher

weight to nonzero 𝐹1 scores (see details on hyperparameters in Section 5.1).

3.3. Scoring

Scoring is given a question 𝑞 with source entity 𝑠 and a set of graph patterns whose 𝐹1 scores

have been estimated by FRED as described in the last section. We denote these estimates with

�̂�
1
1, ..., �̂�

𝑛
1 .

We apply each graph pattern to the source entity, obtaining sets of candidate entities

𝒫1(𝑠), ...,𝒫𝑛(𝑠). The overall set of candidate entities is defined as 𝒞 := ∪𝑛
𝑖=1𝒫𝑖(𝑠). The

score of a candidate 𝑐 ∈ 𝒞 is then defined as:

𝑠𝑐𝑜𝑟𝑒(𝑐) =

𝑛∑︁
𝑖=1

�̂�
𝑖
1 · 𝐹1({𝑐},𝒫𝑖(𝑠)) (1)

i.e. a candidate will get a high score if it appears as one of few results in patterns that supposedly

fit the question well. We rank candidates by their descending score.

7
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4. Datasets

We use the datasets WebQuestionsSP [2] and SimpleQuestions [3] for our experiments. Both

are based on the popular knowledge graph Freebase6
[23]. WebQuestionsSP is a collection of

4 737 English questions where each question includes a precise SPARQL query, Freebase IDs for

source- and answer entities and the source entity mention in the question. SimpleQuestions is

a collection of 108 442 simple, English questions, each with Freebase IDs for the single source

entity, the predicate and one answer entity (for questions with > 1 plausible answers, one has

been selected randomly).

For both datasets, we build custom splits by shuffling the entire dataset and running it

through a filtering pipeline to ensure data integrity and to ensure compatibility with our

approach. Further, some measures are taken to limit compute load with the graph pattern

learning and subsequent processing of generated patterns.

• Data Quality: We remove erroneous instances (such as duplicates or questions with

missing source entities), and drop questions with value answers, since these cannot be

covered by the GPL. For WebQuestionsSP, we only keep questions with a maximum

number of answers of 1 and 5 respectively, resulting in two different versions of the

dataset. This simultaneously eliminates outlier questions with a large number of answers

(up to 3 688) and also tests the approach’s applicability to answer questions with multiple

answers.

• Data Balance: As discussed in Section 3.1, we partition the training set of source-target

pairs into semantically coherent chunks. To do so, the relation ID is introduced: For

WebQuestionsSP this refers to the inferential chain, a set of predicates used in a question’s

SPARQL query. For SimpleQuestions it refers to the given predicate. To preserve dataset

balance, we only keep relation IDs with at least 10/5 and at most 200/200 questions for

SimpleQuestions/WebQuestionsSP, and randomly select at most 30 source-target pairs

per source entity.

• Downscaling: To limit the GPL’s execution time, we also downsample the unique source

entities to a total number of 2000.

For each setting, we use the remaining data to randomly sample 4 versions of each dataset,

over which we report averaged results. We split into training data (90%), on which we train the

GPL and FRED, validation data (5%) which we use in GPL training and for early stopping, and

test data (5%) on which we report results. During splitting, we ensure that questions with the

same source entity are assigned to the same split.

Finally, for the WebQuestionsSP based datasets we utilize the expert-generated patterns that

come with the dataset (we remove the FILTER statements to generalize the patterns, as we

found these statements to usually refer to question specific additional entities or values). Since

we will use these expert patterns as drop-in replacements for the learned GPL patterns, we will

use only those from the training splits. The metrics of the grouped datasets and the number of

expert patterns for WebQuestionsSP based datasets are shown in Table 1.

6

We use a dump from 8th September 2015.
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Dataset group #Questions #Pairs #Expert Patterns
WQSP1 2757 (2000, 379, 378) 2165 (1567, 312, 286) 1274
WQSP5 4353 (3182, 587, 584) 5163 (3745, 726, 692) 1773
SQ 8998 (7961, 520, 517) 9006 (7982, 512, 512) −

Table 1
Overview of the final datasets used in our evaluation. The columns Questions and Pairs show totals

as well as (training, eval, test) splits. Column Expert shows the number of generated expert patterns

(training split only).

5. Experimental Results

This section presents our setup of the training and evaluating our model setup (Section 5.1),

and discusses quantitative results: Control runs give an upper bound on performance based

on the generated GPL graph patterns (Section 5.2), a comparison to question agnostic scoring

approaches evaluates the added value of FRED’s incorporation of text semantics into the answer

candidate ranking (Section 5.3), and an ablation study evaluates to what extent FRED relies

on the source entity mention during inference (Section 5.4). A comparison between learned

and expert patterns evaluates which of both sets of patterns generalize better on test questions,

and also evaluates the overlap in both sets (Section 5.5). Finally, the performance improvement

achieved when combining both learned and expert patterns is evaluated and compared to the

performance of each set of patterns alone (Section 5.6).

5.1. Setup

To evaluate how our FRED approach performs overall, we use the well-known quality measures

MAP (when comparing with a reference model that does yield ranked results) and 𝐹1 with a

fixed cut-off rank (for reference models that do not).

GPL trainings are performed using the GPL’s default parameters
7
. We set the number of

chunks such that each contains at most 20 different relation IDs, and subsampled each chunk

to max. #𝒢𝒯 𝑘 = 800 samples. FRED trainings are performed using Adamax [24] with an

initial learning rate of 𝜆 = 5𝑒−5, batch size 4, and apply a dropout [25] rate of 10% before

multiplying with 𝑊 ′
. We trained for a maximum of 200 epochs, whereas early stopping is

applied using FRED’s MAP on the validation split. We start our training from the pre-trained

BERT checkpoint bert-base-uncased.

5.2. Control Runs

A first interesting question is what maximum performance could be achieved with our learned

graph patterns, assuming a perfect matching between question and patterns. To estimate this

upper bound, the results of FRED scoring at different cutoff values are compared against a

simulated oracle classifier, which selects the best fitting pattern for a question, i.e. the one

achieving the highest F1 score, and yields this pattern’s result set. The results in Table 2 show

that the highest scored entity by FRED comes close to the results of the best fitting GPL pattern.

7
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FRED attains near best possible performance on WQSP1 and SQ, whereas the difference to the

upper bound placed by the GPL is greater for WQSP5.

Dataset GPL Oracle FRED1 FRED2 FRED3 FRED4 FRED5

WQSP5 0.79± 0.02 0.63± 0.03 0.58± 0.02 0.55± 0.02 0.51± 0.02 0.49± 0.03
WQSP1 0.79± 0.06 0.73± 0.06 0.58± 0.05 0.50± 0.03 0.46± 0.03 0.44± 0.02
SQ 0.53± 0.12 0.47± 0.11 0.39± 0.09 0.35± 0.08 0.34± 0.08 0.32± 0.07

Table 2
Results of the control runs evaluation, reported as the mean and standard deviation of the F1 score

achieved on the test split over 4 runs. GPL Oracle shows an optimal matching between question and

graph patterns. The columns 𝐹𝑅𝐸𝐷𝑘 show results for the top-k results of FRED scoring.

5.3. Question Agnostic Scoring

The graph pattern learner itself comes with several approaches for ranking its target candi-

dates [21]. These approaches prioritize graph patterns based on their precision. Obviously,

these approaches offer an alternative to our FRED scoring. However, while FRED incorporates

information from the input question, the GPL’s own scoring approaches only utilize information

from the GPL training and the resulting graph patterns to score a target candidate.

To evaluate the added value of our model compared to such question-agnostic scoring, FRED

(see Equation 1) is compared against three GPL-internal scoring mechanisms Precisions, GP
Precisions and Logistic Regression. The results are shown in Table 3. We can see that FRED

provides a significant improvement over these question-agnostic scoring approaches.

Dataset FRED Precisions GP Precisions Logistic Regression
WQSP5 0.69± 0.04 0.26± 0.02 0.32± 0.03 0.40± 0.02
WQSP1 0.73± 0.06 0.28± 0.05 0.31± 0.04 0.45± 0.07
SQ 0.46± 0.10 0.40± 0.12 0.42± 0.10 0.43± 0.09

Table 3
Results of the evaluation of alternate scoring approaches. Results are measured as the MAP achieved

on the test split and reported as the mean and standard deviation over all 4 runs on the respective

dataset version. FRED’s incorporation of the question provides a performance gain compared to the

other, question-agnostic scoring approaches.

5.4. Ablation Study

To evaluate to which extent the FRED model can be simplified without impacting performance,

an ablation study is performed, where the model omits the source mention s embedding and

instead relies solely on the question embedding q (see Section 3.2). The forward pass becomes

�̂� 1(q,P
𝑑𝑒𝑛𝑠𝑒) = 𝜎

(︁(︁
q ·P𝑑𝑒𝑛𝑠𝑒

)︁
·𝑊 ′

)︁
where the size of 𝑊 is adjusted to 𝑑×𝑚 dimensions, and consequently P𝑑𝑒𝑛𝑠𝑒 ∈ R𝑑×𝑛

, i.e. the

dense pattern embeddings now lie in a 𝑑-dimensional space instead of a 2𝑑-dimensional one.

10
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The results of the evaluation are presented in Table 4 and show that the source mention

embedding can be omitted without a significant impact on the model’s performance. Our

interpretation is that the question embedding already captures enough semantics of a question,

such that the model is not required to interpret a question’s source mention embedding.

Dataset FRED FREDs

WQSP5 0.69± 0.04 0.68± 0.05
WQSP1 0.73± 0.06 0.73± 0.06
SQ 0.46± 0.10 0.46± 0.10

Table 4
Results of the ablation study: 𝐹𝑅𝐸𝐷s does not use the source mention embedding s, as described
above. Results are given as the mean and standard deviation of the MAP on achieved the test split over

all 4 runs on each respective dataset. The table shows that the omission of source mention embedding

does not impact results significantly.

5.5. Comparison between Learned and Expert Patterns

An example for three questions (Q) from WQSP1, their corresponding expert patterns (EP) and

the best matching GPL pattern (GPL) is given in the following. Δ denotes the cosine distance

between expert- and GPL pattern in the embedding space spanned by the graph patterns’

representations p (see Section 3.2).

• Q: who was gerald ford vp?
EP: SELECT DISTINCT ?source ?target WHERE {
?source ns:government.us_president.vice_president ?target .}
GPL: SELECT ?source ?target ?vcb0 WHERE {
?target key:wikipedia.lv ?vcb0 .
?target ns:government.us_vice_president.to_president ?source .}
Δ: ≈ 0.0

• Q: what language did the ancient babylonians speak?
EP: SELECT DISTINCT ?source ?target WHERE {
?source ns:location.country.languages_spoken ?target .}
GPL: SELECT ?source ?target ?vcb0 WHERE { ?target
ns:language.human_language.countries_spoken_in ?source .
?target ns:language.human_language.writing_system ?vcb0 .}
Δ: 0.0065

• Q: what capital city of brazil?
EP: SELECT DISTINCT ?source ?target WHERE {
?source ns:location.country.capital ?target .}
GPL: SELECT ?source ?target ?vcb0 WHERE {
?source ns:location.country.capital ?target .
?target ns:travel.travel_destination.tourist_attractions ?vcb0 . }
Δ: 0.2929

11
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Figure 2: Histogram of the number of nearest GPL pattern neighbors for each expert pattern. The

x-axis shows the cosine distance, where 100 denotes maximum distance. The y-axis shows the number

of GPL patterns with less or equal distance. The cosine distance is measured in the embedding space

spanned by the train-questions coverage of the graph patterns. It shows, that for approximately half of

all expert patterns, an identical GPL pattern was generated.

We see that in the first two cases, the learned graph patterns and the expert patterns are

similar both in terms of the pattern’s graph structure, and in terms of the entities the patterns

retrieve (as expressed by Δ). In the third case, while the GPL found the predicate from the

expert pattern, it added another restrictive predicate which lead to a greater difference in the

result set. Overall, the examples above show that the GPL is able to learn patterns similar but

not necessarily identical to the expert patterns delivered with WebQuestionsSP.

We investigate this question further quantitatively: For each expert pattern in the training

set, we find the closest GPL-learned pattern in terms of the distance Δ between the pattern

representations. We collect the distribution of this nearest-neighbor distance in Figure 2 in

a histogram, where 0 (left) corresponds to a low distance, i.e. expert patterns for which very

similar GPL patterns can be found, and 100 (right) expert patterns that are dissimilar from any

learned graph pattern. The plot indicates that for about 18% of all expert patterns a very similar

GPL pattern was learned (Δ = 0), while at the same time for 18% no similar GPL pattern is

found at all (Δ = 100).

Finally, we investigate the question how well both expert and learned patterns cover the

targeted questions. We utilize the respective pattern populations drawn from / learned on the

training set, and count for each pattern the number of training/test questions that are “answered”

by the pattern (indicated by an F1 score > 0). This gives an indicator about the generality of

both sets of patterns. The results for the WebQuestionsSP datasets are shown in Table 5: For

example, the first row indicates that a GPL-learned pattern covers 45.41 questions from the

training set on average. We observe that the counts on the training set are much higher than

on the test sets (which is mostly because the training set is 19 times larger). More importantly,

12
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however, we observe that GPL-learned patterns cover significantly more (≈ 4 times as many)

questions than the expert-defined patterns, both on the training and test split. Correspondingly,

the GPL patterns are more “general” than the expert patterns.

# matched questions
Dataset Split GPL patterns expert patterns
WQSP1 train 45.41 10.45
WQSP1 test 2.15 0.48
WQSP5 train 58.38 12.60
WQSP5 test 2.98 0.63

Table 5
Metrics about the number of fitting questions per pattern. The columns # matched questions show the

average number of questions for which a F1 score greater 0 was achieved on average per pattern. The

higher numbers for the GPL patterns show that these are more general, covering more questions on

average.

5.6. Complementing Expert Patterns

We compare the accuracy obtained by FRED when using a population of (a) expert-defined

patterns, (b) GPL-learned patterns, and (c) the union of both sets. Results on the test splits

are illustrated in Table 6: The expert patterns have been derived from the precise SPARQL

queries delivered with WebQuestionsSP and – as expected – are more accurate than the GPL

generated patterns. While they do in fact achieve a higher average F1, the combination of both

GPL- and expert patterns performs better than each set of pattern alone. This indicates that

the GPL-learned patterns can offer a high-quality, low-cost alternative to manually defining

patterns.

Dataset Mean F1 Average result len
WQSP1 GPL 0.79± 0.06 10.83± 16.81
WQSP1 Expert 0.81± 0.06 4.18± 2.85

WQSP1 GPL+Expert 0.86± 0.05 12.34± 15.73
WQSP5 GPL 0.79± 0.02 4.75± 2.56
WQSP5 Expert 0.82± 0.03 5.59± 3.93

WQSP5 GPL+Expert 0.86± 0.02 4.89± 2.43

Table 6
Results are measured as the F1 score achieved on the test split and presented as the mean and standard

deviation over all datasets in the respective group. It is shown, that the combination of both expert and

GPL patterns achieves the best results.

6. Discussion

This paper has presented FRED, an approach towards KBQA which combines an evolutionary

learning of graph patterns with a transformer-based matching of questions to patterns. Our
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results indicate the general feasibility of the model, and demonstrate that our matching yields

an accuracy close to optimal pattern-based control runs. We have also compared the patterns

yielded by our approach to expert-generated patterns, and have demonstrated that both types

of patterns complement each other well.

This work poses two relations to case-based reasoning (CBR): First, our model can – in a

wider sense – be seen as an instantiation of the classical CBR R4-cycle [26] (Retrieve, Reuse,

Revise, Retain): When viewing a “case” as a question paired with a path through the KG to

retrieve the correct answer, our work utilizes the graph pattern learner to form a curated base of

questions and learned graph patterns. For a new question, similar cases (represented by graph

patterns) are retrieved, and patterns are reused in a scoring process. During the retain step,

the question can be added to the set of questions corresponding to the graph pattern which

retrieved the answers. Second, CBR may form a particularly interesting use case for our model

in situations where “cases” are stored in a structured knowledge graph form (eg. in a medical

scenario, these could be patients with certain symptoms, diseases, tratment plans, history etc).

In these situations, graph pattern learning may reveal typical patterns of cases in the graph, and

our model could support CBR users (say, medical experts) by answering typical questions about

cases and exploring their relevant characteristics. Alternatively, our model could support CBR

systems (say, treatment recommenders) by utilizing our pattern-based embeddings as features,

for example for retrieval.

Some limitations of our approach are of a rather technical nature: The current implementation

of the graph pattern learner assumes a single source entity per question to be given, and does

not cope with value answers (such as dates). Second, our current strategy of partitioning the

GPL training set is based on relation IDs (which are unlikely to be available in practice). An

interesting direction of future work will be to investigate different clustering strategies of

questions, likely based on text embeddings. Also, note that similar to other KBQA approaches,

our current model requires the source entity and its mention in the question to be known

(though we achieved comparable results without the latter in an ablation study). Investigating a

more extended pipeline that includes entity localization and linking might be of interest here.

Another future direction is a comparison against other query generating KBQA approaches,

like SPBERT and QUINT. These were ommited due to the focus on a different KB (DBpedia [27])

in the first case and the absence of an available reference implementation in the latter.

Most significantly, however, weighs the fact that our approach considers graph patterns to

be atomic, i.e. there are no combinations of generalizations of patterns at inference time. For

example, a pattern cannot generalize from finding an actor’s spouse to a singer’s spouse unless

the GPL has learned other individuals as part of its population. Finding strategies for more

adaptive patterns is certainly an interesting direction for future work.

Finally, another interesting direction for future work is the incorporation into an LLM based

QA system, as LLMs have demonstrated high quality text generation capabilities, but often lack

a factual grounding of their output. By linking a generated answer to the question via graph

patterns, its grounding in a given knowledge base can be verified.
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