
A Work Allocation Language with
Soft Constraints

Christian Stefansen1 Sriram Rajamani1 Parameswaran Seshan2

1 Microsoft Research Lab India, Bangalore, India
{cstef@diku.dk|sriram@microsoft.com}

2 SETLabs, Infosys Technologies Limited, Bangalore, India
parameswaran seshan@infosys.com

Abstract. While today’s workflow languages have sophisticated con-
structs for specifying flow of control and data, facilities for associating
tasks in a workflow with humans are largely missing. This paper presents
SoftAlloc, a workflow allocation language with soft constraints, and
explains the requirements that lead to its design—in particular what soft
constraints are and how they enable workflows to capture best practices
and organizational goals without rendering the workflows too strict.
SoftAlloc is parameterized over external data access functions and
takes a user-database query sublanguage as a parameter, thus allowing
SoftAlloc to be used with virtually any process language (such as
WS-BPEL or the π-calculus based language SMAWL [1]).

1 Introduction

Computer-orchestrated business processes are increasingly playing a direct role
in how companies organize work. Computer-orchestrated processes now com-
monly involve both human resources and computer resources. Tasks can often
be handled by many different resources. Therefore the process orchestration en-
gine must decide in negotiation with the human resources who of the eligible
resources ultimately carries out the task. Assigning a task to a resource is re-
ferred to as allocation. Allocating tasks to humans is inherently more complex
than allocating to computer resources: in addition to having multiple, changing
attributes that decide what they can, may or should do, humans have personal
preferences and may choose to override the allocation rules at runtime, e.g. be-
cause they possess domain knowledge not captured in the system or because
they make conscious, reflected violations to speed up processing in cases where
where the process description focuses too narrowly on perfect compliance. For a
treatise of these issues and soft constraints see Stefansen and Borch [2].

Consider the example workflow given in Fig. 1. In this workflow we might
wish to say that the task Pack and ship should be carried out by someone
with the role Packing, i.e. someone who is assigned to the packing unit. We can
imagine specifying this by attaching a rule to the task saying:

role = "Packing"

86 Proceedings of CAiSE’08 Forum

Fig. 1 Order process (Petri net-style notation; || is a shorthand for parallel split)

> $5000?

Receive pre-
payment

Receive order

Pack and ship

Receive paymentInvoice

Approve credit OK?

||yes no

no

yes

Similarly, we may wish to assign the task Receive order to a resource with the
role Sales who resides in the same locale as what is registered on the order.
Additionally, we accept anyone with the role “Global sales”. We then write:

role = "Sales" and location = process.order.location
or role = "Global sales"

Notice that we compose small building blocks of rules into larger rules. Now
imagine that we want the steps Invoice and Receive payment to be carried out
by the same person to retain familiarity. We would then attach a rule saying
role = "Finance" to the task Invoice and then add

role = "Finance"
and user = #whoDid ("Invoice", process.id)

as a rule to Receive payment.
But something is awry here. While we would certainly prefer the task Receive

payment to be done by the same person who did the invoicing, this is only a
preference—certainly not a strict rule that should be allowed to stand in the way
of timely workflow completion if the designated person happens to be busy or
temporarily absent. We have just committed one of the most common mistakes
in workflow specification: we have promoted a soft goal to a strict rule and
thereby created an inflexible system!

Alternatively, we might have removed the rule and only have said role =
"Finance", but that would have left out useful intentional information about
our best practice. So just specifying fewer constraints is not attractive either.

This example illustrates that allocation constraints can represent a wide spec-
trum of specifications: some rules are best kept strict (e.g. Expense approval must
be done by a Manager) while other rules are simply guidelines (e.g. Replenish
printer cartridges should be allocated on a rotation basis (round robin)). The
latter allocation strategy represents an organizational soft goal, which might
have been “rotate tedious tasks between qualified workers to achieve a sense of
fairness and variation and keep workers happy”. This is undeniably a laudable
goal, but if the company is experiencing peak load, this goal must temporarily

Proceedings of CAiSE’08 Forum 87

yield to more mission-critical business goals (e.g. response time vis-à-vis our
customers). Therefore, it cannot be written as a hard constraint, but leaving it
out entirely renders the system unable to suggest the preferred person.

Going back to our example what we probably mean could be written as

role = "Finance"
prefer [10] user = #whoDid("Invoice", process.id)

which states that we require a finance person to handle the activity under all cir-
cumstances, but we prefer the person who did the invoicing in that process. The
number 10 represents a number of points to indicate how strong a preference this
is. This becomes more interesting, when more preferences are in play. Consider
the following rule for allocating the Credit approval step in the workflow:

role = "Manager" or role = "Finance"
prefer [10] role = "Manager"

[-#queueItems(user)]

The rule states that either Manager or Finance should handle the Credit ap-
proval task. A manager is preferred, but the number of items in the manager’s
queue is deducted from the preference level; i.e. someone with a short queue
is preferred. Indeed, if all managers have more than 10 items in their queues,
someone from Finance will be preferred in the interest of time. This shows how
soft constraints in conjunction with hard constraints can be used to express soft
goals and performance heuristics. Other typical soft constraints that we can then
model are round robin, prefer least loaded resource, and prefer shortest queue.

Conceptually we can think of soft constraints being attached not just to a
tasks, but also to a scope, a set of activities, a process or a resource itself—or they
can be inserted on several levels to compose generic rules and policies with more
specific ones. Soft constraints can also be used to express overall policies in the
workflow engine. In this way the allocation rule language is really a hierarchical
scheduler programming language.

2 Evaluation/Experience

The prototype has been tested and preliminarily evaluated with Infosys’ PEAS
platform and the language is slated for inclusion in the PEAS platform. Sev-
eral prototype workflows have been tested with the allocation language, includ-
ing a CRM (Customer Relations Management) workflow, a sales process, a ap-
proval/review process, and a bank transaction process.

Discussions have been held with domain experts from various industries,
such as transportation, finance, insurance, call centers, etc. [3] The language
overlaps with the delegating responsibilities of a call center floor manager. It
would be a valuable tool to support floor managers in their decisions; if not
render them entirely superfluous just yet. The insurance industry (in particular,
claims processing) in many cases already has tailored systems, but those typically
have a subset of the functionality here, and our language will become increasingly

88 Proceedings of CAiSE’08 Forum

relevant as companies change to SOA. The transportation industry has different
demands, in particular relating to scheduling with time and location, which
is future work to add to SoftAlloc. The financial sector focuses mostly on
transactions so the language is sufficient, if not slightly more than what is needed.

A patterns-based evaluation in the style of Russell et al. [4] was considered,
but found unsuitable. It is essential to note that only the patterns that specify
who is ultimately allowed to perform a task are included; our language did not set
out to specify runtime negotiation protocols, which we consider an orthogonal
concern and have handled more elegantly elsewhere in the architecture. While the
language does indeed cover all the patterns intended, a patterns-based analysis
inadequately captures the expressive power of our language. E.g. soft constraints
represent an idea that could easily be expanded to comprise an entire suite of
patterns in its own right, but the patterns-based analysis did not anticipate soft
constraints and therefore does not cover them. Similarly, the patterns work does
not mention if patterns can be combined and if so with what constraints.

3 Conclusion and Future Work

The language SoftAlloc can express all patterns for which it was designed and
all examples that were deemed necessary. The use of soft constraints has proven
extremely beneficial, and as intended the language integrates with any system we
have seen. A GUI for the language is being developed in the production setting
where the language is to be used. Based on the discussion of resource patterns,
it would be interesting to construct a collection of soft constraint patterns.

Some benefits are yet to be reaped: the language is a small non-recursive
DSL and this means that allocation rules are not only expressions that can be
evaluated, but also pieces of data that can be used to perform static analysis.
Performance simulation can be used to identify bottlenecks, estimate capacity
requirements, and suggest what resources to add. This is an important improve-
ment over previous systems, where the lack of integration made performance
analysis a non-routine job requiring specialized skills.

References

1. Stefansen, C.: SMAWL: A SMAll Workflow Language based on CCS. Technical
Report TR-06-05, Harvard University, Div. of Eng. and App. Sci. (March 2005)
http://stefansen.dk/papers/ccs-petrinet.pdf.

2. Stefansen, C., Borch, S.E.: Using soft constraints to guide users in flexible business
process management systems (BPMS). International Journal of Business Process
Integration and Management 3(1) (2008)

3. Stefansen, C., Rajamani, S., Seshan, P.: A work allocation language with soft
constraints. Technical report, Microsoft Research India (2007) http://stefansen.
dk/papers/SoftConstraintAllocation.pdf.

4. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
resource patterns. Technical report, Eindhoven University of Technology (2005)

http://stefansen.dk/papers/ccs-petrinet.pdf
http://stefansen.dk/papers/SoftConstraintAllocation.pdf
http://stefansen.dk/papers/SoftConstraintAllocation.pdf

	A Work Allocation Language withSoft Constraints
	Christian Stefansen Sriram Rajamani Parameswaran Seshan

