
i* Diagnoses: A Quality Process for Building i* Models 

Antonio de Padua A. Oliveira 1, 2, Julio Cesar S. P. Leite 2, 
Luiz Marcio Cysneiros3, Carlos Jose P. Lucena2 

1 Universidade do Estado do Rio de Janeiro – UERJ 
Rua São Francisco Xavier, 524 - 6 andar - Maracanã - Rio de Janeiro, Brazil 

 
2 Pontificia Universidade Catolica do Rio de Janeiro – PUC-Rio 

Departamento de Informatica, Rua Marques de Sao Vicente 225 – Rio de Janeiro, Brazil 
 

3York University – School of Information Technology 
4700 Keele St. – Toronto, Canada 

 
{padua, julio, lucena}@inf.puc-rio.br  -  cysneiro@yorku.ca 

 
Abstract. Modeling with i* is not a trivial task. Our work describes i* Diagnoses Framework, a quality 
oriented process to analyze i* models. Our process is similar to some of the reading techniques of 
inspection methods and bears some similarity with the inquiry based requirement analysis approach. Our 
process focuses on defect prevention considering both the efficiency and effectiveness of Multi-Agent 
System development. 

 

Keywords: early requirements, MAS, software development. 

1   Introduction 

There seems to be a consensus that dealing with intentionality at early stages of 
software projects is a reasonable idea. i* Framework [9] models have been receiving 
greater attention from several researchers [1], [2] as an infrastructure to deal with 
intentionality. Although i* has been cited and used in different research projects, most 
of their users agree that i* models are complex artifacts [7]. Although comprised of 
few elements, the semantics involved in using them can make i* models prone to 
errors [7]. 

The majority of the work has been focused on i* modeling and how to use this 
information on later stages of software production. Our goal is to focus on analyzing 
i* models proposing a quality assurance process to produce better i* models. Process 
quality focuses on defect prevention rather than looking for defects on test phase. We 
propose an analysis technique to enhance the quality of i* models. 

We illustrate our proposal using “The Expert Committee System” (EC System) 
exemplar [3], a system to support the organization of a conference program.

2   The i* Canonical Structures 

Figure 1 ( right ) shows the basic structure of an SRconstruct, which is formed by a 
goal (the goal’s name is the SRconstruct’s name) (as being the end) and at least by 
one task (as being the means to achieve the end). Therefore, all components (and 
subcomponents) needed by tasks (subtasks, resources, softgoals, and goals) should 
appear in the structure. Despite the fact that the goal is only one part of the 



10        Proceedings of CAiSE’08 Forum 

SRconstruct, we identify each SRconstruct by the name of the goal that it fulfills. 
That is because there is only one goal (as being the END) in each SRconstruct. 

Figure 1 ( left ) shows that one actor (CHAIR) and another actor (REVIEWER) can 
have multiple dependencies in each SDsituation Situations of dependency that occur 
in the organizational environment and the central idea of SDsituations is: “each 
dependency link (goal, softgoal, task or resource) that involves actors is not isolated”; 
it is part of one well defined situation of collaboration called one “strategic 
dependency situation” or one SDsituation [6].  

Figure 1 – Examples: left, two SDsituations, and right, one SRconstruct. 
 

3   i* Diagnoses Strategy 

The i* Diagnoses examine each canonical structure (SDsituations and 
SRconstructs) of a given model in order to bring questions that challenge the model 
consistency and completeness. The main idea is to focus on parts of an i* model and 
from these parts conduct an inquiry into the given construct. 

Our process comprises 3 main sub-processes: IDENTIFY CONSTRUCTS, APPLY 
(INQUIRY) FRAMEWORK, and INTEGRATE QUESTIONS. The strategy is applied both to 
the Strategic Dependency Diagrams and to the Strategic Rationale Diagrams of i*. 

The activity IDENTIFY CONSTRUCTS consists of breaking down the i* diagrams into 
constructs (SDsituations and SRconstructs). The activity APPLY (INQUIRY) 
FRAMEWORK consists of applying the inquiry framework to each construct. The 
activity INTEGRATE QUESTIONS consists of merging the questions to analyze them. 
The aim of each diagnose framework is to turn coupled SDsituations and 
SRconstructs inside out looking for problems, faults, deficiencies and potential 
improvements. “Diagnoses are important to deeply understand the problem before 
looking for the solution.”  

 

4   SDsituation & SRconstruct Diagnoses 

Given the basic structures of SDsituations and SRconstructs, general questions are 
proposed to each element. In real cases these “hot-spots” or “place-holders” would be 
replaced in Templates 3.1 and 3.2 by the actual names used in the model. 



 Proceedings of CAiSE’08 Forum        11 

 
Template 3.1 - SDSITUATION 

 
SDSITUATION: “SDsituation’s name” 
I. INTER QUESTIONS 

1. Who else could collaborate with “depender” to have “SDsituation goal’s name”? 
How much can he collaborate? 

2. Why does “dependee” collaborate with “depender” to have “SDsituation goal’s 
name”? 

3. What SDsituations come before “SDsituation’s name”? 
4. What kind of problems with previous SDsituations can be identified to have 

“SDsituation goal’s name”? 
5. What if “dependee” cannot collaborate on the “SDsituation’s name”? 

II. INTRA QUESTIONS 
6. What are the problems inside “SDsituation’s name”? What kinds of problems 

(accuracy, deficiencies, ambiguities, or omissions) are identified as having 
“SDsituation goal’s name”? 

7. What details are needed by “depender”? 
a) Case: resource dependency - What are “resource’s name” problems of 

availability? (Time, accuracy) When? How? How much? 
b) Case: goal dependency – What are “goal’s name” problems to be achieved by 

“dependee”? (Time, ability) When? How? How much? 
c) Case: softgoal dependency – What are “softgoal’s name” problems to be 

satisficed by “dependee”? (Capability) Is there “softgoal’s name” at the end of 
“SDsituation’s name”? Why? Who is demanding the softgoal? 

d) Case: task dependency - Has “dependee” received the directions of how to 
perform “task’s name”? Can the “dependee” still perform it? (Time, ability)  

8. What dependency has the main duty of having “SDsituation goal’s name”? Why? 
 
Template 3.2 - SRCONSTRUCT 

 
SRCONSTRUCT: “SRconstruct goal’s name” 
I. INTER QUESTIONS 

1. Who else has the “endGoal’s name” achieved? 
2. What are the alternatives that the “endGoal’s name” has achieved? Why? 
3. What are the elements of dependency of dependees? 
4. What kinds of problems (accuracy, deficiencies, ambiguities, or omissions) can be 

foreseen? How much? What if resources are unavailable? Who is to blame? How to 
avoid such problems? 

5. What if “endGoal´s name” is shared with another actor? 
6. What other construct depends on this goal? Why? How much? 

II. INTRA QUESTIONS (for each meanTask) 
7. What are the problems with the task “meanTask’s name”? Why? 
8. For the task “meanTask’s name” what are the components needed to achieve 

“endGoal’s name”? 
a) Case: resource – What are “resource’s name” problems of availability? (Time, 

accuracy).  When? How? 
b) Case: subGoal – What are “subGoal’s name” problems to be achieved by 

“dependee/actor”? (Time, ability). When? How? 
c) Case: softgoal – What are “softgoal’s name” problems to be satisficed by 

“dependee/actor”? (Capability) Is there “softgoal’s name” at the end of 



12        Proceedings of CAiSE’08 Forum 

“SRconstruct goal’s name”? Why? What are the contribution links to and from 
this “sofgoal´s name”? 

d) Case: subTask - Can “dependee/actor” perform “task’s name”? (Time, ability)  
9. Is there any softgoal details omitted, not fully operational or without 

operationalization? What kind? Why? How? How much? 
10. Is there any resource missing? What kind? What if a resource is not available? 

5   Conclusion 

The first benefit of using i* canonic structures (SDsituations and SRconstructs) is 
managing complexity. Using SDsituations and SRconstructs, i* models can be 
divided into small pieces avoiding common misuses that appear in i* models [4] and 
also improving the stakeholders’ understanding.  

Our strategy provides a verification based analysis for i* models so as to assure 
better quality models overall. The verification analysis is performed on composing the 
constructs with well known general questions, the 5w2h framework [5] and with the 
ideas of Potts, Takahashi and Anton [8]. 

According to Moody [10], although software quality proposals have been 
concentrated at the end of the process, empirical works demonstrate that the majority 
of defects occur during the requirements phase.  

We plan to continue the work in this direction as we will frame our diagnoses 
approach as a reading strategy for the inspection of i* models. By performing more 
analysis using the proposed i* diagnoses, we hope to improve the quality of the 
questions as they are today. We also foresee a possible automation, by generating the 
set of questions, given a set of  i* models. Moreover, we plan to evaluate how this 
work may scale up to larger models. 

References 
1. Castro, J.; Kolp, M.; Mylopoulos, J. "Towards Requirements-Driven Information Systems 

Engineering: The Tropos Project." In: The 13th international conference on advanced information 
systems engineering, Oxford: Elsevier Science Ltd, v.27, n.6. p. 365-389 - 2002. 

2. Cysneiros, L.M. and Yu, E.; Requirements Engineering for Large-Scale Multi-Agent Systems Book 
chapter in Software Engineering for Large-Scale Multi-Agent Systems – Research Issues and 
Practical Applications. A. Garcia, C. Lucena, F. Zambonelli, A. Omicini and J. Castro (eds.) LNCS 
2603, Springer Verlag. 2003. (Revised and extended version of [SELMAS02]). 

3. Deloach, S. et al.; Multiagent Systems Engineering. International. In: Journal of Software Engineering 
and Knowledge Engineering, 11(3): 231—258 - 2001. 

4. Estrada, H; Martínez, A; Pastor, O; Mylopoulos, J.; An Experimental Evaluation of the i* Framework 
in a Model-based Software Generation Environment; E. Dubois, K. Pohl (Eds.); CAISE 2006, LNCS 
4001, pp.513-527, 2006. Springer-Verlag, Berlin Heidelberg, ISSN: 0302-9743; ISBN: 3-540-34652-
X, 978-3-540-34652-4. 

5. Leite, J.C.S.P, Yu Y.; Liu Y.; Yu E.S.K., Mylopoulos, J.: “Quality-Based Software Reuse” CAiSE-05, 
LNCS 3520, pp.535-550, 2005, Springer-Verlag . 

6. Oliveira, A. Padua A.; Cysneiros, L. M.; “Defining Strategic Dependency Situations in Requirements 
Elicitation” The IX Workshop on Requirements Engineering; Rio de Janeiro, Brazil - July/2006. 

7. Pastor, Oscar; Estrada, Hugo; Martínez, Alicia; The Strengths and Weaknesses of the i* Framework: 
an experimental evaluation i*, its Applications, Variations and Extensions. Eric Yu et al. (eds.) MIT 
Press (accepted for publication in 2006) 

8. Potts, Colin; Takahashi, Kenji; Antón, Annie I.; “Inquiry-Based Requirements Analysis”, IEEE 
Software, Volume 11, Issue 2 (March 1994),  Pages: 21 - 32 

9. Yu, E. Modelling Strategic Relationships for Process Reengineering. PhD Thesis, Graduate 
Department of Computer Science, University of Toronto, Toronto, Canada - 1995. 

10. Moody, D.L. Theoretical and practical issues in evaluating the quality of conceptual models: current 
state and future directions, Data & Knowledge Engineering, 55 (2005) 243-276. 


