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Abstract
Approaches to court case prediction using machine learning differ widely with varying levels of success and legal reason-
ableness. In part this is due to some aspects of law, such as justification, being inherently difficult for machine learning
approaches. Another aspect is the effect of design choices and the extent to which these are legally reasonable, which has
not yet been extensively studied. We create four machine learning models tasked with predicting cases from the European
Court of Human Rights and we perform experiments in order to measure the role of the following four design choices and
effects: the choice of performance metric; the effect of including different parts of the legal case; the effect of a more or less
specialized legal focus; and the temporal effects of the available past legal decisions. Through this research, we aim to study
design decisions and their limitations and how they affect the performance of machine learning models.
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1. Introduction
Recently, much work has been done in the field of court
case predictions. While automatically determining the
outcome of court cases remains an academic exercise, the
large variation in the ways that previous research has
tackled the problem makes it nearly impossible to com-
pare the approaches [1]. The law has unique characteris-
tics, making it difficult to apply machine learning in the
legal domain: machine learning is retrospective, assumes
normally distributed, homogeneous data that is largely
free of errors, and it often cannot explain its decision-
making [2]. The law on the other hand is prospective,
changes over time, contains wrong decisions, and de-
mands arguments for the decisions made. These unique
characteristics of the law are not always taken into ac-
count. To take the law more seriously, we must consider
these when doing machine learning research in the field
of AI & Law.

Some requirements of the law, such as justification, are
inherently difficult for machine learning systems, and
machine learning systems have been shown to use un-
sound reasoning [3]. However, despite their importance,
our focus in this paper will not be on justification, re-
sponsibility or explainibility. Moreover, our goal is not
to create a machine learning system that obtains a better
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performance, or has a better alignment with legal experts
[4]. Instead, we investigate the effect of specific design
choices and effects in machine learning research, in or-
der to better analyze performance and alignment with
characteristics of the legal domain.

We focus on research involving cases from the Euro-
pean Court of Human Rights (ECHR), which has been
used as a benchmark in a number of studies. ECHR data
is included in the LexGLUE benchmark datasets [5], and
forms the basis of the ECHR-OD repository [6]. Previous
studies have applied different machine learning systems
to this dataset, using various methods and achieving dif-
ferent levels of success [7, 8, 9, 10, 11]. To study the
effects of design choices, we train four different types of
machine learning models on cases from the ECHR: an
SVM, a Naive Bayes (NB) Classifier, a Random Forest (RF)
and a BERT model. For these four models, we study the
choice of performance metrics; the effect of including
different parts of the legal case; the effect of a more or
less specialized legal focus; and the temporal effects of
the available past legal decisions.

Our first set of experiments focuses on the replication
and expansion of results in the literature. We train and
test our four models on two different datasets from the
ECHR, using various parts of each case as input, and
report both the accuracies and Matthew’s Correlation
Coefficient (MCC) on each task, model and dataset.

The ECHR covers a number of separate articles. Earlier
work on court case prediction used either single, general
models trained on all articles [8, 10, 5], or a separate,
specialized classifier for each article [7, 9]. In the second
set of experiments, we create both a Generalist model and
an Ensemble of specialized models in order to investigate
the differences in their performances.
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The third and final set of experiments studies temporal
effects. We investigate the effects of training models on
cases from the past to predict future cases, compared to
models trained on randomly split data. Furthermore, we
explore the effects of training on cases from varying time
windows for a model that predicts future cases.

In Section 2, we discuss relevant background infor-
mation. Section 3 addresses our experimental setup and
Section 4 the experiments themselves. We conclude our
paper in Section 5.

2. Background
The current work focuses on the cases made publicly
available by the ECHR, which is an international court
that deals with cases claiming violations of articles laid
out by the European Convention on Human Rights. A
case can pertain to multiple articles of the ECHR and
multiple articles can be violated. Each case description
can be divided into the following main parts:

Introduction: general information, such as title, date
and details about the section of the Court.

Procedure: the course of action taken from lodging and
application until the final Court judgement.

Facts: the circumstances of the case, such as the rele-
vant background information of the applicant and
other events and circumstances; and the relevant
law from documents other than the ECHR.

Law: the legal arguments of the Court.

Judgement: the Court’s decision.

Dissenting/Concurring opinions: judges’ opinions
and why they voted for or against a violation.

In court case prediction, the case text acts as the features
and the judgement as the label. Three variations of the
prediction task have been studied:

• In the Binary classification task (BC), there is
one dataset that contains all cases. Models are
tasked with predicting whether any article was
violated for each case [7, 9, 8, 10].

• In the Multi-label classification task (MLC),
there is one dataset that contains all cases. Models
are tasked with predicting which articles were
violated for each case [8, 10].

• In the Article classification task (AC), there are
multiple datasets, one for each article. Models are
tasked with predicting whether a specific article
was violated for each case [7, 9].

The first models applied to the ECHR classification
task were Support Vector Machines (SVM) [7, 9]. A later

study used BERT, a state-of-the-art pre-trained trans-
former model. While transformers tend to outperform
traditional models, BERT yielded a lower accuracy on the
ECHR task [8], because the ECHR cases greatly exceed
BERT’s 512 token limit and had to be truncated. Chalkidis
et al. therefore also introduced an hierarchical version
of BERT (HIER-BERT), where the words of each fact in
the case are first converted to a fact embedding using the
base BERT model. This version performed significantly
better on the binary classification task than their regu-
lar BERT model with truncation (F1-scores of 82.0% vs.
17.0%). By pre-training this BERT model on additional le-
gal data, a legal-BERT was developed, specifically suited
to legal texts [10] (see also [12]), which performed better
on the ECHR task than the HIER-BERT model (F1-scores
of 88.3.0% vs. 82.0%). It has been noted, however, that spe-
cialized transformers in the legal domain (legal-BERT)
provide relatively little improvement over a standard
transformer, especially when compared to the difference
between regular and specialized BERT models in other
fields, such as in the biomedical domain[13]. Mumford
et al. took a hybrid approach to the court case predic-
tion task, opting to combine HIER-BERT models with
Abstract Dialectical Frameworks. While it is difficult to
compare the performance of this hybrid model to other re-
search, it did outperform a HIER-BERT model trained on
the same subset of ECHR data. Additionally, the hybrid
model is more explainable and can provide justifications
for its predictions.

3. Experimental setup
Here we describe our datasets, machine learning models,
preprocessing steps, and performance metrics used. All
of the code used to run the experiments can be found in
a public repository1.

3.1. Datasets
We train machine learning models on cases from the
ECHR and use these models to predict new case deci-
sions. We use the dataset from the ECHR Open Data
project (ECHR-OD)2 [6]. This repository contains for-
matted and standardized data from the ECHR that is
automatically updated every month, establishing a pub-
lic shared baseline for machine learning models. Each
case in this dataset contains the text of the case and the
outcome, i.e. which articles were considered violated. A
single case can violate multiple articles.

We set up our datasets for the article classification
(AC) task and the binary classification (BC) task. For
the AC task, there are 9 datasets, one for each article.

1https://github.com/CorSteging/InvestigatingDesignChoices
2https://echr-opendata.eu/. Accessed 21 Nov. 2022
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Table 1
Number of cases per article in the ECHR-OD dataset and
percentage of violation cases per article.

Article Size Violation %
2 1212 80.94
3 3489 81.00
5 3165 84.27
6 8272 87.51
8 1841 71.75

10 789 76.05
11 340 84.71
13 2309 91.51
14 578 47.23
All 14910 81.55

Each dataset contains all of the cases pertaining to that
specific article, and the binary label indicates whether
that specific article was violated. For the BC task, there
is one dataset that contains all cases. The binary label of
these cases indicates whether any article was violated.
The number of cases in each dataset can be found in
Table 1, alongside the percentage of cases that evaluate
to a violation of their respective article. Note again that
multiple articles can be considered for a single case. The
sum of all datasets for each individual article in Table 1
is therefore greater than the number of cases in the ’All’
dataset. The outcome in most cases is a violation. The
label distribution is therefore skewed towards violation.

To train a model, we balance the dataset used such
that half of the cases evaluate to violation and the other
half evaluate to non-violation. To balance a dataset, we
randomly remove violation cases from the dataset until
their number equals the number of non-violation cases.

The version of the dataset that we use from the ECHR-
OD contains 14910 cases from 1968 up to and including
2022. The distribution of the cases across the years is
skewed heavily towards the more recent years, however.
This is clearly visible in Figure 1, where we plot the
number of cases per year. Since some of the earlier years
do not contain any cases, we only include cases from
1978 until 2022 in our experiments.

3.2. Models
In our study we use four different types of models: an
SVM, a Naive Bayes (NB) classifier, a Random Forest
(RF) classifier and a BERT model. These are all com-
monly used models known for their effectiveness in text
classification tasks [14]. For the SVM, we use the exact
same parameters as reported in [9]. The parameters of
the other models are tuned using a grid search for each
experiment, where we validate the performance on an
unseen part of the training set. For the SVM, NB and RF
models, we use the scikit-learn library [15]. We use the
BERT transformer from the open-source Hugging Face

Figure 1: Frequency of cases per year in ECHR-OD dataset.

library [16] and limit the number of tokens to 512 using
the default Tokenizer from that library.

3.3. Preprocessing
We train and test our four models on the ECHR-OD
dataset of case texts, preprocessed to remove unnecessary
information from the text and to reduce the token size for
the BERT model, by applying the following heuristics:

• Change all characters to lowercase
• Remove all punctuation except for ’?’
• Remove special characters, newlines and trailing

white spaces
• Change ’t to not ("don’t" becomes "do not")
• Change all fact numbers to ’>’
• Remove stop words using nltk [17]
• Remove unnecessary words that occur in every

case (such as subheadings)

For the SVM, NB and RF models, the texts are then con-
verted to n-grams and normalized using TF-IDF. The
parameters for preprocessing and TF-IDF are fine-tuned
using a grid search.

3.4. Performance Metrics
Most models in the literature report the classification
accuracy or F1-scores of their model. While this was
common practice in machine learning, more recent stud-
ies have steered away from using accuracy in favor of
the Matthew‘s correlation coefficient (MCC) [18], which
ranges from −1 (worst) to 1 (best). Contemporary mea-
sures like accuracy or even F1-scores have been shown
to yield inflated results on binary classification tasks [19],
especially on imbalanced datasets such as the ECHR cases.
The MCC, on the other hand, is only high if all four con-
fusion matrix categories are accurate: high true positives



and negatives, and low false positives and negatives. For
example, a model that always predicts ‘violation‘ will
score an accuracy of 81.55% on the entire ECHR dataset,
since 81.55% of the cases have a violation label. From a
legal point of view, this is an extremely irresponsible and
poorly designed model. However, the accuracy is high
and the F1-score of this model would even be 89.83%,
beating the state of the art. The MCC of such a model,
however, will be 0, indicating that its predictive power
is equal to random guessing. While a macro-averaged
F1-score can be used for unbalanced data, it is known
to be biased and does not take true negative predictions
into account [19]. To take the law more seriously, we
therefore choose to use the MCC to evaluate our models,
even though we work with balanced datasets. We in gen-
eral advocate the use of the MCC for binary classification
as a best practice. We report the accuracy of our models
when comparing their results with the results from the
literature. In the rest of our study, we will report MCC
values only.

4. Experiments
We now discuss our three sets of ECHR-OD experiments.

4.1. Experiment 1: Extended replication
To evaluate the performance of each model, we apply a 10-
fold cross validation to the model for each article (the AC
task), and for all articles at once (the BC task). We balance
each of the datasets such that exactly half of the cases
evaluate to ’violation’. We compare the performance
on the ECHR-OD dataset to that of models from the
literature. For comparison, we also train and test our
models on the subset of data used by Medvedeva et al.
(2020; see [9] for details), which contains only 3133 cases
from 1968 to 2017.

Performance Results Table 2 shows four sets of rows
containing performances of models on the AC task and
the BC task (All). In the first set of rows, we show results
from previous research. Note that results marked with
an asterisk ( *) are F1-scores rather than accuracies. In
the second set of rows, we show the accuracies of the
10-fold cross validation of our SVM, NB, RF and BERT
models using the data from [9]. The third set of rows lists
the accuracies of our four models using the ECHR-OD
data, and the last set of rows contains the MCC values of
our four models on the ECHR-OD dataset. Note that we
decided to round off our results values to one decimal, just
as in the more recent studies. The first two studies only
reported accuracies without decimals. For this general
performance, we used the same parts of the cases in the

training data as Medvedeva et al. (2020). These are the
procedure, the facts or both, depending on the article.

Discussion When we compare the accuracies of our
models, trained and tested on the Medvedeva et al. (2020)
dataset, we can see that our models perform similarly
to those in the literature on the AC task. Note that the
accuracies of SVM by Aletras et al. (2016) were obtained
by training the SVM on parts of the case that were not
available before the judgement was made, and this work
should therefore be classified as outcome identification,
rather than outcome prediction [1]. Performances on
the BC task are lower than the ones achieved by the
SVM, HIER-BERT and Legal-BERT, but higher than the
one achieved by the regular BERT model. However, it is
difficult to compare exact performances without using
the exact same datasets. For example, BERT and HIER-
BERT were trained on 7100 cases and their F1-score was
calculated on predictions on unbalanced test sets (66%
violation) [8], while we trained on 3133 cases and used
balanced test sets. Across the four models that we use,
there is no clear best model, and performance is depen-
dent on the dataset, task and article.

Accuracies are generally slightly lower when training
on the larger and more recent ECHR-OD dataset. We
also see that the MCC ranks the performance of the mod-
els differently than accuracy does (except for Articles
3 and 5). The MCC more accurately depicts the actual
performance of the models as it accounts for the rate of
true positives, false positives, true negatives and false
negatives, which leads to a more reasonable evaluation.
The last two sets of rows in Table 2 therefore show that
accuracies or F1-scores can show inflated results and can
incorrectly suggest a high performance. Therefore, if we
wish to take AI seriously in AI&Law, we should use more
reliable metrics.

Investigating what Parts to use The cases from the
ECHR consist of 6 different parts, including the judge-
ment. Previous studies have used different parts of the
cases to train their models, with mixed results. As dis-
cussed in the background section, only the introduction,
procedure and facts are known before a case is tried.
Some of the earlier literature has used parts that were
made available after the case has been judged, however.
If our goal is to take the law seriously, we should only
include parts that are available before the judgement
was made. We therefore do not use the law section, the
judgement and the dissenting and concurring opinions.
Additionally, the introduction, which contains only gen-
eral information about a case will also not be used, as
this should not have any predictive value. We therefore
focus on the procedure, the facts, and a combination of
both to look into which of these yields the best results.



Table 2
Comparison of the performance between various models and studies on the ECHR classification task. Results (×100) are
accuracies, except those marked with * (F1-scores), and the last four rows (Matthew’s Correlation Coefficient).

Article 2 3 5 6 8 10 11 13 14 All
Results from literature
SVM (Aletras et al., 2016 ) - 75 - 84 78 - - - - -
SVM (Medvedeva et al., 2020) 73 80 71 80 72 61 83 83 75 -
SVM (Clavié and Alphonsus, 2021) - - - - - - - - - 82.2*
BERT (Chalkidis et al., 2019) - - - - - - - - - 17.0*
HIER-BERT (Chalkidis et al., 2019) - - - - - - - - - 82.0*
Legal-BERT (Chalkidis et al., 2020) - - - - - - - - - 88.3*
Medvedeva et al. 2020 dataset
SVM (replication) 72.6 80.1 75.0 80.7 70.6 63.7 82.5 83.3 75.8 67.6
NB 77.0 77.2 72.1 79.3 71.7 64.3 80.6 83.2 70.4 68.8
RF 71.8 70.9 77.3 68.2 73.6 66.9 61.8 80.0 78.5 69.6
BERT 70.8 74.5 70.0 70.5 63.54 59.9 75.0 79.2 76.4 69.9
ECHR-OD (Accuracy)
SVM (replication) 68.0 64.5 65.6 76.8 68.1 61.6 65.4 80.4 76.6 69.3
NB 70.6 64.9 66.1 77.6 66.4 66.8 75.0 77.3 73.6 71.5
RF 66.2 60.8 62.8 74.6 61.8 66.1 75.6 77.1 74.4 72.6
BERT 67.1 62.0 64.9 72.0 61.4 61.1 65.2 72.0 74.0 71.2
ECHR-OD (MCC)
SVM (replication) 38.8 36.8 29.0 31.1 53.8 36.1 23.1 31.0 61.0 53.2
NB 42.9 41.2 29.9 32.3 56.1 33.6 34.3 50.6 54.7 47.4
RF 45.3 32.5 21.6 25.6 49.2 24.1 32.2 52.4 54.8 48.8
BERT 42.4 34.9 24.1 30.0 44.3 22.8 23.1 34.0 45.1 48.7

We should note that all cases in the ECHR dataset were
published after the cases were tried;their texts can there-
fore potentially contain implicit or explicit information
that was not available before the case was tried, even in
the introduction, procedure and facts sections [20].

To investigate which parts of the case are useful in
court case prediction, we train each of the four model
types (SVM, NB, RF, BERT) on the facts, procedure and
both the facts and the procedure. We use the ECHR-OD
dataset. We report the average MCC across a 10 fold cross
validation for each classifier, trained on every individual
article and all articles at once. This experiment expands
upon the research done by Medvedeva et al. (2020) by
exhaustively reporting the performances, in terms of
MCC instead of accuracy, of each combination of our four
models trained on all possible parts. This comparison
can be seen in Table 3, where the best results for each
classifier on a given article is shown in bold.

Discussion There is quite some variation between the
MCC of models using different parts in Table 3. Determin-
ing which part to use is therefore important to obtain the
highest possible performance. The facts and the combi-
nation of facts and procedure yield the best results across
the combinations of part, model and article. The proce-
dure alone ranks the worst. This means that the facts are
an essential part when doing court case predictions. This
is unsurprising, as this part contains all of the relevant

information regarding the circumstances, background,
applicant and relevant law from other documents. We
see that adding the procedure can improve performance,
but this is dependent on the combination of article and
model. This supports the method used in [9], where
different parts are used for each article. We also show
that the performance is dependent on the combination
of the parts used and the model used, and we base our
conclusions on the MCC rather than the accuracy.

4.2. Experiment 2: Specialist vs.
Generalist models

In previous research, models were either trained on each
individual article (AC task) or on all articles at once (BC
task); in the latter case, the model is tasked with pre-
dicting whether there has been any violation, regardless
of what article was violated. The performance of our
own models and models from the literature on this task
can be seen in the rightmost column of Table 2. This
approach can be compared to a human legal generalist,
who has knowledge of all articles. Instead of just a single
generalist, however, one could opt to use a team of legal
specialists, where each person of the team is specialized
in a different article. In this experiment, we examine
these two different approaches to the BC task.

The first approach is to create a single Generalist model
that is trained on all cases of the ECHR. In the second



Table 3
Comparison of MCC between various machine learning models across a 10 fold cross validation, when training on only the
facts, only the procedure and both.

Article 2 3 5 6 8 10 11 13 14 All
Dataset size 462 1326 996 2066 1040 380 104 392 546 7376
SVM
Procedure 31.64 25.3 24.52 43.77 19.82 22.25 30.98 51.53 38.1 38.75
Facts 33.07 29.0 31.14 54.65 36.16 24.4 48.09 54.18 48.0 45.57
Procedure + Facts 36.8 28.37 35.35 53.81 35.66 23.16 55.78 61.0 53.15 43.77
NB
Procedure 34.25 22.34 31.35 41.75 27.92 32.11 50.6 51.15 39.61 42.91
Facts 30.48 29.88 32.25 50.96 33.55 33.95 56.28 54.09 48.05 48.2
Procedure + Facts 41.15 25.4 34.97 56.08 37.82 34.31 67.2 54.68 47.41 49.72
RF
Procedure 20.09 27.31 22.71 41.02 21.87 31.34 52.43 47.15 36.83 45.27
Facts 35.29 21.63 25.63 48.79 24.08 29.19 54.14 54.82 43.12 50.91
Procedure + Facts 32.48 28.3 32.74 49.21 26.92 32.18 46.83 54.77 48.81 50.65
BERT
Procedure 26.82 27.92 28.96 48.73 13.72 22.54 33.96 41.94 46.79 42.44
Facts 19.19 24.12 30.0 48.13 22.79 29.46 39.92 57.99 42.6 45.53
Procedure + Facts 34.87 24.16 28.14 44.26 25.5 23.09 32.55 45.09 48.68 43.92

approach, we train an Ensemble of models, wherein each
model is specialized in a different article of the ECHR,
akin to the team of legal specialists. Each model of this
Ensemble is trained on identifying violations for just a
single article, thus reducing the problem space and po-
tentially increasing performance. Additionally, such an
Ensemble would be able to tell what article was violated,
thus providing explanations for its decisions. Each model
of the Ensemble would, however, have less data than the
Generalist model, which might decrease performance.
We perform an experiment to determine which approach
yields the best performing model. We create three types
of datasets:

• nine Ensemble Training Sets, one for each arti-
cle, containing 90% of all of the cases that consider
that specific article; the features are the facts of
the case, and the label is whether or not there is
a violation of the respective article in the case.

• the Generalist Training Set contains all of
the cases from all nine Ensemble Training Sets;
the features are again the facts, and the label is
whether or not any article was violated in a case.

• the Testing Set contains the 10% of cases not
used in the Ensemble Training Set and Generalist
Training Set; features and label are the same as
in the latter.

We generate the 90% - 10% split in training and test data
randomly, preserving the 50% balance in classes. We use
these three datasets to train and test a Generalist model
and an Ensemble. The Generalist model is trained on
the Generalist Training Set and evaluated using the Test-
ing Set. The Ensemble consists of nine specialist models,

Table 4
MCC for Generalist models and (improved) Ensembles.

Improved
General Ensemble Ensemble

SVM 37.04 27.55 31.99
NB 30.33 30.54 5.42
RF 35.95 14.58 17.43
BERT 27.66 13.51 24.95

each trained on a different Ensemble Training Set. Each
of these specialist models will be tasked with predicting
the labels of the cases from the Test Set. The predictions
of each specialist model will be combined in a disjunctive
manner to form the final prediction of the Ensemble. In
other words, the output will be violation if any specialist
model predicts violation, and non-violation otherwise.

We compare the performance of the Generalist model
to that of the Ensemble. The experiment is performed
for every one of our four model types: the SVM, NB, RF
and BERT. We also repeat every experiment 10 times for
each type of model, using different cases for the training
and testing sets in each iteration. We report the average
MCC in Table 4. The best results are shown in bold.

Discussion From Table 4 we see that for most Gener-
alist models the MCC is much higher than that of the
Ensemble. The Generalist models therefore outperform
the Ensembles for most types of classifiers. The excep-
tion is the NB classifier, where there is little difference
in MCC. This suggests that, in predicting ECHR court
cases, a larger problem space combined with more train-
ing data results in better performance than a reduced



Table 5
Confusion matrix of all predictions by the SVM Ensemble.

Predicted:
True: N-violation Violation Total

N-violation 623 1,138 1,761
Violation 1,138 17,601 18,739

Total 1,761 18,739

Table 6
Confusion matrix of all predictions by the Improved SVM
Ensemble.

Predicted:
True: N-violation Violation Total

N-violation 622 1,139 1,761
Violation 934 17,805 18,739

Total 1,556 18,944

problem space with less data.
Each of the specialist models in an Ensemble is trained

on cases that pertain to a single article. The Test Set used
for these specialist models, however, considers all articles,
most of which the individual specialist models will not
have seen during training. Ideally, if a specialist models
is presented with a case that considers an article that it
is not trained for, it should predict ’non-violation’. How-
ever, it is not explicitly trained to give that prediction
and, as a result, provides a random prediction. Given that
the final prediction of the Ensembles is an OR-function,
this leads to many incorrect ’violation’ predictions. This
can be seen in Table 5, which displays the confusion ma-
trix of all of the predictions done by the SVM Ensemble.
The Ensemble predicted ’violation’ in a total of 18,739
cases, out of which 17,601 were correct and it predicted
’non-violation’ in a total of 1,761 out of which only 623
were correct. This initially might seem like a great perfor-
mance, and would lead to an accuracy of 89.9%. However,
the Test Set is heavily skewed towards violation (91.14%
of all cases). The performance on violation cases is there-
fore relatively good, accurately predicting the outcome
of 93.9% of all violation cases. However, the model also
incorrectly assigns violation to 64.6% of all non-violation
cases.

Improved Ensemble A potential solution to this is-
sue is to present the specialist models with cases that do
not pertain to the article that they are focused on dur-
ing training. For example, a specialist model trained on
article 6 cases could also explicitly be trained to predict
’non-violation’ for all cases that do not pertain to article
6. To create this new Improved Ensemble, we alter the
training datasets as follows. We create nine Improved
Ensemble Training Sets, one for each article. Just as the
earlier Ensemble Training Set, each Improved Ensemble
Training Set contains 90% of all of the cases that consider

that specific article. The features in these datasets are the
facts of the case, and the labels are whether or not there
is a violation of the respective article in the case. Addi-
tionally, we add cases from other articles to this dataset,
where each additional case has the ’non-violation’ la-
bel. Since almost all articles contain more violation than
non-violation cases (see Table 1), we add these additional
cases to each Improved Ensemble Training Set until their
number of violation and non-violation cases is equal. The
Improved Ensemble is set up in the same way as the
earlier Ensemble, but each specialist model of this Im-
proved Ensemble is trained on the Improved Ensemble
Training Sets. The results of the Improved Ensemble are
shown in the rightmost column of Table 4.

Discussion The Improved Ensemble performs better
than the initial Ensemble when using the SVM, RF and
BERT models. This supports our idea that the specialist
models generally perform better when including addi-
tional cases from other articles with a ’non-violation’
label. This informs the model to predict ’non-violation’
for cases pertaining to other articles.

The NB models, however, seem to perform worse in
the ’Improved Ensemble’ scenario. Analysing the data
shows that the specialist models in the ’Improved’ NB
Ensemble now predict ’violation’ in 99.5% of all test cases,
thus yielding a low MCC in Table 4. Our hypothesis is
that the problem space might have become too large
for the NB specialist models by providing them with a
relatively small number of additional cases pertaining
to other articles. Investigating this idea is left for future
research. Note that the accuracy of this Ensemble is
91.2%, incorrectly suggesting a high performance of this
irresponsible system, which further advocates for the use
of the MCC as a performance metric.

Table 4 shows that the Improved SVM Ensemble per-
forms better than the initial SVM Ensemble. The confu-
sion matrix of this Improved SVM Ensemble is shown in
Table 6. Here, we see that the performance on the non-
violation cases is almost identical to that of the initial
Ensemble on the same cases, as shown in Table 5. By
including the additional cases, our aim was to instruct the
specialist models to predict non-violation for cases that
did not pertain to its specific article. However, while the
Improved Ensemble does perform better, Table 6 shows
us that the Improved Ensemble did not improve its per-
formance on the non-violation cases. The difference in
performance is therefore due to the Improved Ensemble’s
predictions on the violation cases. We see that the Im-
proved Ensemble correctly predicts the outcome of 95%
of all violation cases. This is 1.1 percent point higher
than the performance of the initial Ensemble.

By including additional cases pertaining to other ar-
ticles in each of the specialist models, we are able to
somewhat improve the Ensemble’s performance in most



cases. It should be noted here that we only include a
small subset of additional cases pertaining to other arti-
cles. The number of additional cases equals the number
of violation cases of a given article, minus the number of
the non-violation cases of that article. This is to ensure a
50% violation rate in the training dataset of each model.
The Ensemble could potentially be improved further by
oversampling violation cases for each article and includ-
ing more of these additional cases. This could potentially
change the results of the ’Improved’ NB Ensemble as well,
as it would then have more cases per article. However,
oversampling has downsides as well, such as overfitting.
Future research could investigate this idea.

4.3. Experiment 3: Temporal effects
In the previous experiments, we have split our training
and testing sets randomly, or used 10-fold cross valida-
tion to train and test our models, just as much previous
research has done. By splitting the data randomly, we
might select training cases that occurred more recently
than our test cases. In other words, we might use future
cases to predict cases from the past. When it comes to
court case predictions, an argument can be made for se-
lecting the most recent cases as the test set and to use
the older cases as a training set. This way, we use past
cases to forecast the future. Some models in previous
research were trained in this way [8], but effects of this
design choice have not yet been studied. To evaluate how
models perform under these different temporal circum-
stances, we narrow our scope and focus on article 6 of
the ECHR. This article contains the most cases and has
therefore been investigated in other work as well [? 11].
In this experiment, we use the facts of the cases from
article 6 as the features, and whether or not article 6 was
violated as the label. We train models on cases from the
past and evaluate how their performance compares to
models trained on randomly selected data. We use three
types of datasets in this experiment, each containing only
cases from article 6:

• test sets consist of cases from a single Test Year.
• the models trained on Past Cases will be trained

on all cases that occurred before the Test Year.
• the models trained on Random Cases are trained

on randomly selected cases that occurred either
before or after the Test Year.

For each year, we therefore generate 2 types of models,
one trained on Past Cases (cases from years before the
year that we use to test the model) and one trained on
Random Cases. Note that we ensure that the size of the
Random Cases training set is the same as the size of the
Past Cases training set for each respective Test Year. This
way, we can disregard discrepancies in the size of the

Table 7
Mean MCC of models predicting all cases from a given year,
after training on cases from the past or training on a random
sample of a similar size. We display mean results across all
Test Years (1979-2022) and results across more recent Test
Years (2000-2022).

1979 - 2022 2000-2022
Random Past Random Past

SVM 19.60 18.62 35.32 34.98
NB 16.40 19.68 29.38 32.07
RF 21.11 13.39 33.38 30.16
BERT 21.78 8.16 26.68 26.30

training dataset as a potential cause of differences in
performance. All training sets are balanced, such that
half of the cases are violation cases and the other half are
non-violation cases. We use all four model types (SVM,
NB, RF, BERT) and train on the facts of the ECHR-OD
dataset. The results can be seen in Table 7.

Discussion We performed the experiment using all
possible Test Years from 1979 until 2022. Across all these
Test Years, we see in Table 7 that the MCC of models
trained on random cases is generally higher than the
MCC of models trained on past cases. This would imply
that learning from past cases is more difficult than learn-
ing from random cases from both past and future. The
exception here is the NB classifier, which performs better
when trained on past cases. In Figure 2, we plot the MCC
per Test Year for each of the four model types trained on
either Past Cases (blue) or Random Cases (orange). Note
that the y-axis of each subplot is scaled differently. Here
we see that the MCC of models trained on both random
cases and past cases fluctuates a lot for earlier Test Years.
This could be due to the limited number of available cases
in those years that the models are used to train on (see
the case distribution per year in Figure 1). The differ-
ence between the two (the shaded area in Figure 2) also
decreases with more recent Test Years.

If we look only at the recent years (2000-2022) in Ta-
ble 7, we get a more nuanced comparison. Table 7 still
shows higher MCCs for models trained on random cases
over models trained on past cases, with the exception of
the NB model, but the difference between the two is much
lower. The absolute mean MCC is also higher across the
years. While the differences between the two approaches
may be smaller, they still exist, as seen in Figure 2. Not
only is it legally more reasonable to train on past cases to
predict future cases, a random split of the data into a train
and test set can also have an impact on the performance.
If we wish to take the law more seriously in this type of
research, to ensure realistic results we should train on
past cases and test on future cases.



Figure 2: MCC of models trained on either cases from the past (blue) or randomly selected cases (orange) and tested on cases
of a given Test Year, ranging from 1978 to 2022.

Time Window We know that machine learning sys-
tems tend to perform better with more data, granted that
the data is a proper reflection of the problem space. We
also know, however, that the interpretation of the law
is subject to change over time and precedent may be
overturned. When this happens, the older cases can be
overruled by newer cases. Looking too far into the past
may therefore not be optimal when trying to predict new
court cases. We therefore also investigate the difference
between using all cases or only a subset of the more
recent cases.

We train our models on cases from the past but only on
a limited number of recent years. This window of years
represents how far we look back into the past, and will

Table 8
Mean MCC of the window experiment.

Window 5 10 15 20 25 30 35 SD
SVM 37.5 37.5 37.4 38.4 39.9 39.4 39.6 1.1
NB 32.0 30.8 31.4 31.7 32.2 31.9 32.4 0.5
RF 36.6 36.8 35.4 34.8 35.0 35.0 35.4 0.8
BERT 33.3 29.6 31.0 27.5 30.7 31.8 34.3 2.3

be varied between 5 and 35 years in steps of 5. We test
on only a single Test Year of cases. For example, training
the model to predict cases from 2022 using a window
of 5 years means that the model is trained on the cases
from 2016 up to and including 2021. Because we only
have cases from 1978 until 2022, we will test our models
on cases from 2013 to 2022. This way, we can train our
model using windows of up to 35 years for each given
Test Year.

We create a model for each combination of type (SVM,
NB, RF and BERT), Test Year (from 2013 to 2022), and
window of training data (5 to 35 in steps of 5). There
are therefore 4 * 10 * 7 = 280 different setups in this
experiment. To represent the results, we average the
MCC of each of these models across the years, as to
show the effects of the window size on the performance
of each of the model types. We train on the facts of
cases from Article 6 and use the ECHR-OD dataset. The
results of this experiment are shown in Table 8, where the
best window for each model is shown in bold. The last
column in Table 8 reports the standard deviation across
the different windows.



Discussion Based on Table 8 we cannot extrapolate
a clear relationship between the number of past years
of cases in training and the performance of the models.
The NB and BERT models perform best with 35 years
worth of cases. However, there does not seem to be a
clear positive relationship between the window size and
MCC, as the MCC increases and decreases slightly across
the window sizes. A similar observation holds for the
SVM and RF models, which do not perform much better
or worse with more years worth of cases from the past.
The overall impact of the window is therefore small, as
also indicated by the low standard deviations. The BERT
model is impacted most by the window size, but the stan-
dard deviation in MCC is still only 2.3. In this scenario,
using cases from further in the past does therefore not
seem to have a significant impact on the performance
of the models. This can, of course, be different if the
interpretation of the law has changed significantly. If
we want to take the law more seriously, we should in-
vestigate the temporal effects of the legislation and, if
precedent is overturned, adjust and evaluate our training
data accordingly.

5. Conclusion
The approaches to court case predictions are diverse and
difficult to compare [1]. While some methods yield better
results, they may also raise concerns about how reason-
ably they align with the characteristics of legal decision-
making. For a proper analysis of court case prediction
research, we should consider the unique characteristics
of the law and the effects that it can have on the models.
While justification, explainability and responsibility are
major issues in machine learning and law, our scope did
not include these aspects and focused instead on design
choices.

If we want to take the law more seriously in machine
learning research, we should measure the effect of rel-
evant design choices and effects. We therefore propose
to use the Matthew’s Correlation Coefficient rather than
the accuracy or F1-score, as the latter two metrics tend
to yield inflated results and can incorrectly attribute a
much higher performance to a model.

Based on our results of Experiment 1, the facts are the
most important of a case when it comes to court case
predictions (see Table 3). Including the procedure of the
case can increase performance, but this is dependent on
the article and on the model used. For the best results, the
parts used should therefore be included in the parameter
optimization pipeline.

In Experiment 2, our Generalist model, trained on all
articles at once, outperforms our Ensemble of specialist
models each trained on a specific article. While the spe-
cialist models had a reduced problem space, more data

appeared to still be more important. By including some
additional cases of other articles in the training phase
of each specialist model of the Ensemble, we are able to
increase performance for most model types. While we
only included a small sample of these additional cases,
future research could investigate whether including more
additional cases in the training data of specialist models
of the Ensemble could increase performance further.

Experiment 3 shows that training on past cases to pre-
dict the future is more difficult than training on randomly
selected instances from both the past and the future. Tak-
ing into account the effects of time may therefore have
an effect on performance, especially when you consider
much older cases. For that reason, randomly splitting
data into a training and test set, or running a k-fold cross
validation, might show unrealistic results. In these sce-
nario’s, it is more than likely that the model is predicting
past cases using future cases, which is impossible in real-
ity and does not account for the temporal aspects of the
law.

We show that using only a limited number of years
worth of cases, rather than all cases, does not seem to
have an impact on the performance of our models, as
shown in Table 8. This suggests that the interpretation
of the law, in particular regarding article 6 of the Euro-
pean Court of Human Rights, remained stable enough for
machine learning predictions. There are, however, legal
considerations that might suggest the removal of certain
older cases, especially after certain landmark cases or
changes in society. In those cases, we should investigate
the effects that this has on the legislation and adjust our
training data accordingly.

We have explored legally reasonable design choices
and effects in court case predictions, and have shown
their impact on performance. We conclude that, taking
the law more seriously in machine learning research
requires that the relevant, unique characteristics of the
law are taken into account. Our findings are by no means
enough to address inherent limitations (in particular with
respect to justification), and future research has to remain
critical of the choices that are being made in order to
remain legally reasonable.
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