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Abstract
In this study, we analyze data-scarce classification scenarios, where available labeled legal data is small and imbalanced,
potentially hurting the quality of the results. We focused on two finetuning objectives; SetFit (Sentence Transformer
Finetuning), a contrastive learning setup, and a vanilla finetuning setup on a legal provision classification task. Additionally,
we compare the features that are extracted with LIME (Local Interpretable Model-agnostic Explanations) to see which
particular features contributed to the model’s classification decisions. The results show that a contrastive setup with SetFit
performed better than vanilla finetuning while using a fraction of the training samples. LIME results show that the contrastive
learning approach helps boost both positive and negative features which are legally informative and contribute to the
classification results. Thus a model finetuned with a contrastive objective seems to base its decisions more confidently on
legally informative features.
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1. Introduction
The scarcity of publicly available, high quality legal data
is causing a bottleneck in legal text classification re-
search [1]. While there are a few publicly available
datasets, such as CUAD [2], and LEDGAR [3], these
datasets are unbalanced. They may provide good base-
lines to start with; however, the scarcity of samples for
specific classes means that there is no guarantee of robust
performance once models are adapted to downstream
classification tasks.

Few-shot learningmethods have proven to be an attrac-
tive solution for classification tasks with small datasets
where data annotation is also time-consuming, inefficient
and expensive. These methods are designed to work with
a small number of labeled training samples and typically
require adapting a pretrained language model to a spe-
cific downstream task.

In this paper 1, we focus on three major aims. First, we
finetune the LegalBERT[5] model on the publicly avail-
able LEDGAR provision classification dataset. We com-
pare the success of a contrastive learning objective and a
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1While our paper shares a similar title with ”Attention is all you
need” [4], we focus on a different topic.

more standard objective to finetune the pretrained model.
Secondly, we finetune the same baseline model with

these two finetuning objectives with the balanced dataset
created from LEDGAR. Lastly, to analyze the trustwor-
thiness and explain individual predictions, we extract the
tokens from the model as features by using LIME [6] to
compare which features had more positive or negative
impacts.

2. Related Work
The legal text classification has been tackled with vari-
ous BERT techniques to adopt domain-specific legal cor-
pora [7] [8]. While these studies often report state-of-the-
art results with BERT-based models, they do not address
the issue of data scarcity for specific applications.

There have been several pieces of research on efficient
finetuning setups that can potentially address this ne-
cessity, such as parameter efficient finetuning (PEFT),
pattern exploiting training (PET), and SetFit (Sentence
Transformer Finetuning) [9], an efficient and prompt-free
framework for few-shot finetuning of Sentence Trans-
formers (ST). SetFit works by first finetuning a pretrained
ST on a small number of text pairs, in a contrastive
Siamese manner. Also, SetFit requires no prompts or
verbalizers, unlike PEFT and PET. This makes SetFit sim-
pler and faster. We explain how SetFit works in more
depth in the following section.
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2.1. SetFit: Sentence Transformer
Finetuning

SetFit is a prompt free framework for few-shot finetuning
of ST, addressing labeled data scarcity by introducing
contrastive learning methods to generate positive and
negative pairs from the existing dataset to increase the
number of samples.

There are two main steps involved in SetFit, from train-
ing to inferencing. First, a contrastive objective is used
to finetune the ST, and then the classification head is
trained with the encoded input texts.

At the inference stage, the finetuned ST also encodes
the unseen inputs and produces the embeddings accord-
ingly. Then the classifier head gives the prediction results
based on the newly generated embeddings.

ST finetuning To better handle the limited amount of
labeled training data in few-shot scenarios, contrastive
training approach is used. Formally, we assume a small
set of K-labeled samples 𝐷 = (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 and 𝑦𝑖 are
sentences and their class labels, respectively. For each
class label 𝑐 ∈ 𝐶, 𝑅 positive triplets are generated: 𝑇 𝑐𝑝 =
(𝑥𝑖, 𝑥𝑗, 1), where 𝑥𝑖 and 𝑥𝑗 are pairs of randomly chosen
sentences from the same class 𝑐, such that 𝑦𝑖 = 𝑦𝑗 = 𝑐.
Similarly, a set of 𝑅 negative triplets are also generated:
𝑇 𝑐𝑛 = (𝑥𝑖, 𝑥𝑗, 0), where 𝑥𝑖 are sentences from class 𝑐 and
𝑥𝑗 are randomly chosen sentences from different classes
such that 𝑦𝑖 = 𝑐 and 𝑦𝑗 ≠ 𝑐. Finally, the contrastive
finetuning data set 𝑇 is produced by concatenating the
positive and negative triplets across all classes where |𝐶|
is the number of class labels, |𝑇 | = 2𝑅|𝐶| is the number of
pairs in 𝑇 and 𝑅 is a hyperparameter. SetFit will generate
positive and negative samples randomly from the training
set, unless they are explicitly given [9].

This contrastive finetuning approach enlarges the size
of training data. Assuming that a small number (𝐾) of
labeled samples is given for a binary classification task,
the potential size of the ST finetuning set 𝑇 is derived
from the number of unique sentence pairs that can be
generated, namely 𝐾(𝐾 − 1)/2, which is significantly
larger than just 𝐾.

Classification head training In this second step, the
fine-tuned ST encodes the original labeled training data
{𝑥𝑖}, yielding a single sentence embedding per training
sample: 𝐸𝑚𝑏(𝑥𝑖) = 𝑆𝑇 (𝑥𝑖) where 𝑆𝑇 () is the function rep-
resenting the fine-tuned ST. The embeddings, along with
their class labels, constitute the training set for the classi-
fication head 𝑇𝐶𝐻 = (𝐸𝑚𝑏(𝑥𝑖), 𝑦𝑖) where |𝑇 𝐶𝐻 | = |𝐷|. A
logistic regression model is used as the text classification
head throughout this work.

Inference At inference time, the fine-tuned ST en-
codes an unseen input sentence (𝑥𝑖) and produces a sen-

tence embedding. Next, the classification head that was
trained in the training step, produces the class prediction
of the input sentence based on its sentence embedding.
Formally this is predicted label 𝑖 = 𝐶𝐻(𝑆𝑇 (𝑥𝑖)), where
𝐶𝐻 represents the classification head prediction function.

3. Data
We present experimental results both on the original
LEDGAR dataset, and on a balanced version. We describe
the original dataset first, then we give a brief description
of how the dataset was further balanced for the presented
experiments.

3.1. Data source
As a main corpus, we used the publicly available
LEDGAR2 provision classification dataset, consisting of
60,000 training samples in total, with 100 different provi-
sion labels.

We did not apply any additional preprocessing or data
modification techniques to keep the data as it is to make
the experiments reproducible.

To create a dedicated test dataset for the unbalanced
data scenario, we randomly selected 25 samples per label
from the corpus, in total approximately 2,500 samples.
The rest of the 57,500 samples are used to generate the
train/dev sets.

The training sets are created by selecting 4, 8, 12, and
16 samples per label for SetFit, and 50, 100, 150, and 200
for the vanilla finetuning setup. Therefore the maximum
number of samples is calculated as: maximum number of
samples per label multiplied by the number of total labels,
as can be seen in Figure 1. In practice, in the case of the
vanilla finetuning setup, we end up with fewer training
samples than this total. This is because some labels are
extremely sparse, and there are fewer total samples than
the stipulated maximum per label.

3.2. Crawling and balancing
The original LEDGAR dataset is imbalanced. The small-
est label consists of only 23 samples, and the largest has
3167 samples in the original training dataset. Therefore,
to create a new balanced dataset, we selected the most
frequent 32 labels.

For labels with more than 1000 samples, we downsam-
pled to 1000 samples per label. For labels with fewer than
1000 samples, we upsampled by crawling and retrieving
additional data from LawInsider,3 removing any dupli-
cates. As a result, a new dataset has been created that
consists of 32 classes, with each having 1000 provisions.

2https://autonlp.ai/datasets/ledgar
3https://www.lawinsider.com/



Additionally, we also created a dedicated test dataset
for the balanced data scenario, and selected 25 samples
per label randomly for the 32 labels, for a total of 800
samples. The remaining 31,200 samples are used for
training with a random 80/20 train/dev split.

For finetuning with the balanced dataset, we again
train with varying sizes of training data, using 4, 8, 12,
and 16 samples per label for SetFit, and 50, 100, 150, and
200 for the vanilla finetuning setup, as can be seen in
Figure 2.

Note that, unlike the case of the unbalanced data, the
total sizes for the vanilla finetuning setup in the balanced
case correspond to the totals obtained by multiplying the
maximum sample size with the number of labels.

4. Experiments

4.1. Models
It has been shown that models which have been pre-
trained on domain-specific legal data outperform general-
purpose models [5]. Therefore, throughout this paper,
the baseline we use is a finetuned LegalBERT using
legal-bert-base-uncased .4 We compare this standard,
or ”vanilla” finetuned baseline to a model finetuned with
the contrastive objective used in SetFit.

4.2. Experimental Setup
The finetuning setup is the most crucial stage of the
experimenting setup. Therefore, we kept the common
hyperparameters of SetFit and vanilla setups the same.
The rest of the parameters were kept as their default val-
ues, provided by the respective implementations. The
important hyperparameter for SetFit finetuning is the
𝑅 parameter, which defines the number of positive and
negative pairs to be generated from the given training
set. We kept this parameter as its default value, 20 across
all the experiments. For both models, we used 1 epoch
for the finetuning. Table 1 gives detailed common hyper-
parameters of finetuning setups for both SetFit Trainer5

and Vanilla Trainer.6

5. Results

5.1. F1-score comparisons: Original
dataset

In Table 2, we compare the F1-scores for different ex-
periments, with the test set described in Section 3. The

4https://huggingface.co/nlpaueb/legal-bert-base-uncased
5https://github.com/huggingface/setfit
6https://huggingface.co/docs/transformers/main_classes/trainer

Table 1
Common hyperparameters for SetFit and Vanilla Trainer

Hyperparameter Value

Learning Rate 2e-5
Warmup Ratio 0.1

Seed 42
Batch Size 8
Epoch 1
Metric accuracy

Table 2
F1-score comparison between SetFit and Vanilla finetuning,
original LEDGAR dataset

Models Samples Micro-F1 Macro-F1 Weighted-F1

Vanilla 4933 0.5805 0.5151 0.5273
SetFit 400 0.6565 0.6348 0.6423
Vanilla 9756 0.6734 0.6180 0.6317
SetFit 800 0.6808 0.6709 0.6781
Vanilla 14379 0.7083 0.6632 0.6780
SetFit 1200 0.7104 0.6962 0.7054
Vanilla 18734 0.7190 0.6712 0.6864
SetFit 1600 0.7206 0.7097 0.7183

original LEDGAR dataset is used in this experiments,
with an 80/20 train/dev split.

As can be seen from the table above, SetFit’s con-
trastive learning approach yielded a better F1-score com-
pared to the vanilla finetuning, despite only using a frac-
tion of the training samples.

Additionally, we observed that Weighted-F1 displays a
larger gap between models compared to Micro-F1. This
is particularly expected, since the problem of unbalanced
data is exacerbated in the vanilla finetuning setup as the
maximum number of samples per label increases.

5.2. Accuracy comparisons: Original and
balanced dataset

In Figure 1, we compare the finetuning results of SetFit
and vanilla models, finetuned on the original LEDGAR
dataset with the same training split and test dataset as
the previous experiment.

We observed that the models achieve comparable ac-
curacies overall, despite the differences in Weighted F1-
scores in the Table 2. However, it is still noteworthy that
the contrastive learning approach achieves accuracy com-
parable to the vanilla finetuned model with very small
sample sizes.

In Figure 2, we compare the accuracy of the two ap-
proaches, this time with the balanced LEDGAR dataset.
In this experiment we also used 80/20 train/dev split. The
results show that the contrastive learning finetuning has



Figure 1: Accuracy comparison between SetFit and Vanilla finetuning, original LEDGAR dataset

Figure 2: Accuracy comparison between SetFit and Vanilla finetuning, balanced LEDGAR dataset

a warmer start compared to vanilla finetuning, particu-
larly in small data scenarios. However, as can be seen
from the graph, SetFit is comparable with vanilla model
across all the experiments as well.

5.3. LIME feature comparisons
In machine learning in general, but especially in domains
such as law, trustworthiness of AI systems is crucial.
The ability to explain model predictions is central to
increasing trustworthiness in at least two respects. First,
explanations have an impact on whether a user can trust
the prediction of the model to act upon it; second, they
also influence whether a user can trust the model to
behave in a certain way when deployed.

Several approaches to explaining model predictions
have been proposed in the literature, including LIME [6],
SHAP [10], and GRAD-CAM [11].

Through the training results mentioned in previous

sections, we observed that SetFit models were compa-
rable with vanilla models, despite using a fraction of
the dataset. However, we get very little information
about whether the models base their decisions on fea-
tures which are intuitively correct, that is, if the models
are classifying the provisions with legally informative
features, or arbitrary ones.

LIME is a technique based on the creation of inter-
pretable, surrogate models over the features that are lo-
cally faithful to the original classifier. This means that
interpretable explanations need to use representations of
those features that are understandable, trustworthy, and
justifiable to humans [6].

For the text classification tasks, LIME features are re-
stricted to the words that are presented in the provisions.
Thus, the positively weighted words that lead toward a
particular label are called ”positive” features. Likewise,
the negatively weighted words that reduce themodel’s es-
timate of the probability of the label are called ”negative”



Table 3
F1-score comparisons of Adjustments and Authority provi-
sions

Class Label Vanilla SetFit

Adjustments 0.7368 0.8571
Authority 0.5063 0.2903

features.
We kept the LIME hyperparameters the same in each

model explanation for fair comparison and the details are
as follows: The limit for the total number of words per
classification is defined as 𝐾, and the complexity measure
for the models is defined as:

Ω(𝑔) = ∞𝟙[‖𝑤𝑔‖0 > 𝐾]

where the 𝑔 is defined as a simple interpretable sparse
linear model (logistic regression in the case of SetFit,
multinomial logistic regression in the vanilla model); 𝑤𝑔
is defined as the weight vector of 𝑔. The 𝐾 = 10 is
selected across all the experiments for simplicity and
potentially can be as big as the computation allows. The
size of the neighborhood for local exploration is set to 25.
The distance function 𝐷 was kept as the default, cosine
distance metric. 7

Thus, in this section, we compare the positive and
negative features of SetFit and vanilla models extracted
using the LIME setup mentioned above.

To ensure a fair comparison, we used the SetFit model
trained with 800 training samples and the vanilla model
trained with 9756 training samples. As shown in Figure 1,
the two models converged and obtained comparable per-
formance with these settings. We selected two test labels
to compare, namely Adjustments and Authority provi-
sions. Again, for a fair comparison, we chose the labels
based on the cases where one technique did better than
the other, in terms of their respective F1-scores. For the
Adjustments label, the SetFit model outperformed the
vanilla model, and for the Authority label, vanilla fine-
tuning outperformed the SetFit model. Thus, we aim to
observe the differences in the model-predicted features
for these labels. Table 3 shows the F1-score differences
of these provisions.

We begin by comparing the positive features which
both approaches have in common (i.e. the features they
both assign a positive weight to), for the two target la-
bels. These are shown in Figure 3 and Figure 8. The
figures suggest that the contrastive approach from SetFit
seems to help to boost legally informative features more
than vanilla models, even in the small data scenarios. For
instance, words like ”adjustments”, ”shares”, ”dividend”,
”stock”, etc. can give a first strong hint about the Adjust-
ment provision classification results, as well as words
7https://github.com/marcotcr/lime

like ”authority”, ”power”, ”act”, ”execute”, ”binding”, etc.
for the Authority provision. Thus, domain experts can
make decisions based on their usefulness.

In Figures 4 to 7, we show the top positive features
for the two models separately, for each label. We note
that similar observations can be made with respect to
these figures, that is, the contrastive learning framework
boosts the positive weight of features that are intuitively
more legally informative. Nevertheless, we also see that
less informative features, including stop words, are also
assigned some positive weight.

Additionally, we also observed similar behavior with
the negative features in Figures 9 to 12. For negative
features, the SetFit model trained with a contrastive ob-
jective assigns a greater negative magnitude. Thus, it
appears that negative role of these features is accentuated
in the contrastive setting, relative to the standard fine-
tuning setup. For instance, words like ”changes”, ”shall”
and ”without” for the Adjustments provision and ”which”,
”common”, ”document” and ”carry” for the Authority pro-
vision sound generic and may not give legally informa-
tive hints to humans. However, in the vanilla model case,
similar legally non-informative negative features are also
present but not enough to perturb the model’s decisions.

6. Conclusions & Future Work
This paper presented a detailed comparison of legal pro-
vision classification. Motivated by the challenge of low-
resource scenarios and data imbalance, we compared
the performance of a LegalBERT model finetuned in a
standard setting, to one finetuned using a contrastive
objective.

Following previous work [5], we assumed that models
pretrained on legal data are better able to retain the legal
knowledge and terminologies in the process of finetun-
ing. On the other hand, our experiments show that the
type of finetuning approach matters, especially where
data is relatively scarce. In particular, the contrastive
learning approach showed promising results in terms of
evaluation metrics, achieving performance comparable
or better than the vanilla finetuning setup. The results
also showed that the positive and negative features ex-
tracted from the models differ significantly, favoring the
SetFit model, despite using almost 11 times less data.

As future work, investigating the limitations of SetFit
deeper with more hyperparameters on legal data may be
beneficial for pushing themodel capabilities further. Also,
we plan to use other explainability tools such as SHAP or
GRAD-CAM to compare the extracted features. Finally,
an evaluation of the appropriateness of the positive and
negative features identified using explainability methods
needs to be carried out with domain experts.



Figure 3: SetFit vs Vanilla finetuning, common positive LIME features comparison for Adjustments provision

Figure 4: SetFit finetuning positive LIME features for Adjustments provision



Figure 5: Vanilla finetuning positive LIME features for Adjustments provision

Figure 6: SetFit finetuning positive LIME features for Authority provision



Figure 7: Vanilla finetuning positive LIME features for Authority provision

Figure 8: SetFit vs Vanilla finetuning, common positive LIME features comparison for Authority provision



Figure 9: SetFit finetuning negative LIME features for Adjustments provision

Figure 10: Vanilla finetuning, negative LIME features for Adjustments provision



Figure 11: SetFit finetuning negative LIME features for Authority provision

Figure 12: Vanilla finetuning, negative LIME features for Authority provision
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