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Abstract
As the impact of Artificial Intelligence systems and applications on everyday life increases, algorithmic
fairness undoubtedly constitutes one of the major problems in our modern society. In the current paper,
we extend the work of Dimitrakakis et al. on Bayesian fairness [1] that incorporates models uncertainty to
achieve fairness, proposing a practical algorithm with the aim to scale the framework for a broader range
of applications. We begin by applying the bootstrap technique as a scalable alternative to approximate
the posterior distribution of parameters of the fully Bayesian viewpoint. To make the Bayesian fairness
framework applicable to more general data settings, we define an empirical formulation suitable for
the continuous case. We experimentally demonstrate the potential of the framework from an extensive
evaluation study on a real dataset and different decision settings.
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1. Introduction and Background

Algorithmic fairness is increasingly a major concern, in particular for AI systems. Fairness
either relates to individuals (e.g. meritocracy) or groups (e.g. discrimination ) [2]. We study
the problem of fair decision-making under uncertainty. We adopt a Bayesian viewpoint, where
fairness is a property of the decision rule 𝜋 and the underlying problem parameter 𝜃. However,
while 𝜋 is chosen by the decision maker (DM), the parameter is known only up to probability
distribution. Hence, the DM must choose 𝜋 so as to balance the utility-fairness trade-off by
marginalising over the Bayesian posterior. However, as this is not always practical, in this
paper we propose some approximations. We begin by explaining the basic framework in the
remainder of this section, before offering algorithmic solutions and experimental results.
Fair Decision Rules: As in[1], we consider decision problems where the DM observes an

individual’s features 𝑥 ∈ 𝑋 , as well as a sensitive variable 𝑧 ∈ 𝑍 (such as gender), takes an
action 𝑎 ∈ 𝐴, resulting in an outcome 𝑦 ∈ 𝑌 . The observed variables are generated from some
distribution 𝑃𝜃(𝑦|𝑥,𝑎,𝑧), 𝑃𝜃*(𝑥, 𝑦). The decision-maker’s actions 𝑎 are produced according to a
policy 𝜋(𝑎|𝑥) that defines a probability over actions for every possible observation.
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Since the DM does not know the true parameter 𝜃*, they have a belief 𝛽 ∈ 𝐵 over a family of
distribution 𝒫 = {𝑃𝜃 | 𝜃 ∈ Θ} that it may contain the actual law, i.e. 𝑃𝜃 for some 𝜃 . The belief
𝛽 expresses the uncertainty of the decision maker about the word. In the Bayesian case, the
belief 𝛽 is a posterior formed through his prior distribution 𝑃 (𝜃) and the available data.

The DM wishes to find a policy 𝜋 maximizing expected utility 𝐸𝜋
𝛽 [𝑢], where 𝑢(𝑎, 𝑦) is a

utility function dependent on the DM’s action and the unknown outcome. At the same time,
though they must take into account fairness constraints 𝐹 . In particular, the optimal policy for
a given belief 𝛽 will maximize the following utility-fairness tradeoff:

𝑇 (𝜋, 𝛽) = E𝜋
𝛽[𝑈 ]− 𝜆E𝜋

𝛽[𝐹 ] =

∫︁
Θ
E𝜋
𝜃 [𝑈 ]𝑑𝛽(𝜃)−

∫︁
Θ
𝜆E𝜋

𝜃 [𝐹 ]𝑑𝛽(𝜃) (1)

This idea was used in [1], which focused on fairness constraints related to balance [3], that
states that the actions 𝑎 should be independent of the sensitive variable 𝑧 if conditioned to the
true outcome 𝑦 i.e 𝑎 ⊥ 𝑧 | 𝑦. The resulting deviation from fairness can be formalized as follows:

E𝜋
𝜃 [𝐹 ] =

∑︁
𝑎,𝑧,𝑦

‖
∑︁
𝑥

𝜋(𝑎|𝑥)[𝑃𝜃(𝑥, 𝑧|𝑦)− 𝑃𝜃(𝑥|𝑦)𝑃𝜃(𝑧|𝑦)] ‖𝑝𝑞 (2)

Combining the above fairness deviation (2) with (1) results in the Bayesian Balance Rule,
while on the other hand, replacing the unknown 𝑃𝜃 with the marginal model P𝛽 =

∫︀
Θ 𝑃𝜃𝑑𝛽(𝜃),

results in the Marginal Balance Rule, which in practice can be very unfair for high-probability
models. This approximates the expected fairness violation as:

E𝜋
P𝛽
[𝐹 ] =

∑︁
𝑎,𝑧,𝑦

‖
∑︁
𝑥

𝜋(𝑎|𝑥)[P𝛽(𝑥|𝑧, 𝑦)− P𝛽(𝑥|𝑦)]P𝛽(𝑧|𝑦) ‖𝑝𝑞 (3)

Related Work. The academic community has recently expressed growing concerns about
the relationship between uncertainty and algorithmic fairness. The concept of decision-making
under uncertainty, that we adopt, was first formally introduced by Dimitrakakis et al., while
the significance of incorporating model uncertainty was also highlighted in [4] from a point
of view of causal modeling. In a more recent study, Ali et al. also argues that we have to
consider epistemic uncertainty, ignoring aleatoric uncertainty, in a fair classification setting
by incorporating predictive multiplicity. Another interesting research direction is the work
of Singh et al. that considers fairness in ranking under uncertainty. Additionally, a broader
discussion about uncertainty as a form of transparency is presented by Bhatt et al..
Contribution. The previous work in the Bayesian fairness setting [1] focused on simple

discrete models, where posterior distributions of the parameters can be calculated in closed
form. We instead focus on the case where Bayesian inference is not closed-form, in particular
for continuous data. We consider both replacing the posterior calculations with bootstrapping
and the analytical version of the balance metric with an empirical approximation. Finally, we
experimentally evaluate our extensions by comparing the policies obtained from Bayesian and
the Marginal balanced rule on the COMPAS [8] dataset.



2. Algorithm for Bayesian Fairness

In the context of the Bayesian fairness framework, the decision maker has a belief 𝛽 that is
expressed through a distribution 𝒫 = {𝑃𝜃 | 𝜃 ∈ Θ} over different 𝜃 parameters. Instead of
using the posterior distribution, as in Bayesian inference, one can use the sampling distribution
of an estimator �̂� obtained by sub-sampling data 𝐷𝑖 from the original dataset 𝐷. The idea of the
bootstrapping method is to get different datasets 𝐷𝑖 by sampling 𝑁 different datasets of size
|𝐷| with replacement, called bootstrap datasets. We then obtain a set of 𝑛 samples 𝜃1, . . . , 𝜃𝑛,
where 𝜃𝑖 = �̂�(𝐷𝑖), and our optimisation problem becomes

𝜋*
Bootstrap = argmax

𝜋

𝑛∑︁
𝑖=1

E𝜋
𝜃𝑖
[𝑈 − 𝜆𝐹 ]. (4)

In addition to the bootstrapping method, we need an empirical estimate of the fairness
violation 2 when our observations 𝑥 are continuous variables. In particular, for infinite 𝑋 finite
𝑍 , 𝑌 and 𝐴 the equation 2 becomes:

E𝜋
𝜃 [𝐹 ] ≈

∑︁
𝑎,𝑧,𝑦

‖ 1

𝑁

𝑁∑︁
𝑖

𝜋(𝑎|𝑥𝑖)[𝑃𝜃(𝑧|𝑥𝑖, 𝑦)− 𝑃𝜃(𝑧|𝑦)]
𝑃𝜃(𝑦|𝑥𝑖)
𝑃𝜃(𝑦)

‖𝑝𝑞 (5)

For the above equation we need to estimate 𝑃𝜃(𝑦), 𝑃𝜃(𝑧|𝑦), 𝑃𝜃(𝑦|𝑥), 𝑃𝜃(𝑧|𝑥, 𝑦). In the case
where 𝑌 , 𝑍 is finite it’s easy to estimate 𝑃𝜃(𝑦), 𝑃𝜃(𝑧|𝑦) with discrete models, whereas for
𝑃𝜃(𝑦|𝑥), 𝑃𝜃(𝑧|𝑥, 𝑦) we can use continuous predictive models to estimate them. To find the
optimal policy of 1 we can make use of a gradient descent algorithm.

3. Experiments

We empirically evaluate our approach by comparing the policies obtained from the different
balance rules on the COMPAS dataset. We performed two different experiments to study the
effects of our algorithmic solution using discrete and continuous versions of the dataset. More
specifically, in the discrete case, we can compare the bootstrap and the marginal methods to
the closed-form Bayesian approach by employing a fully discrete Bayesian network model
as described in [1]. In the second experiment, we only compare the policies obtained from
Bootstrap and the marginal rules using the empirical formulation 5. To evaluate our policies, we
calculate the fairness 𝐹 and utility 𝑈 with respect to the empirical model from a hold-out dataset,
performing the experiments 50 times, each time shuffling our dataset and using 6000 (70%) data
points for training and the rest 1214 (30%) for testing, reporting the average and the variance of
the aforementioned metrics. Our code https://github.com/a-athanasopoulos/Bayesian-fairness
reproduces all presented experiments.
Experimental Setup. To study how DM uncertainty affects fairness we consider the fol-

lowing experimental setting which is operating over multiple steps 𝑡, each time increasing
the amount of training data. Intuitively, in the early steps of the process, the DM is more
uncertain about the model parameters as he has assessed fess data compared to the later steps,

https://github.com/a-athanasopoulos/Bayesian-fairness


Figure 1: In the figure, we illustrate the total utility 𝑇 , the utility 𝑈 , and the Fairness 𝐹 of the Discrete
and Continuous experiments on the test-set and for = 1. At every step 𝑡, the policies were trained using
𝑛 = 𝑡 * 500 data points. We report the average performance together with the stand deviation on the
test set for the different optimization approaches according to the labels over 50 runs.

so we expect the Bayesian methods to perform better regarding fairness 𝐹 as we account for
uncertainty. We use 12 steps each time considering 𝑑𝑡 = 𝑡 * 500 data points.

Models and Policies. The graphical model is fully connected, so the model uses the factoriza-
tion 𝑃(𝑥,𝑦,𝑧)=𝑃(𝑥|𝑧,𝑦)𝑃(𝑧|𝑦)𝑃(𝑦)

from which we can calculate all the relevant models to optimize our

policy. To form the posterior distribution for the discrete case we use the Dirichlet-Multinomial
model with a non-informative initial Dirichlet parameter of 1/2 from which we can sample
different model parameters, while we can also calculate the marginal model in closed form. We
use parameterized policies of the form 𝜋(𝑎|𝑥) = 𝑤𝑎𝑥. For the continuous case, we calculate
the marginal models of 𝑃𝜃(𝑦), 𝑃𝜃(𝑧|𝑦) as in the discrete case, while for the models 𝑃𝜃(𝑦|𝑥),
𝑃𝜃(𝑧|𝑥, 𝑦) and the policy 𝜋(𝑎|𝑥) that contains the continuous observations we use logistic
regression models. The sampling distribution of the bootstrap method uses the marginal model
using different bootstrap datasets for both continuous and discrete cases as described in section
2.

The Algorithm. We use gradient descent to optimize the policies by minimizing the negative
total expected utility 𝑇 as in 1. In particular, for the Bayesian approaches we sample a model
from the 𝒫 distribution and then take a step in the gradient direction in each iteration. More
specifically for both bootstrapping and the fully Bayesian approach, we use 16 models to form
the 𝒫 , obtained either by using a different bootstrap dataset or directly sampling from the true
posterior accordingly. The marginal policies simply perform the steepest gradient descent for
the marginal model. We make 1500 gradient decent iterations in each policy update, with a
learning rate of 0.01.
Results. In Figure 1 we illustrate the different trade-offs between utility 𝑈 and fairness 𝐹

for both discrete and continuous experiment versions in each step of the process using 𝜆 = 1.
Both experiments indicate that the policies obtained from the Bayesian approaches outperform



the marginal one in both fairness 𝐹 and total utility 𝑇 . In particular, for the continuous version,
the effect is more evident in the early steps of the algorithm where we have a limited amount of
data and thus greater model uncertainty. For the discrete data, we observe a constant advantage
of the Bayesian approach over the marginal one. In addition, we can say that the bootstrap
method is a good approximation of the Bayesian posterior. Finally, the policies obtained from
the Bayesian approaches result in less variance in both continuous and discrete experiments.

4. Conclusion and Future Directions

In this work, we offer an algorithm solution to scale the concept of Bayesian fairness [1]. We
propose the use of bootstrapping as an alternative to the posterior distribution of the parameters,
along with an empirical formulation of the balance fairness metric suitable for continuous data
scenarios. The results of our empirical study emphasize the significant role of accounting
for uncertainty in the context of algorithmic fairness. Interesting research directions include
the consideration of alternative fairness metrics, the incorporation of Bayesian fairness in
reinforcement learning, and the application of the framework in modern deep learning models
to investigate the advantages of Bayesian fairness in huge and complex datasets with higher
degrees of uncertainty.
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