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Abstract
Many different types of bias are discussed in the algorithmic fairness community. A clear understanding
of those biases and their relation to fairness metrics and mitigation techniques is still missing. We
introduce Bias on Demand: a modelling framework to generate synthetic datasets that contain various
types of bias. Furthermore, we clarify the effect of those biases on the accuracy and fairness of ML
systems and provide insights into the trade-offs that emerge when trying to mitigate them. We believe
that our open-source package will enable researchers and practitioners to better understand and mitigate
different types of biases throughout the ML pipeline. The package can be installed via pip and the
experiments are available at https://github.com/rcrupiISP/BiasOnDemand. We encourage readers to
consult the full paper [1].
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Problem statement Systems based onMachine Learning (ML) are increasingly being adopted
to make decisions that might have a significant impact on people’s lives [2–5]. Because these
decision-making systems rely on data-driven learning, the risk is that they will systematically
propagate the bias that can be introduced at different steps throughout the ML pipeline [6–8].
The risk is that the adoption of ML algorithms could amplify or introduce biases that will
recur in society in a perpetual cycle [9, 10]. To prevent harmful consequences, it is essential to
comprehend how and where bias is introduced throughout the entire modelling pipeline and
possibly how to mitigate it [11].
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Contributions We build on computer science and philosophical literature from the field of
algorithmic fairness to explore fundamental types of bias. We provide a modelling framework
to generate synthetic datasets that can include those biases. We use our proposed framework to
investigate the interconnection between biases and their effect on performance and fairness
evaluations. Furthermore, we provide some initial insights into mitigating specific types of bias
through post-processing techniques [12–15].

We provide a mathematical representation of the following types of bias: i) Historical bias –
sometimes referred to as social bias, life bias, or structural bias [6, 7, 16] – occurs whenever a
variable of the dataset relevant to some specific goal or task is dependent on some sensitive
characteristic of individuals, but in principle it should not. ii) Measurement bias occurs when a
proxy of some variable relevant to a specific goal or target is employed, and that proxy depends
on some sensitive characteristics. iii) Representation bias occurs when, for some reason, data
are not representative of the world population. iv) Omitted variable bias may occur when
the collected dataset omits a variable relevant to some specific goal or task. v) Algorithmic
bias may occur whenever the algorithmic outcomes affect the behaviour of users. i.e. the
bias is generated purely by the algorithm using unbiased data.1 vi) Deployment bias arises if
the process followed to take decisions based on the algorithm’s prediction results in harmful
downstream consequences. Further details, the full set of experiments and discussions about
our data generation framework can be found in the full paper [1].

Showcase As a simple example, we generate datasets for different magnitudes of historical
bias and measurement bias on the features 𝑅, denoted by 𝛽𝑅ℎ and 𝛽𝑅𝑚. Figure 1 shows the effects
of those biases w.r.t. different performance and fairness metrics and for applying various bias
mitigation techniques: DP, FTU, and TPR parity. In line with [17–20], we find that FTU should
be applied with particular care, despite its simplicity. FTU has no effect whatsoever since
the information on group membership is redundantly encoded in 𝑅 (see Figure 1a). However,
there are even cases in which the application of FTU leads to biased results and performance
deterioration even when the unconstrained model does not (see Figure 1b). Similarly, Figure 2
shows the results for different magnitudes of historical bias and measurement bias on the labels
𝑌, denoted by 𝛽𝑌ℎ and 𝛽𝑌𝑚. The results of historically biased 𝑌 are comparable to the ones of
historically biased features, except for FTU, which results in DP (see Figure 2a). As Figure 2b
shows, the case of measurement bias on 𝑌 is particularly subtle: having access only to a (biased)
proxy of 𝑌, it is only possible to control the bias when imposing fairness criteria that do not use
the target variable, namely DP and FTU in our experiments. All examples show that there are
trade-offs between fairness and accuracy as well as between different fairness criteria.2

Outlook This work aims to raise awareness of bias in artificial intelligence (AI) systems and its
potential impacts on individuals and society, promoting the development of bias-free AI systems.
This is in line with the European Union’ Proposal for a regulation laying down harmonised rules
on AI (AI Act) [21]. By exploiting our toolkit, we hope to encourage the research community to
conduct further studies using synthetic datasets where real-world datasets are missing.
1Notice that we use algorithmic bias as an umbrella term for aggregation bias, learning bias, and evaluation bias as
they are all associated with the ML model development [8].

2The entire and reproducible set of experiments and the code to develop new ones are available in open-source.
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(a) Historical bias on 𝑅
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(b) Measurement bias on 𝑅

Figure 1: Accuracy (ACC) and fairness metrics for biased features 𝑅. The acronyms stand for demo-
graphic parity (DP), fairness through unawareness (FTU), true positive rate (TPR), false positive rate
(FPR), positive predictive value (PPV), and false omission rate (FOR).
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Figure 2: Accuracy and fairness metrics for biased labels 𝑌. Notice that all metrics in (b) are computed
with respect to the “true”, unbiased target 𝑌, which is usually not known in practice.
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