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Abstract
Post-processing is a bias mitigation technique proposed by the algorithmic fairness community to ensure
the fairness of decision making systems that rely on machine learning (ML). Several works have provided
solutions to optimally post-process ML-based systems for taking decisions that are fair w.r.t. specific
group fairness criteria such as statistical parity (SP ) or equality of opportunity (EOP ) [1, 2]: here, optimal
decision rules always take the form of lower-bound threshold rules. We investigate the case of another
important fairness criterion called predictive parity. We show that for this notion of fairness, the optimum
decision rules are different: In some cases, the optimum decision rule consists in applying an upper-bound
threshold rule for (at least) one group. This result is counter-intuitive: For a decision maker, it may be
optimal to leave out the most promising individuals of a group in order to generate predictive parity in a
globally optimal way. This is in contrast to the analogous solutions for SP and EOP. Furthermore, even if
between-group fairness is achieved, within-group fairness may be created. We encourage readers to
consult the complete manuscript [3], which was published at FAccT 2022.
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Background Prediction-based binary decision systems are not fair by default. In order
to measure and eventually correct for discrimination against certain social groups, different
mathematical notions of so-called group fairness criteria have been proposed [4, 5]. One line
of research is concerned with optimal post-processing of ML models, deriving decision rules
that satisfy some group fairness constraint while still leading to efficient decisions [1, 2, 6, 7].
Following this approach, we formulate the goal of fairness as a constrained optimization problem
for a decision maker, assuming that goal is to maximize a decision maker’s utility function while
satisfying some fairness constraint [8]. Such optimal decision rules have been derived for the
group fairness criteria (conditional) statistical parity, equality of opportunity (also called True
Positive Rate (TPR) parity), False Positive Rate (FPR) parity, and Equalized Odds (EO) [1, 2, 6].
It has been shown that lower-bound threshold rules characterize optimal decision rules that
satisfy these fairness constraints.1
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1In the fair ML literature, so-called thresholding, applied to the prediction 𝑝 = 𝑃[𝑌 = 1], is arguably the most
typical decision rule for probabilistic classifiers, also because of its conceptual similarity to the way humans take
decisions [9, 10]. Lower-bound threshold rules are decision rules given by 𝐷 = 1, if 𝑝 > 𝑡, 𝐷 = 0 else. For the EO
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Table 1
Group fairness criteria

Criterion Equation

Predictive parity 𝑃(𝑌 = 1|𝐷 = 1, 𝐴 = 0) = 𝑃(𝑌 = 1|𝐷 = 1, 𝐴 = 1)
FOR parity 𝑃(𝑌 = 1|𝐷 = 0, 𝐴 = 0) = 𝑃(𝑌 = 1|𝐷 = 0, 𝐴 = 1)
Sufficiency 𝑃(𝑌 = 1|𝐷 = 𝑖, 𝐴 = 0) = 𝑃(𝑌 = 1|𝐷 = 𝑖, 𝐴 = 1), 𝑖 ∈ {0, 1}

In computer science and in philosophy literature, predictive parity (also known as parity of
positive predictive values (PPV) or precision across groups) is oftenmentioned as one of the main
fairness criteria [4, 5, 10–22]. Related fairness criteria are false omission rate (FOR) parity and
sufficiency. Most prominent is probably the case of the 2016 debate surrounding the recidivism
risk prediction tool COMPAS [11]. In response to [23] suggesting that the tool systematically
disadvantages black defendants, Northpointe (the developers of COMPAS) claimed that their
tool is fair because it satisfies predictive parity and FOR parity [24].2

Research gap Optimal post-processing solutions are unknown for fairness criteria that
condition on the decision, namely, predictive parity, FOR parity, and sufficiency (which combines
the former two) – see Table 1 for the definitions w.r.t the decision 𝐷, label 𝑌, and binary groups
𝐴 = {0, 1}. We close this gap by deriving optimal decision rules that satisfy these group fairness
criteria through post-processing.

Findings We provide formal proof showing that optimal decision rules satisfying predictive
parity or FOR parity take the form of group-specific threshold rules, as has been found for other
fairness criteria. However, surprisingly, under some conditions (depending on the populations
and the applied utility function), upper-bound thresholds are optimal: a decision maker would
assign a positive decision (𝐷 = 1) to individuals with a low probability of belonging to the
positive class (𝑌 = 1). This is visualized in Figure 1 where the probability (𝑝) density functions
are shown for two groups 0 and 1 and the colored parts represent those individuals that receive
a positive decision: Without any fairness constraints, a single uniform lower-bound threshold
would be optimal (i.e., 𝐷 = 1 if 𝑝 > 𝑡0), resulting in different PPVs for the two groups (denoted
by 𝑃𝑃𝑉𝑡0 in Figure 1). To ensure predictive parity, it is optimal to apply a lower-bound threshold
to Group 0 (i.e., 𝐷 = 1 if 𝑝 > 𝑡1) and an upper-bound threshold to Group 1 (i.e., 𝐷 = 1 if 𝑝 < 𝑡2),
resulting in a PPV of 𝑃𝑃𝑉𝑡1,𝑡2 for both groups. In this situation, any rational decision maker
is willing to omit the most promising individuals from Group 1 in order to achieve predictive
parity – which is highly counter-intuitive.

Furthermore, we provide a solution for the optimal decision rules that satisfy sufficiency. We
find that this definition of fairness requires randomization (similar to the EO criterion [2]).

criterion, randomization involving two such thresholds is needed to satisfy EOP and FPR parity simultaneously [2].
2In addition to recidivism prediction, predictive parity is also prevalent in predictive policing [25] (where the metric
is usually called hit rate or outcome test) and in personalized online ads (where the notion of click through rates [26],
which is an equivalent metric, is omnipresent).



Figure 1: Optimal decisions under predictive parity may require an upper-bound threshold rule. The
uniform threshold 𝑡0 denotes the optimal unconstrained decision rule. The positive predictive values
(PPVs) that result from this decision rule are denoted by 𝑃𝑃𝑉𝑡0. The group-specific thresholds [𝑡1, 𝑡2]
(where 𝑡1 denotes the lower- and 𝑡2 the upper-bound, meaning that any individuals with a probability
𝑝 ∈ [𝑡1, 𝑡2] is assigned the decision 𝐷 = 1 and 𝐷 = 0 otherwise) denote the optimal decision rule under
predictive parity. The PPVs that result from this optimal fair decision rule are denoted by 𝑃𝑃𝑉𝑡1,𝑡2.

Recently, we have conducted additional experiments, showing that the solution provided in this
paper is effective in mitigating many different types of bias that can be present in ML-based
decision making systems [27]. These experiments show that post-processing techniques [1–3]
can cope with historical biases on the features or labels and even with measurement bias on
the features. However, measurement bias on the label is particularly difficult to mitigate, and
existing (post-processing) solutions are limited since they rely on the biased proxy of the label.

Ethical implications In many cases, individuals with 𝑌 = 1 have, morally speaking, a higher
claim to a positive decision 𝐷 = 1 than individuals with 𝑌 = 0, and vice versa. For example, in
the case of COMPAS, this means that individuals with a lower probability of recidivism (i.e., a
low 𝑝 = 𝑃[𝑌 = 1]) should preferably be released (𝐷 = 0). However, requiring a rational decision
maker to fulfill predictive parity can result in releasing individuals with higher recidivism
probabilities instead. This represents a case of within-group unfairness: achieving between-
group fairness at the expense of within-group fairness may be problematic from an ethical
perspective.

Society increasingly calls for fairer algorithms. At least for the group fairness criteria predic-
tive parity, FOR parity, and sufficiency, our work shows that imposing such fairness criteria on
utility-maximizing decision makers may lead to ethically problematic outcomes.
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