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Abstract
Machine learning models, extensively deployed in critical decision-making roles, necessitate verification
for potential gender or racial biases from training data. Traditional fairness strategies focus on curating
training data and subsequent statistical evaluation of model fairness. We, however, propose techniques
that offer formal proof of fairness, leveraging recent advancements in neural network model verification.
Our methods offer robust guarantees and uniquely, they eliminate the need for explicit training or
evaluation data, often proprietary, to analyze a trained model. Experimental results from the well-known
ADULTS dataset demonstrate that appropriate training can decrease unfairness by an average of 65.4%
with less than 1% cost in AUC score.
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1. Introduction

Machine learning models are increasingly utilized in critical decision-making tasks, and it is
vital to ensure they are devoid of gender or racial biases [1]. Traditional fairness strategies focus
on curating training data and post-hoc evaluation on testing data. However, these methods
often require proprietary data and do not provide concrete proof of fairness.

We propose techniques to formally prove fairness in neural network models, without needing
explicit training or testing data [2, 3, 4, 5]. We explore fairness specifications and apply formal
methods for classification tasks with explicit input labels that encode sensitive properties such
as race, gender, or age. Fairness in this context implies that model 𝑀 should behave similarly
across all values of these sensitive fields. Importantly, eliminating these inputs during training
does not ensure fairness, as sensitive properties can be inferred from other variables, such as
zip codes.

Our approach is primarily applied to fully connected networks with ReLU activation func-
tions [6]. In these networks, binary decision models divide possible inputs into geometric
polytopes, and all points within a polytope share the same label. Fairness properties involve
demonstrating that these regions are similar for distinct labels or groups (Figure 1). We define
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Figure 1: In our verification approach, each partition Θ of the network input space defines a domain
for integration over a given input probability density function 𝑃 , calculating a probability of the input
space with a fixed output classification. By repeating and summing over all partitions, we can evaluate
fairness metrics for the network.

fairness in 𝑀 using three provable properties: Volumetric symmetric difference, Probability-
weighted symmetric difference, and Net Preference, each depending on specific fairness criteria.
Our key contribution is:

• Provable Fairness Guarantees without Training or Evaluation Data – We define a class of
fairness guarantees for neural classification models that require only black box access to
the model. Our metrics either require no training data or knowledge of the class features’
distribution, or only require knowledge of the features’ probability distribution, which
can be estimated using demographic studies.

A full overview of the contributions and a more in-depth analysis of the results is available
in the full paper.[7]

2. Related Work

Formal verification methods for neural networks: Formal verification methods conduct
set-based analysis of networks, eschewing the execution of individual input samples [8, 2, 9].
Given a neural network 𝑓𝑁𝑁 : R𝑛 → R𝑚, an input set 𝑋 ⊆ R𝑛, and an unsafe set of outputs
𝑈 ⊆ R𝑚, the open-loop NN verification problem aims to ascertain that for all inputs 𝑥 ∈ 𝑋 ,
the output 𝑓𝑁𝑁 (𝑥) does not belong to the unsafe set 𝑈 . The problem is typically resolved by
computing the range of the neural network function for an input domain 𝑋 and checking if the
range intersects the unsafe states 𝑈 [10, 11]. In this paper, we repurpose this range computation
approach to examine how probability distributions propagate through the networks.

Two core operations in our work are: (1) computing the range of the neural network as
a union of polytopes, and (2) computing the volume of the output polytopes. Unlike the
conventional usage of formal verification methods for safety and motion planning, we explore
their application for neural network fairness measurement.



Limited research exists on provable fairness. Some frameworks focus on proving dependency
fairness [12, 13], aiming to ensure outputs are not influenced by certain input features through
forward and backward static analysis and input feature partitioning. Another approach [14]
emphasizes individual fairness, where similar individuals receive similar treatments. Our prov-
able fairness metrics, however, are defined over geometric properties of the network outputs,
such as the symmetric difference between the ranges with different values of sensitive inputs.

3. Fairness Verification via Formal Methods

3.1. Acceptance Region

To evaluate model fairness, we scrutinize the acceptance regions, denoted as 𝜌(𝐶). Given a
neural network assigning the label 𝑓(�⃗�) for input value �⃗�, 𝜌(𝐶) represents the input space
where �⃗� ∈ 𝐶 ∧ 𝑓(�⃗�) = ℓ. The defining label ℓ is user-determined based on specific neural
network properties of interest.

3.2. Fairness Metrics

Our fairness evaluation relies on metrics embodying legal notions of disparate treatment and
impact. We develop and use three metrics: WSD (weighted symmetric difference), VSD (volu-
metric symmetric difference), and NP (net preference). WSD precisely captures the proportion
of individuals affected by class-specific rules in an unfair model. The VSD is an approximation
of the WSD that can be computed without access to the distribution of class features. The NP
solely captures disparities arising from class-agnostic rules. WSD and VSD measure disparate
treatment, and NP measures disparate impact. Details of the metrics are explained in the full
paper.

3.3. Verification Approach

Our verification technique extends set-based neural network execution to encompass probability
distributions. We propagate a set of potential inputs through the network to determine the
possible output range. We use the linear star set representation [15, 16] for state set propagation.
Post-analysis, the input set is divided into polytopes, each mapping to outputs with an identical
label.

This representation enables a straightforward fairness verification process for neural net-
works, assuming the direct encoding of 𝐶1 and 𝐶2 into the input features by setting one or
more of the features to the appropriate values. The procedure includes:

1. Using neural-network reachability analysis to determine acceptance regions for each class: 𝜌(𝐶1)
and 𝜌(𝐶2), then calculating 𝜌(𝐶1) ∩ 𝜌(𝐶2).

2. Performing the appropiate integral over the acceptance region depending on the desired metric.



4. Experimental Results

We evaluate various models’ fairness, trained on the ADULTS dataset [17], using our proposed
metrics (Section 3.2). Our method, distinct from those in Section 2, does not necessitate extensive
data sampling or testing data. The ADULTS dataset, comprising both categorical and continuous
variables, includes at least one protected feature (e.g., Race or Sex). We consider this a potential
source of unfair bias during model training, and use three training strategies (race-permute,
augment data, remove data) designed to mitigate this bias. Training strategy details are described
in the full paper.

We note the following results. Baseline models exhibit unfairness without fairness training. A
significant WSD for all the baseline models indicate that many individuals are labeled differently
due to class-specific rules in the model. The VSD serves as a proxy for WSD when input feature
probability distributions are unavailable. In 11/16 trials, the model with the lowest WSD also
had the lowest VSD. Finally, it is possible to significantly improve fairness while maintaining -
or even improving - accuracy.
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Figure 2: ADULTS Dataset: Model performance/AUC vs Model fairness/NP under three fairness-
sensitive training methods. Arrows down and to the left reflect models that are fairer but less accurate
than the original mode. We obtain large improvements in fairness at little cost in accuracy.

5. Conclusion

This paper presents a novel technique for formal fairness analysis of neural network models,
circumventing the need for access to the model’s training data. This broadens the scope
for model fairness evaluation. Our evaluation of various models highlights the substantial
unfairness in models trained without intervention. We establish that a probability-free approach
can effectively substitute when input probability distribution is inaccessible. Due to the formal
methods applied, our method provides strong guarantees about the fairness of the model and
its potential impact.
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