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Abstract
Group imbalance usually caused by insufficient or unrepresentative data collection procedures, is among
the main reasons for the emergence of representation bias in datasets. Representation bias can exist
with respect to different groups of one or more protected attributes and might lead to prejudicial and
discriminatory outcomes toward certain groups of individuals; in case if a learning model is trained on such
biased data. In this paper, we propose MASC a data augmentation approach based on affinity clustering of
existing data in similar datasets. An arbitrary target dataset utilizes protected group instances of other
neighboring datasets that locate in the same cluster, in order to balance out the cardinality of its non-
protected and protected groups. To form clusters where datasets can share instances for protected-group
augmentation, an affinity clustering pipeline is developed based on an affinity matrix. The formation of
the affinity matrix relies on computing the discrepancy of distributions between each pair of datasets and
translating these discrepancies into a symmetric pairwise similarity matrix. Furthermore, a non-parametric
spectral clustering is applied to the affinity matrix and the corresponding datasets are categorized into
an optimal number of clusters automatically. We perform a step-by-step experiment as a demo of our
method to both show the procedure of the proposed data augmentation method and also to evaluate and
discuss its performance. In addition, a comparison to other data augmentation methods before and after the
augmentations are provided as well as model evaluation performance analysis of each of the competitors
compared to our method. In our experiments, bias is measured in a non-binary protected attribute setup
w.r.t. racial groups distribution for two separate minority groups in comparison with the majority group
before and after debiasing. Empirical results imply that our method of augmenting dataset biases using
real (genuine) data from similar contexts can effectively debias the target datasets comparably to existing
data augmentation strategies.
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1. Introduction

Recent years have brought extraordinary advances in the field of Artificial Intelligence (AI) such
that now AI-based technologies replace humans at many critical decision points, such as who
will get a loan [1] and who will get hired for a job [2]. There are clear benefits to algorithmic
decision-making; unlike people, machines do not become tired or bored [3], and can take into
account orders of magnitude with more factors than people can. However, like people, data-
driven algorithms are vulnerable to biases that render their decisions “unfair”. In automated
decision-making, fairness is the absence of any prejudice or favoritism toward an individual or a
group based on their inherent or acquired protected attributes such as ‘race’ or ‘gender’. Thus, an
unfair algorithm is one whose decisions are skewed toward a particular group of people.
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One of the leading causes of unfair automated decisions in many real-world scenarios is due to
unrepresentative, insufficient, or biased data fed to the learning algorithm [4]. Consequently, such
biases can lead to certain discriminatory and prejudicial decisions harming sensitive groups e.g.
racial/gender minorities in practice. To overcome this issue, in this paper, we propose a mechanism
for Minority Augmentation of biased datasets coming from separate but similar sources of data
(described in the same feature space) through a Spectral Clustering scheme (MASC). The method
proposes a way to augment underrepresented minority groups of an arbitrary task (hereafter we
use the terms dataset and task interchangeably) by increasing their instances from a subset of
contextually similar datasets that belong to the same cluster. Our proposed method performs
an affinity clustering based on distribution discrepancy (that is used as a distance measure)
among tasks to group similar tasks into a pre-defined number of clusters. Within each cluster,
any member dataset can use instances shared by neighboring (mutually most similar) tasks to
augment their underrepresented groups as compensation for group cardinality difference (that
leads to representation and imbalance bias) according to a protected attribute.

Our main contributions can be summarized as follows:

• A new data augmentation framework for data debiasing towards statistical balancing
between non-protected and protected group(s) based on most similar neighbors.

• Utilizing distribution shift metrics to quantify pairwise discrepancy between different
datasets/ joint distributions

• A spectral clustering framework to group similar datasets based on the discrepancy between
the joint distribution of these datastes.

• Clustering into an optimal number of clusters using a graph theoretic heuristic, known as
”Eigen-gap or Spectral-gap“ to avoid parameter selection and thus avoid any additional bias
in the pipeline.

The rest of the paper is organized as follows: Preliminaries, related works, and motivation
are presented in Section 2. In Section 3, we present the proposed data augmentation pipeline.
Experimental evaluation results are provided in Section 4, including an intuitive example of
applying the proposed method. Finally, Section 5 concludes this work, discusses its limitations
and points out to future directions.

2. Preliminaries and Related Works

In this section, the necessary theoretical background and a brief literature review of these necessary
notions are discussed.

2.1. Distribution Shifts

Distribution shift [5] is a broad topic studying how test data can differ from training data and
how would such differences affect model performance. There are several possible causes for
dataset shift, out of which two are deemed to be the most important reasons: Sample selection
bias and non-stationary environments according to [6]. The motivation for referring to notions
of data distribution shift in our paper is to utilize measures of distribution shift that provide
practical tools as well as rich theoretical backgrounds that enable us to quantify similarity (and/or
distance) among pairs of datasets that we will later use for data debiasing. Next, we look at formal
definitions and different types of distribution shifts.

If we consider a dataset (𝑋 , 𝑌 ) to be a set of independent and identically distributed (𝑖.𝑖.𝑑.) set
of instances drawn randomly from an unknown continuous probability density function, then
a classification problem is defined by a joint distribution 𝑃(𝑋 , 𝑌 ) of features a.k.a. covariates 𝑋



and target variables 𝑌 [6]. According to the Bayesian Decision Theory [7], a classification can be
described either by the prior probabilities of the classes 𝑃(𝑌 ) and the class conditional probability
density functions 𝑃(𝑋 |𝑌 ) for all classes 𝑌 = 1,… , 𝑐 where c is the number of classes or by the
covariate probabilities 𝑃(𝑋) and conditional probability density functions 𝑃(𝑌 |𝑋). Thus the joint
distribution 𝑃(𝑋 , 𝑌 ) can be decomposed in both following forms:

𝑃(𝑌 |𝑋) =
𝑃(𝑌 )𝑃(𝑋 |𝑌 )

𝑃(𝑋)
, 𝑃(𝑋 |𝑌 ) =

𝑃(𝑋)𝑃(𝑌 |𝑋)
𝑃(𝑌 )

where 𝑃(𝑋) = ∑𝑐
𝑌=1 𝑃(𝑌 )𝑃(𝑋 |𝑌 ) and similarly 𝑃(𝑌 ) = ∑𝑐

𝑋=1 𝑃(𝑋)𝑃(𝑌 |𝑋) in 𝑃(𝑌 |𝑋) and 𝑃(𝑋 |𝑌 )
classification problems respectively. The two forms of problem formulation will be formalized as
𝑌 → 𝑋 and 𝑋 → 𝑌 (pronounced as Y given X ) respectively in the rest of this paper.

The literature on distribution shift detection and adaptive learning domain indicates that there
are three types of distribution shifts [8, 9]:

1. Covariate shift appears only in 𝑋 → 𝑌 problems when the probability of input features
𝑃(𝑋) changes, but the decision boundary defining the relationship between covariates and
target labels 𝑃(𝑌 |𝑋) remains the same. In other words, the distribution of the input changes,
but the conditional probability of a label given an input remains the same. These shifts are
known as “virtual shifts”.

2. Prior probability or target shift appears only in 𝑌 → 𝑋 problems when the probability
of target labels 𝑃(𝑌 ) changes but 𝑃(𝑋 |𝑌 ) remains the same. For example, consider the case
when the output distribution changes but for a given output, the input distribution stays
the same.

3. Concept drift basically can appear in both types of problems namely in problems of
type 𝑋 → 𝑌 where the probability of 𝑃(𝑌 |𝑋) changes between train and test data or in
𝑌 → 𝑋 problems where 𝑃(𝑋 |𝑌 ) changes. Concept drift happens when the input distribution
remains the same between the two datasets but the conditional distribution of the output
given an input changes. In other words, the decision boundary defining the relationship
between covariates and labels changes.

2.2. Quantifying Distribution Shift

We are interested in measuring distribution discrepancy between two datasets 𝑋 ∈ ℝ𝑛×𝑑, and
𝑍 ∈ ℝ𝑚×𝑑 defined over the same feature space of 𝑑 features and having an arbitrary size of input
samples. Discrepancy between two datasets can be due to differences in their feature and label
distributions, so the conditional probability of labels given an input can remain the same. Since our
goal is to develop a method to cluster similar distributions to enable us to augment a test dataset
and also for the sake of maintaining the generality of the problem, we assume we don’t have
access to target labels and thus do not use prior probability information for shift quantification.
As a result, we only use covariate distribution similarities. Moreover, we assume the similarity of
the attribute space between different tasks; meaning that all the datasets have the same number
of feature with the same range of values.

One of the most used measures for quantifying pairwise distribution differences is the Kullback-
Leibler (KL for short) distance [10]. KL has nice theoretical properties, but it is not considered a
metric as it is not symmetric (𝐾𝐿 (P, Q) ≠ 𝐾𝐿(Q, P) if P, Q are probability distributions of covariate
sets 𝑋 and 𝑍 respectively) and it does not satisfy the triangle inequality [8]. A modified version
of KL-divergence which belongs to a symmetrized sub-category of KL-divergence is the Jensen-
Shannon divergence [11] which is a metric but still, as with all measures based on KL-divergence,
it is sensitive to the sample size and requires both datasets to have the same cardinality.



Another well-known metric for measuring the distance between two distributions is the
Maximum Mean Discrepancy (MMD for short) [12]. It is a multi-variate non-parametric statistic
calculating the maximum deviation in the expectation of a function evaluated on each of the
random variables, taken over a reproducing kernel Hilbert space (RKHS). MMD can equivalently
be written as the L2-norm of the difference between distribution mean feature embeddings in the
RKHS. In contrast to KL-Divergence, MMD is not sensitive to the number of instances and can be
highly scalable to any arbitrary number of instances for each of the distributions depending on
the kernel function employed for its calculation.

The MMD between two data distributions 𝑋 ∼ 𝑃 and 𝑍 ∼ 𝑄 is given by:

𝑀𝑀𝐷 (𝑃, 𝑄) = ‖ 𝜇𝑃 − 𝜇𝑄 ‖2ℋ (1)

Where 𝜇𝑃 is the kernel mean of 𝑋 estimated using 𝜇𝑃 (𝜙(𝑋)) = 1
𝑛 ∑𝑖=1 𝜙(𝑥𝑖) and similarly 𝜇𝑄

is kernel mean of 𝑍 assuming 𝜙 ∶ 𝑋 → ℋ to be a feature map embedding 𝑋 to the embedding
Hilbert space ℋ. Then Eq. 1 can be substituted as:

𝑀𝑀𝐷 (𝑃, 𝑄) = ‖ 1
𝑛
∑
𝑖=1

𝜙(𝑥𝑖) −
1
𝑚
∑
𝑖=1

𝜙(𝑧𝑖) ‖
2

ℋ
(2)

The inner product (indicated by ⟨ • ⟩ ) of feature means of 𝑋 ∼ 𝑃 and 𝑍 ∼ 𝑄 can be written in
terms of the kernel function such that:

⟨ 𝜇𝑃 (𝜙 (𝑋 )), 𝜇𝑄 (𝜙 (𝑍 )) ⟩
ℋ

= 𝐸𝑃,𝑄 [ ⟨ 𝜙 (𝑋 ), 𝜙 (𝑍 )⟩
ℋ

] = 𝐸𝑃,𝑄 [ 𝑘 (𝑋 , 𝑍 ) ] (3)

Substituting Eq. 3 into Eq. 1 we can rewrite it such that:

𝑀𝑀𝐷 (𝑃, 𝑄) = 𝐸𝑃 [ 𝑘(𝑋 , 𝑋 ) ] − 2𝐸𝑃,𝑄 [ 𝑘(𝑋 , 𝑍 ) ] + 𝐸𝑄 [ 𝑘(𝑍 , 𝑍 ) ] (4)

Finally, expanding the Eq. 4, the two sample MMD-test can be calculated by:

𝑀𝑀𝐷 (𝑋, 𝑍) = 1
𝑛(𝑛 − 1)

∑
𝑖
∑
𝑗≠𝑖

𝑘(𝑥𝑖, 𝑥𝑗) − 2 1
𝑛.𝑚

∑
𝑖
∑
𝑗
𝑘(𝑥𝑖, 𝑧𝑗)

+ 1
𝑚(𝑚 − 1)

∑
𝑖
∑
𝑗≠𝑖

𝑘(𝑧𝑖, 𝑧𝑗)
(5)

In [12] it is suggested to use linear statistic if the datasets are sufficiently large. Since our
sample sizes are large enough, we use the linear kernel for MMD calculations in Eq 5 in our
experiments. To avoid scale differences it is a good practice to normalize the values in the [0,1]
range.

3. Proposed Method

In this section, the detailed procedure of the proposed 𝑀𝐴𝑆𝐶 method is described in 4 steps. A
procedural overview of each of these steps of the proposed data augmentation method is provided
in Algorithm 1. Before approaching these steps with details, an overall overview of the process is
discussed in the following.

Assume having 𝑟 number of biased datasets𝐷𝑎𝑙𝑙 = { 𝑋1∪𝑋2∪…∪𝑋𝑟 } according to 𝑟 different tasks.
For instance, these datasets could each belong to different branches of a franchised hypermarket
or be from civil registration offices in different cities (or states) and many other similar cases.
Nevertheless, Our final goal is to find a clustering of these datasets based on a similarity score



Algorithm 1: Procedure of the proposed debiasing method MASC
Input: 𝐷𝑎𝑙𝑙 — Set of all tasks;

𝑏 — Index of target task 𝑋𝑏; ▷ 𝐷𝑎𝑙𝑙 =
𝑟
⋃
𝑖=1

𝑋𝑖, 𝑏 ∈ {1, … , 𝑟} ⇒ 𝑋𝑏 ⊂ 𝐷𝑎𝑙𝑙

Output: 𝑋 — Minority-augmented (debiased) target task
1 for 𝑖 ← 0 to 𝑟 do ▷ 𝑟 = |𝐷𝑎𝑙𝑙|
2 for 𝑗 ← 0 to 𝑖 do
3 𝑊(𝑖, 𝑗) ← 𝑀𝑀𝐷(𝑋𝑖, 𝑋𝑗) ; ▷ Pairwise MMD: Eq. 5
4 if 𝑖 ≠ 𝑗 then
5 𝐴(𝑤𝑖, 𝑤𝑗) ← 𝑒𝑥𝑝 (−𝛾 ‖ 𝑤𝑖 − 𝑤𝑗 ‖

2 ) ; ▷ Gaussian Kernel: Eq. 6

6 else
7 𝐴(𝑤𝑖, 𝑤𝑗) ← 0 ; ▷ Zeros on diagonals
8 end
9 end

10 end
11 𝐿 ← 𝐷 − 𝐴: where 𝐷𝑖,𝑖 ← ∑𝑟

𝑗=1𝐴𝑖,𝑗; ▷ Graph Laplacian: Sec 3.2
12 𝐿 ← 𝑈 Σ 𝑉 𝑇; ▷ SVD: Eq 7
13 𝑒 ← [𝜆2 − 𝜆1, 𝜆3 − 𝜆2, … , 𝜆𝑙 − 𝜆𝑙−1]; ▷ Eigengap vector: Eq 8
14 𝑘 (optimal number of clusters): apply eigen-gap technique on 𝑒, 𝑘 is the index of largest gap;

15 𝑈 ∈ ℝ𝑟×𝑘 ← [
⋮ ⋮
𝑢1, … , 𝑢𝑘
⋮ ⋮

] ∧= min
1…𝑘

𝜆𝑘; ▷ Top 𝑘 eigenvectors: Eq. 9

16 𝐷𝑎𝑙𝑙 ← 𝐾𝑚𝑒𝑎𝑛𝑠(𝑈 ); ▷ = 𝐾𝑚𝑒𝑎𝑛𝑠(𝑈 ) = { 𝐶1 ∪ … ∪ 𝐶𝑘 }, 𝑘 ≤ 𝑟: Eq. 10
17 𝐶𝑐 ← { 𝑋1 ∪ … ∪ 𝑋𝑡 }, 𝑡 ≤ 𝑟 & 𝑐 ∈ { 1, … , 𝑘 }; ▷ Where | 𝐶𝑐 | = ∑𝑝

𝑖=1 𝑁𝑖 = 𝑁: Eq. 11
18 for 𝑖 ← 1 to 𝑝 do
19 | 𝑋 𝑆𝑖 | ← 𝑛𝑖; ▷ Subgroup cardinality of 𝑋 = 𝑋𝑏, ∑

𝑝
𝑖=1 𝑛𝑖 = 𝑛: Eq. 12

20 end
21 𝑛𝑙 ← 𝑚𝑎𝑥 ( 𝑛1, … , 𝑛𝑝 ); ▷ Cardinality of majority group
22 if 𝑁𝑔 > 𝑛𝑙 then

23 𝑋 ← 𝑋 ∪
(𝑙𝑔−𝑛𝑔)
⋃
𝑗=1

𝐶𝑆𝑔(𝑗); ▷ Augment 𝑋 ⊆ 𝐶𝑐 in the c-th cluster

24 else
25 𝑋 ← 𝐶𝑆𝑔 ;
26 end

such that in each cluster, tasks can share their instances. This way, an arbitrary dataset 𝑋𝑏 ⊂ 𝐷𝑎𝑙𝑙
that is biased by over-representing a majority1 group w.r.t. a protected attribute, can borrow
instances of minority group(s) from its neighboring tasks and construct an augmented unbiased
training set. For the clustering procedure, a spectral clustering algorithm is utilized that can
identify the optimal number of clusters automatically based on an Eigen-gap or Spectral-gap
heuristic introduced in [13]. In order to perform the clustering step, initially we need to construct
an affinity matrix from the pairwise distances that we obtain by 𝑀𝑀𝐷 metric.

1(majority, non-protected), and also (minority, and protected) groups will be used interchangeably in this paper.



3.1. Affinity Matrix Computation

The first step in the proposed method is to compute pairwise distance (or discrepancy) between
each pair of datasets 𝑋𝑖 ⊂ 𝐷𝑎𝑙𝑙 and 𝑋𝑗 ⊂ 𝐷𝑎𝑙𝑙 using Eq. 5. The distances are then transformed into a
symmetric matrix of pairwise distances 𝑊 ∈ ℝ𝑟×𝑟 such that the diagonal of the matrix is all zeros.
An intuitive way to convert a pairwise distance matrix into an ”Affinity“ matrix is by applying a
Radial Basis Function a.k.a. Gaussian Kernel [13, 14]:

𝐴 (𝑤𝑖, 𝑤𝑗) = {
𝑒𝑥𝑝 (−𝛾 ‖ 𝑤𝑖 − 𝑤𝑗 ‖

2 ) , if 𝑖 ≠ 𝑗
0, otherwise

(6)

where 𝑤𝑖 and 𝑤𝑗 are two entries of the distance matrix 𝑊. Eq. 6 results in a weighted undirected
symmetric affinity matrix 𝐴 with zero diagonal elements with weights being Gaussian functions
of the pairwise distances.

3.2. The Optimal Number of Clusters k

In order to perform spectral clustering on the affinitymatrix, we need to calculate the unnormalized
graph Laplacian [13] 𝐿 = 𝐷−𝐴 where 𝐷𝑖,𝑖 = ∑𝑟

𝑗=1𝐴𝑖,𝑗 is the diagonal degree matrix of the affinity
matrix 𝐴. Graph Laplacian is key to spectral clustering; its eigenvalues and eigenvectors reveal
many properties about the structure of a graph.

According to the ”Perturbation Theory“, an optimal number of clusters k for a dataset can be
given through the eigengap identification of eigenvalues of the graph Laplacian, which is the
largest difference between eigenvalues [15, 16]. Thus, computing the eigenvalues of the Laplacian
matrix and finding it’s biggest gap can discover the optimal number of clusters. This way, one
can avoid the difficult and tricky decision of the cluster number parameter. Thus, similar to the
instructions in step 5 of [17] we perform a ”Singular Value Decomposition (SVD)“ to calculate the
eigenvalues of the Laplacian matrix 𝐿:

𝐿 = 𝑈 Σ 𝑉 𝑇 (7)

where 𝑈 , 𝑉 are unitary matrices called left and right singular matrices, respectively containing
eigenvectors corresponding to eigenvalues in Σ. Next, we create an eigengap vector 𝑒 using the
eigenvalues from Σ in Eq. 7 as follows:

𝑒 = [𝜆2 − 𝜆1, 𝜆3 − 𝜆2, … , 𝜆𝑙 − 𝜆𝑙−1] (8)

where 𝜆𝑘, is the k-th sorted eigenvalue in ascending order. Note that, if (𝜆𝑘 − 𝜆𝑘−1) implies the
largest difference i.e. eigengap according to Eq. 8, then index k is the optimal number of clusters.

3.3. Spectral Clustering

After obtaining k, the desired number of clusters in Section 3.2, there is one more step to finally be
able to partition the affinity matrix. In this step, we find the top k eigenvectors 𝑢1, … , 𝑢𝑘 according
to the top k smallest eigenvalues of the Laplacian, stack them as columns of a new matrix 𝑈 ∈ ℝ𝑟×𝑘
such that:

𝑈 = [
⋮ ⋮
𝑢1, … , 𝑢𝑘
⋮ ⋮

] ∧= min
1…𝑘

𝜆𝑘 (9)



where
∧= stands for the term ”Corresponding to“. Then, a k-means clustering [18] is performed on

the rows of matrix 𝑈 which is equivalent to a clustering of the r datasets:

𝐶 = 𝐾𝑚𝑒𝑎𝑛𝑠(𝑈 ) = { 𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑘 } and 𝑘 ≤ 𝑟 𝐶 ≡ 𝐷𝑎𝑙𝑙 (10)

and ≡ sign represents the equivalence of its operands. Note that, in practice, spectral clustering is
often followed by another clustering algorithm such as k-means to finalize the clustering task.
The main property of spectral clustering is to transform the representations of the data points
of 𝑋𝑏 into the indicator space in which the cluster characteristics become more prominent and
passes much more processed/meaningful information to the next step clustering algorithm.

3.4. Data Augmentation Within Clusters

Now that the set of input tasks/datasets 𝐷𝑎𝑙𝑙 is clustered into 𝑘 partitions according to Eq. 10, the
data augmentation process for minority group(s) can be fulfilled. If cluster 𝑐 consists of 𝑡 datasets:

𝐶𝑐 = { 𝑋1 ∪ … ∪ 𝑋𝑡 } where 𝑡 ≤ 𝑟 & 𝑐 ∈ { 1, … , 𝑘 } (11)

Initially, we create a pool of instances in the cluster 𝐶𝑐 by collecting all the instances from each
dataset belonging to the cluster. The number of instances in this cluster | 𝐶𝑐 | = 𝑁, (where | • |
denotes cardinality) can be written as a sum of the number of instances belonging to each of the
𝑝 protected groups ∑𝑝

𝑖=1 𝑁𝑖 = 𝑁. Given a protected attribute 𝑆 = { 𝑆1, … , 𝑆𝑝 } with 𝑝 groups and
knowing | 𝑋 | = 𝑛, the augmentation process for task 𝑋 ⊂ 𝐷𝑎𝑙𝑙 is a very straightforward process
based on protected groups cardinality. We calculate the cardinality of each group corresponding
to the number of instances belonging to that group such that:

| 𝑋 𝑆𝑖 | = 𝑛𝑖 for i ∈ { 1, … , 𝑝 } (12)

where ∑𝑝
𝑖=1 𝑛𝑖 = 𝑛. Next, we identify the biggest group and indicate it as the majority/non-

protected group through a procedure like 𝑚𝑎𝑥 ( 𝑛1, … , 𝑛𝑝 ) = 𝑛𝑙. Ideally, the intention would
be to balance every minority subgroup 𝑔 to have a cardinality as big as the majority group 𝑙, so
that | 𝑋 𝑆𝑔 | = 𝑛𝑙. Thus, every protected group needs to be augmented by a difference of 𝑛𝑙 − 𝑛𝑔.
However, it is only the case if the pool of shared protected group instances includes this number
of instances otherwise we augment by as many instances as there exist in the shared pool. Thus,
the augmented version of dataset 𝑋 has the following number of instances depending on the
number of shared instances:

𝑋 ←
⎧

⎨
⎩

𝑋 ∪
(𝑛𝑙−𝑛𝑔)
⋃
𝑗=1

𝐶𝑆𝑔(𝑗) if 𝑁𝑔 > 𝑛𝑙

𝐶𝑆𝑔 otherwise
(13)

where 𝐶𝑆𝑔 = { 𝐶𝑐 | 𝑆 = 𝑆𝑔 }. Note that, 𝐶𝑐 and 𝑋𝑏 are substituted by 𝐶 and 𝑋 respectively, to avoid
syntax complication.

4. Experimental Results

In order to evaluate the effectiveness of the proposedMASC method, in this section the conducted
experimental results on a number of real-world datasets are analyzed. The organization of this
section is as follows: First, details of the datasets employed are presented. Next, the evaluation
measures used in the experiments and also methods used for comparisons are described. Finally,
the experimental results and discussions on them are provided.



Table 1
Statistics for five chosen states including their Racial group imbalance ratio, Abbreviations denoted as
(Abbr), and Class Ratio for positive (Pos) and Negative (Neg) classes.

Group Distribution Ratio Class Ratio

States Abbr Samples Cleaned White Black Other (Pos|Neg)

Colorado CO 57,142 32,264 87.98% 2.56% 9.46% 1:1.26
North-Dakota ND 7,960 4,455 92.03% 1.35% 6.76% 1:2.2
Maryland MD 60,237 32,865 64.59% 22.4% 13.01% 1.05:1
Mississippi MS 29,217 13,159 66.43% 29.92% 3.66% 1:2.51
Montana MT 10,649 5,547 92.03% 0.36% 7.61% 1:2.09

4.1. Datasets

To evaluateMASC’s performance in addressing group imbalance and representation bias, we used
the recently released US Census datasets [19], which comprise a reconstruction of the popular
Adult dataset [20]. These datasets provide a suitable benchmark with 52 datasets representing
different states, effectively capturing the problem of group imbalance between states with varying
numbers of instances but similar feature spaces.

The datasets [19] include census information on demographics, economics, and working status
of US citizens. Spanning over 20 years, they allow research on temporal and spatial distribution
shifts and incorporate various sources of statistical bias. As already mentioned in Section 2.2,
in this study we assume that the conditional probability of labels given specific inputs remains
constant. Therefore, we focus on the latest release, specifically the year 2019 (till the date of
submission), and examine the spatial context to explore the connection between covariate shifts
and bias.

The feature space consists of 286 features, with only 10 deemed relevant [19]. The target
variable, Income Value, is transformed into a binary vector to predict whether an individual earns
an income of more than 50k: 𝐼 𝑛𝑐𝑜𝑚𝑒 ∈ {≤ 50𝐾, > 50𝐾}, the positive class being ‶ > 50𝐾″. We
selected “Race” as the protected attribute due to the challenge it poses compared to gender or age,
given the highly imbalanced distribution of racial groups across states. The “Race” attribute has
9 categories, but due to a very small representation of seven of these categories which usually
comprise less than 1% of the instances in the dataset, we aggregate them to a bigger group called
“Other”. Thus, the categories in our experiments are aggregated into 3 groups: White, Black,
and Other. Categorical features are transformed into numerical features and all the features are
normalized by standard scaling using their mean (𝜇) and standard deviation (𝜎) values such that
each 𝑧 = (𝑥 − 𝜇)/𝜎 is a standard representation of its 𝑥 and lies within the range [0, 1].

Refer to Table 1 for detailed information on the filtered (cleaned) datasets, including racial
distribution, class imbalance ratio, name abbreviation conventions, and other details. The table
summarizes information for 5 out of 51 datasets. The intuition behind this specific selection of
states will be addressed in detail in Section 4.4. The datasets exhibit significant racial bias, with
the White group representing the majority (also referred to as non-protected) in all 5 datasets.

4.2. Metrics

In this paper, we adopt five measures in total. We use accuracy [1] for analyzing models predictive
performance along with four measures for bias and fairness quantification; Disparate Impact [21],
Statistical (or Demographic) Parity [22], Equalized Odds [1], and a new proportionality metric that
we introduce, the Group Distribution Ratio for quantification of bias on datasets before and after
debiasing. The measures that take into account model outcome or in other words, which involve



model training and prediction (e.g. Accuracy and Equalized Odds) are not relevant for the first
part of experiments. Given a dataset 𝑋 = {𝐷, 𝑆, 𝑌 }, with 𝐷 regular features, a protected feature
𝑆 (i.e. Race) and a binary target class, the disparate impact (DI short for) of the given dataset is
calculated as follows:

𝐷𝐼 =
𝑃 ( 𝑌 = 1 | 𝑆 = 0 )
𝑃 ( 𝑌 = 1 | 𝑆 = 1 )

(14)

which basically calculates the ratio of the probability of being a member of the protected group
having positive outcomes to the probability of the non-protected group with positive outcomes.
DI ranges between zero and one 𝐷𝐼 ∈ (0, 2) with 1 being the best value i.e. implies there is no
bias. 0, 2 mean maximum bias toward one group or the other respectively.

The measure statistical parity (SP for short) also computes a quite similar value, where it reflects
the mentioned change as a difference instead of a ratio:

𝑆𝑃 = 𝑃 ( 𝑌 = 1 | 𝑆 = 0 ) − 𝑃 ( 𝑌 = 1 | 𝑆 = 1 ) (15)

Since we consider two protected groups of ”Black“ and ”Other“ in our experiments, the results
are calculated for each of the measures twice; for each of the two protected groups against the
non-protected group of ”White“. So in our analysis 𝑆 ∈ { 0, 1 , 2 }. SP takes values in the range
𝑆𝑃 ∈ (−1, 1) with 0 as the best possible value implying zero bias.

The measure Equalized Odds (Eq.Odds for short) calculates the difference in prediction errors
between the protected and non-protected groups for both classes as |𝛿𝐹𝑃𝑅|+ |𝛿𝐹𝑁𝑅| where 𝛿𝐹𝑁𝑅
stands for ”False Negative Rates“ and 𝛿𝐹𝑃𝑅 stands for ”False Positive Rates“ that are also known
as Equal Opportunity and Predictive Equality respectively. The 𝛿𝐹𝑁𝑅 measures the difference of
the probability of subjects from both the protected and non-protected groups that belong to the
positive class to have a negative predictive value and similarly, the 𝛿𝐹𝑃𝑅 calculates the difference
of the probability of subjects from both the protected and non-protected groups that belong to
the negative class to have a positive predictive value. So, the Eq.Odds is formulated as follows:

𝐸𝑞.𝑂𝑑𝑑𝑠 = |𝑃(�̂� = 0|𝑌 = 1, 𝑔 = 𝑤) − 𝑃(�̂� = 0|𝑌 = 1, 𝑔 = 𝑏/𝑜)| + (16)

|𝑃(�̂� = 1|𝑌 = 0, 𝑔 = 𝑤) − 𝑃(�̂� = 1|𝑌 = 0, 𝑔 = 𝑏/𝑜)| (17)

where �̂� is the predicted label, Y is the actual label and 𝑔 ∈ 𝐺 = {𝑤, 𝑏, 𝑜} is the protected attribute.
The value range for each of 𝛿𝐹𝑁𝑅 and 𝛿𝐹𝑃𝑅 is [0,1], where 0 stands for a classifier satisfying
perfectly the measure with no discrimination and 1 stands for maximum discrimination. Thus,
Eq.Odds can range between [0,2]. In this study, 𝑤 is taken as the majority (non-protected) group
and 𝑏 and 𝑜 are minority (protected) groups.

Finally, we introduce a group-proportional measure: the group distribution ratio (GR for short)
essentially calculates group imbalance or the proportion of instances belonging to each of the
protected groups or the non-protected group w.r.t. the total number of instances in the dataset.
Similar to the definition of protected attribute and its member groups in Section 3.4, the group
distribution ratio for a protected group 𝑔 is obtained as follows:

𝐺𝑅𝑔 = 𝑃 (𝑋 | 𝑆 = 𝑆𝑔 ) =
| 𝑋𝑆𝑔 |

| 𝑋 |
=

𝑛𝑔
∑𝑝

𝑖=1 𝑛𝑝
(18)

where the denominator of the fraction in Eq. 18, is the sum of the cardinality of all subgroups of
task 𝑋 or the total number of its instances ∑𝑝

𝑖=1 𝑛𝑝 = 𝑛. Clearly, the cumulative probability of all
subgroups ∑𝑝

𝑖 𝑃 ( 𝑋 | 𝑆 = 𝑆𝑖 ) is = 1. Thus, a dataset is group balanced w.r.t. a protected attribute



if Eq. 18 is proportionately equal for each subgroup. In other words, the optimal balance for each
subgroup in the dataset is given by 𝐺𝑅∗ = 1/(∑𝑝

𝑖=1 𝑆𝑖) which implies balanced groups with the
same number of instances. As a result, for a protected attribute with two subgroups, the optimal
group distribution ratio would be 𝐺𝑅∗ = 1/2 and similarly for a protected attribute with three
subgroups 𝐺𝑅∗ = 1/3.

4.3. Competitors

In order to compare the results of our MASC augmentation method, we compare it with 4
different competitors including the original shape of untouched datasets along with three other
strategies. Specifically, we use a variation of SMOTE [23] for synthetic minority protected
group over-sampling instead of minority class augmenting, and similarly we use a variation of
RUS [24], as a random group under-sampling. In addition, we also introduce a natural geographical
neighborhood augmentation by concatenating datasets within their local clusters of geographical
neighbors based on the formal region categorization as in [25]. All the augmentation methods
are also analyzed by feeding their outputs to a Logistic Regression classifier (LR for short).

Note that we implement a variation of SMOTE and RUS to over/under-sample based on the
protected group distribution of the protected attribute such that: for SMOTE we over-sample
both minority groups until their cardinality is as large as the majority group. For the RUS method,
we under-sample the majority group and the bigger minority group until they contain as few
samples as the smallest minority group.

4.4. Empirical Results

The forthcoming experiments in this section are conducted in order to compare the initial dataset
biases of the original datasets before and after the proposed data augmentation and also in
comparison with the three other augmentation strategies, respectively as mentioned in section 4.3
based on the introduced measures in Section 4.2. Following that, we also compare predictive
performance and fairness of a LR classifier on the different augmentation strategies to see how
would each of the augmentation methods affect model performance2. Meanwhile, to get an
intuition about the step-wise procedure of the proposed MASC method, a demonstration of
implementation on the aforementioned US-Census datasets, following the steps in Section 3 is
illustrated before discussing performance results.

4.4.1. A Demo implementation

Initially, an affinity matrix according to steps 1-9 of Algorithm 1 is generated. Following that,
based on instructions in lines 11-12 of Algorithm 1, initially a graph Laplacian and afterward
its SVD decomposition are calculated from the affinity matrix, in order to obtain eigenvalues of
the Laplacian and find the spectral eigengap as in steps 13-14. According to the spectral graph
theory [26], in an ultimately well-shaped problem, one can observe that there exists an ideal case
of k completely disconnected components which constitute a block diagonal Laplacian matrix
that has k zero eigenvalues and corresponding k eigenvectors of ones. In this extreme case, the
(k+1)-th eigenvector which is non-zero, has a strict gap. This gap identifies the optimal number
of connected components that can be clustered as highly similar objects. The eigengap heuristic
is an advanced guide to avoid parameter selection, although our problem as well as the majority
of real-world problems do not produce such a well-formed block diagonal Laplacian. In Figure 1a
the first ten eigenvalues and the major eigengap are demonstrated. It depicts that our datasets
can be semi-optimally clustered into five categories.

2The source code of the proposed MASC and the comparisons can be found at: Github/SiamakGhodsi/MASC

https://github.com/SiamakGhodsi/MASC.git
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(a) The largest eigen-gap (b) States data clustering shown as a 5-nn graph for legibility

Figure 1: In (a) the first 10 eigenvalues of the Graph Laplacian are shown. The largest eigengap indicating
the optimal number of clusters according to Eq. 8 is identified between eigenvalues 𝑒𝑖𝑔4 and 𝑒𝑖𝑔5 implying
that 5 clusters can best partition the graph affinity matrix defined in Section 3.1. In (b) Clustering result
of the graph Laplacian according to the Unnormalized Spectral Clustering method introduced in Section 3.3
to the optimal number of 5 clusters obtained in the previous step. States are labeled with 2-letter standard
US state abbreviations and are coloured based on the clusters they belong to.

We partition the obtained Affinity matrix into five clusters following instructions in Section 3.3
and accordingly steps 16-17 of Algorithm 26. The clustering is illustrated in Figure 1b. Each color
represents a cluster.

Next, according to steps in Section 3.4 and steps 18-26, we augment each of the input datasets
using the shared protected-group instances from their neighbors in the same clusters. The results
of the minority group(s) augmentation are summarized in Table 2 and group distribution and GR
scores are shown in Figure 2b.

4.4.2. Results

The MASC is applied to all the input datasets and augments each task based on the cluster that
they belong to and therefore the neighborhood instances that they share. Since the method
indicates 5 clusters as depicted in Figure 1b, for the sake of readability we evaluate the results for
5 of the datasets, each chosen from one of the clusters. Namely, the states are; Montana (MT),
Mississippi (MS), North-Dakota (ND), Colorado (CO), and Maryland (MD). The selection of states
within each cluster is based on diversity; we chose states from western and more central regions
to northern and east-most states that allow comparing population texture of different regions of
the US according to [25].

In Figure 2a the GR values according to the distribution of each of the original datasets is
shown. Comparing them to distributions in Figure 2b which is the results obtained by our method,
the performance of our method in reducing the group differences is inferable. The proposed
method borrows similar instances for each minority group from similar states and balances exactly
perfectly four of the states and to a very good extent also the Colorado state. In Colorado’s case,
the number of minority group instances borrowed from other states in the cluster is not enough
to equalize the representation of minority groups, but still decreases the worst imbalance in the
original dataset in terms of difference between GR-values of Maj-min1 from 87.98%−2.56% ≈ 85%
to 49.16% − 26.13% ≈ 23% and reduces the 85% difference to 23%.

Table 2 summarizes the evaluation of the five datasets based on previously introduced mea-
sures DI, SP, GR (refer to Section 4.2 for details) comparing the results of original states with



(a)
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Figure 2: Comparison of groups distribution ratio (GR) percentage between the original datasets before
data augmentation and their augmented versions after applying MASC w.r.t. Race as protected attribute.
categories are: {White, Black, Other} per state.

MASC, Geographical-neighborhood grouping, the SMOTE, and the RUS methods. Note that the
Geographical-neighborhood augmentation is abbreviated as Geo-nei in the table. The Maj, Min1,
and Min2 notations correspond to Majority (White) and two minority groups (Black and Other ),
respectively. It is empirically shown in the table that the results of the MASC, alleviate group
imbalance to a good extent for all the datasets according to the GR column and subsequently
achieve good DI and SP rates compared to the original datasets. Moreover, in comparison to Geo-
nei, our method performs better for all the states except for the Min1 group in the Colorado state
and still achieves much better balances for the protected groups but only the class distribution is
slightly worse. Compared to SMOTE and RUS, our method performs comparably well in terms of
GR-values but w.r.t. DI and SP metrics, the method reports slightly worse results that is because
our method only balances out group distributions and doesn’t take into account the distribution
of target-class. However, in model performance, our method outperforms the SMOTE and RUS
for all the states w.r.t. accuracy and eq.odds metrics that we will see in the followings. Also, there
are some technical issues/limitations that may arise using the SMOTE and RUS methods which
will be discussed more detail in Section 4.5.

In Figure 3 the performance results of a LR model trained on each of the augmentation methods
and tested on the corresponding are illustrated. Note that, there are two legends where the
first one represents the three augmentations (including our method MASC) that are based on
real (genuine) data and the other represents synthetic augmentation methods. In Figure 3a the
Eq.Odds values are shown where we can see the purple bar, representing our method MASC gets



Table 2
Evaluation results of the five datasets: the initial stats of the original data in comparison to 4 different
augmentation strategies w.r.t. Group Distribution Ratio (GR), Statistical Parity, and Disparate Impact
measures. Maj, Min1, and Min2 stand for the Majority (White) and the two Minority (Black, and Other)
groups respectively. Boldfaced values imply better results in SP and DI measures. For GR results, the
balancedness of the three groups implies better results.

States Method Group Distribution Ratio Statistical Parity (SP) Disparate Impact (DI)

Maj Min1 Min2 Min1 Min2 Min1 Min2

Montana

Initial 92.03% 0.36% 7.60% -0.124 -0.122 0.617 0.634
MASC 33.33% 33.33% 33.33% -0.054 0.093 0.855 1.285
Geo-nei 83.35% 01.89% 14.75% -0.112 -0.070 0.726 0.832
SMOTE 33.33% 33.33% 33.33% -0.002 -0.015 0.991 0.954
RUS 33.33% 33.33% 33.33% 0.075 -0.150 1.272 0.571

Mississippi

Initial 66.42% 29.91% 3.65% -0.172 -0.056 0.487 0.803
MASC 33.33% 33.33% 33.33% -0.072 0.094 0.782 1.297
Geo-nei 80.98% 14.83% 04.17% -0.154 -0.062 0.559 0.810
SMOTE 33.33% 33.33% 33.33% -0.092 -0.006 0.705 1.022
RUS 33.33% 33.33% 33.33% 0.026 0.004 1.093 1.014

North-Dakota

Initial 91.89% 1.34% 6.75% -0.282 -0.181 0.261 0.535
MASC 33.33% 33.33% 33.33% -0.098 -0.077 0.762 1.216
Geo-nei 90.74% 03.60% 5.65% -0.146 -0.112 0.598 0.691
SMOTE 31.31% 34.34% 34.34% -0.005 -0.020 0.984 0.945
RUS 31.31% 34.34% 34.34% -0.058 -0.058 0.820 0.820

Colorado

Initial 87.98% 2.56% 9.46% -0.176 -0.097 0.605 0.783
MASC 49.09% 26.12% 24.77% -0.199 -0.100 0.492 0.723
Geo-nei 83.02% 02.87% 14.10% -0.125 -0.128 0.668 0.672
SMOTE 33.33% 33.33% 33.33% -0.007 -0.016 0.983 0.963
RUS 33.33% 33.33% 33.33% -0.005 -0.012 1.012 0.971

Maryland

Initial 64.58% 22.4% 13.0% -0.108 -0.082 0.798 0.842
MASC 33.33% 33.33% 33.33% -0.101 0.060 0.82 0.931
Geo-nei 74.82% 16.15% 09.02% -0.147 -0.061 0.64 0.871
SMOTE 33.33% 33.33% 33.33% -0.060 0.006 0.886 0.988
RUS 33.33% 33.33% 33.33% 0.001 0.001 0.996 0.996

the best results for three states Montana, Mississippi, and North-Dakota as well as standing in
the third best for two other states Colorado, and Maryland. Interesting observation comparing to
results in Table 2 where SMOTE and RUS had better DI and SP results, it is observed that in model
performance analysis, along with Geographical neighbors our method outperforms the SMOTE
and RUS in all the states (Except for Mississippi where Geographical neighbors augmentations
stands slighly worse than RUS) for both the metrics, accuracy and eq.odds. In Figure 3b where the
accuracy results are compared, again the same situation is observed where MASC outperforms
RUS and SMOTE and has the best accuracy in four of the states Montana, North-Dakota, Colorado,
and Maryland and also stands in the third best for Mississippi.

4.5. Discussion

From an analytical perspective although our methodMASC seems to stand statistically comparable
to or lower than the SMOTE and RUS in terms of DI and SP in Table 2, but it outperforms both
these methods in model performance results reported in Figure 3. The reason for the former
is because in our experiments, we implement a version of SMOTE and RUS that statistically



(a) Equalized odds of each method on each of the five states (b) Accuracy of each method on each of the five states

Figure 3: The results of a Logistic Regression model trained on each of the five augmentation methods
and tested on the five states. In (a) the Eq.Odds values of the five approaches are depicted. In (b) the
Accuracy of the model w.r.t. each augmentation method for each state.

augment protected groups, but still w.r.t. model performance measures, their augmentation is not
comparable to real-world (genuine) data augmentations (e.g. MASC and Geographical neighbors).
In that case, in Figure 3a and Figure 3b it is observed that MASC and Geographical neighbors
(except for one case) outperform in all cases the two synthetic augmentations and once more we
can highlight the importance/difference of real-world (genuine) data augmentation compared to
synthetic/generated data.

Moreover, there are ethical and technical issues with SMOTEing and RUSing for protected
group imbalance augmentation. Starting with RUS: looking at Figure 2a only 0.36%, 𝑎𝑛𝑑1.35% of
the population belong to the minority group1 (Black) of the states Montana and North-Dakota,
respectively. For the cleaned dataset it is no more than 20, and 60 instances each. So, with such
a small number of instances, it is very unlikely for any learning algorithm to produce reliable
predictions while being imposed to test data. This was also observed in Figure 3b where the
Eq.Odds results of the RUS method always report one because it basically predicts all the under-
sampled data to belong to the majority class. Subsequently, this lack of reliable performance might
even get worse in cases where learning parameters are applied to out-of-distribution (OOD) data.
An example of OOD is training on the augmented data (in our experiments are 2019 US-Census
dataset) and then applying the model for future data, e.g. 2020, and later data of the same state.
This is left as an open question to interested readers to test and analyze the results. Furthermore,
another question is: what about inter-sectional groups when there is imbalance also w.r.t. more
than one attribute; for example how would SMOTE and RUS perform if gender and ethnicity are
studied simultaneously? For example, if only exists one instance of coloured-skin females within
the 20 samples in Montana dataset, the algorithm will only learn to infer one class label among
these group of instances which could lead to highly unreliable and deficient predictions on test
data.

In case of SMOTE, it over-samples the minority group of 20 or 60 instances to generate hundreds
of times more data. So, these synthetically generated data are only specifically applicable to this
application because they need to be very carefully tailored for the application. This may describe
the worse performance in Accuracy and Eq.Odds despite balancing the groups in training data
perfectly (GR, DI, and SP measures) in the experiments. One of the limitations of SMOTEing is
data types. How would it work with categorical data? One has to define a multi-valued vector
of features and statistically over-sample the outnumbered categories while they are encoded
numerically which results in severe performance deterioration because of much larger search



space. However, our method is easily adaptable to categorical or other data types.
We would like to also highlight once again that in this study we only study the 2019 data so

that conditions 2 and 3 of Section 2.1 do not apply to our analysis. In future works, it can be
studied also where the distribution of target class (condition 2) or when the decision boundary
changes (condition 3) which can happen when analyzing different historical records for each
state, e.g. comparing the 2014-2019 data of each state. Also it is worth mentioning that there is a
lack of similar datasets especially from the European countries that can be provided for research
which can open up space for more studies in this direction.

5. Conclusion

In this paper, we propose a spectral clustering-based methodology to tackle data representation
and protected-attribute group-imbalance biases. The motivation for developing this pipeline is to
utilize contextually similar but separate datasets coming from similar sources, to augment one
another in order to provide unbiased or less biased training sets using shared instances from
contextually similar neighboring datasets. Our MASC approach identifies an optimal number of
clusters based on inherent similarities of the input tasks and clusters them according to a robust
and scalable MMD two-sampled test. Furthermore, it categorizes similar tasks based on their
pairwise distribution discrepancies in a kernel-based affinity space. Experimental results on New
Adult datasets reveal the promising performance of the proposed MASC in dataset debiasing and
superior performance in improving predictive and fairness of learning models trained using the
augmented training sets obtained by it. Moreover, it is preferable over synthetic data augmentation
methods such as SMOTE and RUS since it augments based on genuine (real) existing data in
contrary to the synthetic ones which are usually used under many ethical concerns. In future
work, we will study the effect of normalized spectral clustering on the size and shape of clusters
produced. We also encourage to extend our analysis to temporal aspects of the datasets by
assuming change in the conditional probability of outcomes 𝑃(𝑌 |𝑋) in 𝑋 → 𝑌 problems for each
year of the input datasets. Another interesting study would be to compare our method and the
Geo-neib with a version of the SMOTE and RUS for multi-class imbalance or regression problems
where the targets are multi-class or continuous.
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