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Abstract
We formalize a notion of differential robustness. An algorithm is differentially robust to an event if the
event has disparate impact on the performance of an algorithm for different groups in the population.
We illustrate it with a case study of the real world deployment of a predictive algorithm in a European
public employment service.
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1. Introduction

An algorithm may be differentially robust to likely distribution shifts as a result of variance
in causal mechanisms. This happens when there are distinct causal mechanisms at work for
different groups. Even if causal inference is used to model the relationship between features and
label, the distinct causal mechanisms at work for different groups are not invariant [1] and may
be more or less susceptible to changes in background conditions. Possible or likely changes
in the world will then have disparate impact on the algorithm’s performance, leading to less
accurate interventions for some group(s). Thus, algorithmic fairness is not simply a criterion
that obtains under certain distributional assumptions. One should be able to either anticipate
possible and likely changes in the real world or evaluate their effects on the model post hoc in a
timely manner. In our paper we develop a notion of differential robustness and elucidate it
with a case study of the real world deployment of a predictive algorithm in a European public
employment service prior to and during the COVID-19 pandemic.

2. Differential Robustness

2.1. Definition

We formalize the notion of differential robustness for an algorithm as follows:
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1. Given training data set {(𝑥𝑖, 𝑦𝑖)}𝑖 ∼ 𝒟 with 𝑥𝑖 ∈ ℝ𝑑𝑖𝑛 , 𝑦𝑖 ∈ {0, 1}, and group membership
𝑔𝑖 ∈ {1, 2} and hypothesis class ℋ, train a predictor ℎ ∶ ℝ𝑑𝑖𝑛 ↦ {0, 1} that minimizes
empirical risk. Individuals are assigned interventions 𝑇 0 and 𝑇 1 respectively based
on model predictions.

2. Assume that there is an ordering of pairs of outcome and intervention with respect
to welfare: (𝑦𝑖 = 0, 𝑇 0) = (𝑦𝑖 = 1, 𝑇 1) > (𝑦𝑖 = 0, 𝑇 1) ≫ (𝑦𝑖 = 1, 𝑇 0). That is, assigning
intervention 𝑇 0 to individuals who actually belong to the positive class generates the
greatest harm.

3. Suppose 𝒟
𝑠ℎ𝑖𝑓 𝑡
⟹ 𝒟 ′ for test time with {(𝑥′𝑗 , 𝑦 ′𝑗 )}𝑗 ∼ 𝒟 ′. If 𝑃(𝑦 ′ = 1|ℎ(𝑥′) = 0, 𝑔 =

2) − 𝑃(𝑦 = 1|ℎ(𝑥) = 0, 𝑔 = 2) > 𝑃(𝑦 ′ = 1|ℎ(𝑥′) = 0, 𝑔 = 1) − 𝑃(𝑦 = 1|ℎ(𝑥) = 0, 𝑔 = 1),
then ℎ is more robust to this particular distribution shift for group 1 than for group 2
with respect to welfare. In other words, the false negative rate for group 2 increases
relative to group 1.

4. If the above holds for all likely shifts 𝑠 ∶ 𝒟
𝑠ℎ𝑖𝑓 𝑡
⟹ 𝒟 ′, then ℎ is more robust to

distribution shifts for group 1 than for group 2 with respect to welfare.

2.2. Toy Example

This can be illustrated with a toy example. Suppose there are two groups: {𝑥 = 0, 𝑥 = 1}𝑔=1
and {𝑥 = 2, 𝑥 = 3}𝑔=2. Given background conditions 𝐵 the causal mechanism 𝐶 is as follows:
𝑥 = 0 or 𝑥 = 2 → 𝑦 = 0; 𝑥 = 1 or 𝑥 = 3 → 𝑦 = 1. An intervention improves welfare if and only
if 𝑦 = 1. Suppose an algorithm ℎ is able to predict 𝑦 perfectly from 𝑥 and an intervention is

assigned if ℎ(𝑥) = 1. Now imagine a change in background conditions 𝐵
𝑐ℎ𝑎𝑛𝑔𝑒
⟹ 𝐵′ that induces a

change in the causal mechanism 𝐶
𝑐ℎ𝑎𝑛𝑔𝑒
⟹ 𝐶′, with 𝐶′ ∶ 𝑥 = 0 → 𝑦 = 0; 𝑥 = 1, 𝑥 = 2 or 𝑥 = 3 →

𝑦 = 1. The predictor ℎ is differentially robust to such a change since under ℎ the false negative
rate for group 2 increases relative to group 1.

3. Case Study

We elucidate the notion of differential robustness with a case study from the European Union.
The context is a public employment service where an XGBoost-trained model was deployed to
help counselors assess whether unemployed individuals are at risk of long-term unemployment
(LTU), defined as being unemployed for a year or longer. We ran a pilot study from October 2019
to June 2020 and subsequently collected data on the employment outcomes of the unemployed
individuals. During the period of the pilot study the COVID-19 pandemic hit and considerably
changed the causal structure of unemployment with service workers in the tourism industry
being among the most affected [2, 3]. The model was trained on historical data and, therefore,
captured historical patterns of causal relationships.

While it is arguable whether a shock such as the COVID-19 pandemic a priori represents
a likely change, the case nonetheless demonstrates how events in the world, expected and



unexpected, can change causal mechanisms and shift data distributions in such a way that
the model’s performance is differentially affected for different groups. Indeed, our analyses
show that as a result of the COVID-19 pandemic the model’s false negative rate increases
in particular for service workers in the tourism industry. This means that as a group they
were more vulnerable to not being allocated the needed interventions conditional on having
received a negative prediction from the model. The model — and the policy designed around its
predictions — is differentially robust to a shock such as the COVID-19 pandemic for different
groups in the population.

Table 1
The algorithm was differentially robust to the COVID-19 shock for service workers and industry workers
as well as for non-EU/EEA nationals and Portuguese nationals.

service workers industry workers non-EU/EEA Portuguese all

𝑃(𝑦 ′ = 1|ℎ(𝑥′) = 0) 0.781 0.474 0.790 0.696 0.713
𝑃(𝑦 = 1|ℎ(𝑥) = 0) 0.381 0.343 0.397 0.375 0.375
difference 0.400 0.131 0.393 0.321 0.338

Figure 1 shows the evolution of the false negative rates for service vs industry workers and
non-EU/EEA vs Portuguese nationals before and during the first few months of the COVID-19
pandemic. We observe that the false negative rates for service and industry workers track each
other fairly closely before the pandemic but the gap between them expands drastically in favor
of industry workers after the onset of the pandemic in Portugal. The gap between the false
negative rates for non-EU/EEA and Portuguese nationals is more volatile before the onset of
the pandemic but settles into a stable pattern in favor of Portuguese nationals after the onset of
the pandemic.

Figure 1: False negative rates before and during COVID-19

(a) False negative rates for service vs industry workers (b) False negative rates for non-EU/EEA vs Portuguese
nationals



Figure 2: Causal graph. An event can cause both covariate shift and concept drift. When there are
distinct causal mechanisms at work for different groups, concept drift can differentially affect the
model’s performance.

event 𝑃(𝑌 |𝑋, 𝑔𝑟𝑜𝑢𝑝) the model’s performance for different groups

𝑃(𝑋|𝑔𝑟𝑜𝑢𝑝)

This leaves open the question of whether the observed differences in the false negative rate
are due to covariate shift, where 𝑃(𝑋) changes, or concept drift, where 𝑃(𝑌 |𝑋) changes [4].
We are interested in the effects of a shock on the causal mechanism itself, i.e. 𝑃(𝑌 |𝑋). This is
because covariate shift in such a short period of time is likely due to sampling and not any
change in the real distribution of features for a particular group. We can isolate the effects of
concept drift by running the regressions below with risk_score as a control variable, where
risk_score denotes the raw probability score output by XGBoost. This stratifies the unemployed
individuals into bins of equal assessed risk given the features 𝑋 and thereby (to a large extent if
not completely) controls for covariate shift as a source of variation in the false negative rate.
The dummy variable covid is 1 if the candidate was registered after the start of the COVID-19
pandemic. The regressions are run over the subset of observations where the algorithm gives a
negative prediction of LTU.

FN = 𝛽0 + 𝛽1service_workers + 𝛽2covid + 𝛽3service_workers × covid
+ 𝛽4risk_score + 𝜀

FN = 𝛾0 + 𝛾1industry_workers + 𝛾2covid + 𝛾3industry_workers × covid
+ 𝛾4risk_score + 𝜂

FN = 𝛿0 + 𝛿1non_EU_EEA + 𝛿2covid + 𝛿3non_EU_EEA × covid
+ 𝛿4risk_score + 𝜉

FN = 𝜁0 + 𝜁1Portuguese + 𝜁2covid + 𝜁3Portuguese × covid
+ 𝜁4risk_score + 𝜎

The regression results in Tables 2 and 3 show that the coefficients for service_workers× covid
and non_EU_EEA × covid are positive and statistically significant. We can interpret this as
evidence that concept drift caused by COVID-19 led to an increase in the false negative rate for
service workers (non-EU/EEA nationals) relative to other groups. Conversely, the coefficients
for industry_workers × covid and Portuguese × covid are negative and statistically significant.
Concept drift caused by COVID-19 led to a decrease in the false negative rate for industry
workers (Portuguese nationals) relative to other groups.



Table 2
LPM regression results

Dependent variable:

FN FN FN FN

(1) (2) (3) (4)

covid 0.322*** 0.365*** 0.337*** 0.408***
(0.006) (0.005) (0.005) (0.014)

service_workers 0.018
(0.009)

industry_workers −0.030*
(0.015)

non_EU_EEA 0.046*
(0.022)

Portuguese −0.025
(0.013)

service_workers × covid 0.085***
(0.012)

industry_workers × covid −0.178***
(0.018)

non_EU_EEA × covid 0.071**
(0.025)

Portuguese × covid −0.082***
(0.015)

risk_score 0.739*** 0.670*** 0.769*** 0.839***
(0.048) (0.048) (0.049) (0.049)

Observations 32,610 32,610 32,610 32,610
𝑅2 0.1242 0.129 0.122 0.1239
Adjusted 𝑅2 0.1241 0.1289 0.1219 0.1238

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

4. Conclusion

Our work shows that to ensure algorithmic fairness it is not sufficient for criteria of statistical
fairness to obtain. If the model is especially or uniquely vulnerable to performance degradation
for a particular group in possible scenarios, fairness will be elusive. Possible and likely changes
in the world should be considered and their differential impact on the algorithm’s performance
for different groups carefully evaluated. This requires the judicious incorporation of domain
knowledge into the decision-making process. Alternatively, there should be continual post hoc
evaluation of an algorithm’s differential robustness, for which the analysis in our paper could
serve as a model of performance monitoring.



Table 3
Logit regression results

Dependent variable:

logit(FN) logit(FN) logit(FN) logit(FN)

(1) (2) (3) (4)

covid 1.355*** 1.564*** 1.425*** 1.790***
(0.028) (0.026) (0.025) (0.065)

service_workers 0.080
(0.042)

industry_workers −0.129
(0.066)

non_EU_EEA 0.207*
(0.099)

Portuguese −0.116*
(0.058)

service_workers × covid 0.448***
(0.057)

industry_workers × covid −0.789***
(0.082)

non_EU_EEA × covid 0.393***
(0.116)

Portuguese × covid −0.420***
(0.070)

risk_score 3.449*** 3.152*** 3.563*** 3.879***
(0.226) (0.225) (0.228) (0.231)

Observations 32,610 32,610 32,610 32,610
Log-likelihood -20201.36 -20122.92 -20247.13 -20211.38

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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