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Abstract  
Structured data artifacts such as tables are widely used in scientific literature to organize and 

concisely communicate important statistical information. Discovering relevant information in 

these tables remains a significant challenge owing to their structural heterogeneity, dense and 

often implicit semantics, and diffuse context. This paper describes how we leverage semantic 

technologies to enable technical experts to search and explore tabular data embedded within 

scientific documents. We present a system for the on-demand construction of knowledge 

graphs representing scientific tables (drawn from online scholarly articles hosted by PubMed 

Central), and for synthesizing tabular responses to semantic search requests against such 

graphs. We discuss key differentiators in our overall approach, including a two-stage semantic 

table interpretation that relies on an extensive structural and syntactic characterization of 

scientific tables, and a prototype knowledge discovery engine that uses automatically-inferred 

semantics of scientific tables to serve search requests by potentially fusing information from 

multiple tables on the fly. We evaluate our system on a real-world dataset of approximately 

120,000 tables extracted from over 62,000 COVID-19-related scientific articles.  
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1. Introduction 

The discovery of relevant information from scientific documents has traditionally been critical to 

the advancement of our understanding of real-world phenomena. The pace of research in dynamic, fast-

evolving scenarios, as exemplified by COVID-19, can lead to unprecedented rates in publication of 

scholarly literature on a given subject [1]. Furthermore, recent advances in generative AI and foundation 

models have made it radically simpler and more economical for the scientific community to produce 

and publish new technical content [2]. These emerging trends have necessitated more machine-driven, 

human-interpretable approaches to scientific knowledge discovery. Open datasets like CORD-19 [3] 

have motivated novel techniques to enable scientists to comprehend existing literature, including tools 

for keyword/semantic search and Q&A, recommendation, and summarization of scientific documents. 

Newer models [4] and tools like ChatPDF [5] and Elicit [6] foster dialog-driven information discovery 

from documents within various domains. However, as with web documents, the exploration of scientific 

literature is predominantly associated with searching over its unstructured textual content. 

Besides text, alternative modalities such as tables and charts play a significant role in how the 

scientific community conveys descriptive information in the literature. Our experience with assembling 

a corpus of over 62,000 open-access coronavirus-related articles from PubMed Central [7] yielded over 

120,000 tables underlining a wealth of latent knowledge embedded within such structured data artifacts. 

Extraction and retrieval of relevant information from these scientific tables is becoming increasingly 
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critical to emerging knowledge-driven applications. For example, consider a genomic surveillance 

scenario seeking information on treatment efficacies against the top prevalent COVID-19 variants in 

each US state. Better responses to such queries may entail going beyond text and searching relevant 

portions of or entire scientific tables for vital knowledge nuggets, possibly fusing information from 

multiple source tables on the fly. 

Viewing scientific documents as a collection of content-rich tables and descriptive context, this 

paper addresses the need for technical experts to search and systematically explore scientific tables in 

their quest to discover new knowledge. In comparison to traditional web tables and open relational data, 

tables found in scientific documents are generally (i) smaller in size, (ii) consist of cells with more 

idiomatic strings or numerical data than text and (iii) contain specialized textual entities specific to a 

scientific domain (see Figure 1). Moreover, unlike their relational/web table counterparts, the nature of 

scientific tables reflects the more general circumstances of their creation: When researchers prepare 

scientific manuscripts, their contents are typically subject to constraints in terms of “publication real 

estate” (e.g., maximum page count for a paper). Consequently, especially with any tables present in 

these articles, researchers resort to numerous information compaction practices to optimize for human 

consumption and visual perception of information in the tables while ensuring that there is no 

ambiguity, information overload or other loss in informational value associated with these tables. 

 

       

Figure 1: Example snippets from real tables appearing in PubMed Central articles (PMC7456296, 
PMC7694563) that exhibit some of the typical characteristics of tables in scientific documents. 
 

Our work is motivated by the resulting distinctive characteristics of scientific tables listed below:  

• Structural heterogeneity: In the absence of universal guidelines, tables in scientific documents 

often come in a variety of structures and dimensions. To better fit tabular data within the available 

space, researchers may (i) transform a simple table with only column headers into a more complex 

one with row headers or both sets of headers, (ii) merge neighboring cells with repeated values into 

one, or (iii) group logically related neighboring cells and extract any common information into 

higher-level parent cells—potentially resulting in a hierarchy of sub-rows and/or sub-columns. 

• Dense and often implicit semantics: Due to space constraints, researchers may (i) use abridged 

table header names whose contextual description may explicitly capture dense semantics—e.g., a 

header cell mort. rt. to signify mortality rate could either represent deaths per 1000 of infected 

population or deaths per million of the total population, (ii) coalesce numerical quantities and their 

associated units within the same table cells, or (iii) use headers where context is implicit, i.e., the 

meaning of a header cell (e.g., ‘location’), and hence of an associated column or row, can be 

ascertained only by inspecting the content of data cells in that column or row. 

• Diffuse Context: Tables in scientific papers typically represent a summary view or a meta-analysis 

over a more comprehensive set of information. (i) Contextual description of cell content may be 

present in table captions or other referring text outside of the tables, (ii) Cells may include pointers 

to other related tables instead of actual tabular data themselves. From a discovery viewpoint, it is 

likely that information needed to put together a comprehensive response to a search request is 

scattered across multiple tables and sources, potentially drawn from different technical documents. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456296/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694563/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456296/table/t0005/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694563/table/tbl2/?report=objectonly


The very practices seeking to ease human understanding of published scientific tables, thus, also 

introduce challenges that make it harder for machine-driven table understanding and discovery. As part 

of our approach to address challenges posed by structural heterogeneity and domain-specific entities 

(e.g., gene sequences, any measurements/units that hold a special meaning within a scientific domain), 

we model scientific tables as linked data objects and construct knowledge graphs (KG) using 

information extracted from these tables and metadata from their respective containing articles. In this 

paper, we present a KG-creation system that employs a two-stage table interpretation methodology. For 

each table, we first perform both an extensive characterization of the table structure as well as a syntactic 

understanding of its individual cell contents. Next, semantic table interpretation, focusing on column 

type annotation (CTA) and cell entity annotation (CEA), leverages the results of the first stage to map 

table cells to nodes in an existing reference KG (e.g., Wikidata [8]). Semantic interpretation of web 

tables is widely understood – While we build on our practical solution adapted to scientific tables in the 

biomedical domain [9], it is not our key contribution. Our overall approach for scientific tables can 

leverage existing alternative web table interpretation systems with appropriate adaptations. For 

exploring our scientific tables-centric-KG, we additionally present a hybrid table-based semantic search 

paradigm to support table-matching based on inferred semantics under various contextual constraints. 

Our specific contributions described in this paper include: (1) a dataset collection system to harvest 

tables and provenance metadata from online open-access PubMed Central articles, (2) a preliminary 

prototype system to generate a KG of scientific tables that includes a) annotation of the collected tables 

along multiple dimensions using automated rule-based structural characterization and syntactic parsing 

techniques, and b) knowledge graph embeddings-based approach to semantic table interpretation, (3) a 

promising preliminary evaluation over a subset of annotated data and a thorough characterization of 

over 120,000 scientific tables that demonstrate high structural heterogeneity, (4) a pipeline to populate 

RDF triples representing semantic annotations of table cells and table provenance in a KG, and (5) a 

prototype discovery engine that leverages the inferred table semantics captured in the KG to support 

discovery of tabular data by potentially merging semantically compatible tables on the fly. This paper 

presents our first steps towards populating and exploring a KG of scientific tables. We are in the process 

of open sourcing our current technology for the community to reproduce and build on our work2. 

2. Related Work 

Web Tables and Dataset Search: Given their ubiquity in communicating information, an extensive 

body of prior research by the information retrieval and database communities covers the processing and 

understanding of tables, particularly around inferring the intended meaning and semantics of both web 

tables and Open Data for dataset search and discovery purposes [10][11][12][13]. Some approaches 

allow table-based search and data enrichment where queries take the form of an input table—schema 

matching is then performed to discover ‘unionable’ or ‘joinable’ tables that are ranked based on some 

similarity criteria [12] to generate on-the-fly result tables [14]. However, existing approaches do not 

specifically address the idiosyncrasies of tables found in scientific and technical documents. 

Table Representation Learning: Recently, the use of large-scale, pretrained table representation 

learning (TRL) models [15][16] for understanding and exploring tabular information has been gaining 

traction across communities, with a few efforts even specifically addressing understanding of tables 

found in scientific documents. Challenge datasets like PubTables-1M [17], ChemTables [18], 

ArxivPapers [19], and SciGen [20]—all assembled from different forms of scientific/technical 

literature—are fostering innovation in table detection, classification, extraction, context-aware table-

to-text generation, and question-answering respectively. Complementary to these, and from a discovery 

perspective, our work targets on-the-fly synthesis of tabular knowledge from existing scientific tables. 

Semantic Table Interpretation: The SemTab challenge [21] annually benchmarks semantic table 

interpretation systems with a focus on relational web tables (scientific tables from biomedical papers 

were included in recent editions). SemTab systems aim to map table data to nodes in a KG such as 

Wikidata or DBpedia. Specifically, they map a column header string to a KG class (Column Type 

 
2 As of submission, our code to assemble scientific tables from PMC articles on-demand is available under: https://github.com/orgs/ge-

knowledge-discovery/repositories. Code for the remaining systems will be made available here pending code-release approvals. 

https://github.com/orgs/ge-knowledge-discovery/repositories
https://github.com/orgs/ge-knowledge-discovery/repositories


Annotation (CTA)), data cell string to a KG entity (Cell Entity Annotation (CEA)), and relationship 

between pair of columns to a KG property (Column Property Annotation (CPA)). Existing systems 

[22][23][24] could potentially be adapted for CTA and CEA in scientific tables to replace our current 

approach. Beyond SemTab, semantic interpretation of scientific tables has seen limited research—[25] 

leverages the MetaMap tool to annotate cells in PMC article tables with UMLS concepts.  

QTLTableMiner++ [26] annotates tables in Europe PMC articles with concepts from Phenotype, Plant, 

and other quantitative trait locus-specific ontologies. Our work goes further combining structural and 

syntactical characterizations with a table’s semantic interpretation (via CTA and CEA) to generate a 

more comprehensive semantic representation to support table search including on-the-fly data fusion. 

Scientific Table Characterization: Existing techniques to formally characterize scientific literature 

[27] cover many aspects of scholarly knowledge but are limited in their representation of tables found 

in these documents. [28] presents a taxonomy for web tables, categorizing them into “relational 

knowledge” tables (those from which knowledge can be extracted) and “layout” tables (no knowledge 

to extract). Another taxonomy [29], henceforth referred to as the Lautert taxonomy, classifies web tables 

primarily into five mutually exclusive categories (horizontal, vertical, matrix, formatting, navigational), 

mirroring [28], but omits subcategories that are unlikely to be encountered in scientific documents (e.g., 

form, calendar), and uses more common names (e.g., “horizontal table” instead of “vertical listing 

table”). The secondary classification includes five non-mutually exclusive categories (concise, nested, 

multivalued simple, multivalued complex, splitted), each indicating a different methodology to 

structurally format and present tabular content. Fang et al. [30] introduce additional labels (e.g., multi-

level header, multi-dimensional table) that are applicable to scientific tables but are not adequately 

covered in Lautert's scheme. To our knowledge, only Milosevic et al. [31][32] have developed a system 

for structural characterization of tables in PMC articles. Their rule-based system detects and 

distinguishes between header and data cells, detects basic data types for cells (e.g., strings, numbers), 

and classifies a table into one of three types. Our proposed approach, in comparison, can generate 

characterization at different levels (cell, row, column, table), generating values for 18 different labels.  

3. Dataset Collection 

We developed an extensible, reusable data collection pipeline to download, parse, and extract a 

dataset of tables and associated metadata from COVID-19-related PMC manuscripts. Inspired by the 

CORD-19 dataset [3], we instantiate our pipeline with the following query search-string: (“COVID” 

OR “COVID-19” OR “Coronavirus” OR “Corona virus” OR “2019-nCoV”). As of 06/26/2021, this 

query resulted in over 200,000 matching PMC articles, of which 62,777 articles were present within the 

PMC open-access, commercial-use collection subset. Further, of these, 62,746 articles contained 

corresponding full-text encodings in XML format. Upon parsing these XML artifacts, our pipeline was 

able to extract a total of 120,417 HTML-formatted tables from across the article corpus. 

4. A Knowledge Graph of Scientific Tables 

 
Figure 2: Our KG generation system infers structural and syntactic characteristics along with semantic 
interpretation of tables in scientific documents 

Figure 2 shows an overview of our system to semantically interpret tables discovered in scientific 

literature. The HTML tables extracted by the dataset collection pipeline are first processed by a Table 

Characterization module that infers the different structural and syntactic characteristics at the cell, 

row, column, and table level, including the basic datatypes (e.g., numbers, strings) of table cells. The 



table is further processed by the Syntactic Parsing module which infers additional higher-level 

syntactic and semantic types (e.g., Quantity, DNA/RNA sequence) and separates the core (query) string 

from its contextual metadata (e.g., units). Together, these two modules play a key role in the process of 

semantic interpretation of tables in scientific literature. The information inferred by these modules helps 

– i) untangle the structural heterogeneity and diffuse context thereby enabling the generation of accurate 

RDF triples, and ii) extract only those core cells/rows/columns of the table that can be effectively 

mapped to KG nodes and separate them from those ones that should not be (e.g., literals). As we show 

in our evaluations, unlike web tables, a significant fraction of tables in scientific documents are 

composed of primarily literals as opposed to linkable concepts & entities. A subset of tables is further 

processed by the Table Flattening module which converts complex structures into simpler relational-

like tables. While optional, its benefits are twofold: i) easier triple generation and ii) the ability to 

leverage joint inference approaches to collectively map headers and cells to KG nodes.  

The Semantic Interpretation module follows, what is now a standard approach for inferring table 

semantics, by mapping header cells to concepts and data cells to entities in an existing KG (in our case, 

Wikidata [8]). It additionally comprises a joint inference component, which, whenever possible, 

collectively assigns entities and concepts to a header and cells in a column. The inferred structural, 

syntactic, and semantic knowledge along with the document metadata is represented in the form of RDF 

triples and populated into a KG via a Triple Generation module. 

4.1. Table Characterization 

The table characterization module leverages several rules to identify different characteristics at the 

cell, header, row, and table level. We first describe the taxonomy used to identify these characteristics 

followed by our implementation details. To categorize tables, we start with the Lautert taxonomy [29] 

and supplement it with additional classifications from [30]. Our characterization also includes 

additional labels and metrics (e.g., number of rows, number of columns, basic data types for table cell 

values, semantic types for certain set of commonly encoded data), which are generally useful and/or 

needed to derive the Lautert [29] and Fang [30] classifications. 

Table 1 
Labels to characterize scientific table structure 

We identified and selected several 

labels that can be applied at the 

cell, row, column, header, and 

table level. At the table level, a 

main classification label can be 

one of Horizontal, Vertical, 

Matrix, or Multi-dimensional. 

The header level characterization 

labels include Header Row, 

Header Column, Header Row 

Concise, Header Row Multilevel, 

and Headers Splitted. The table 

body (minus header cells) is 

characterized to be concise or not 

(Body Concise). Cell level labels 

include checks for whether a cell is 

multi-valued (further propagated 

up to the table level) and also 

several basic data types like string, 

number, number with range, etc. 

Implementation: We implement a rule–based table characterization module which assigns 18 labels 

applied at the row, column, or table label, as seen in Table 1. Internally, the algorithm may apply some 

of these labels at the cell level as well.  Labels may have one of three types of values: (1) number, e.g., 

number of columns in a table (2) Boolean, e.g., whether a table has multilevel header rows (3) 



enumeration, e.g., a given row’s data type. Some labels indicate that a table (or row/column) contains 

a feature (e.g., HAS_COLSPAN=True), whereas some labels indicate that the table (or row/column) is 

comprised entirely of the given feature (e.g., CELLS_DATATYPE=“number”). The implementation 

generates labels using an incremental approach largely leveraging the HTML markup of the tables. In 

general, rows and columns are characterized based upon inspection of their component cells. Likewise, 

tables are characterized based upon inspection of their component rows and columns. The 

characterization module follows a strict order driven by logical dependencies—it cannot determine if a 

table is horizontal before characterizing the datatype of its columns; it will not characterize columns 

before determining that a table is non-concise. Such dependencies drive how labels are calculated. 

An illustrative example follows, showing a subset of the module’s logic leading up to classifying 

Table 1 from article PMC5923605 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923605) as a 

horizontal table (meaning that each row contains information for an entity). From the table’s HTML 

markup, the module determines that it contains two body rows, and that for each row, no 

CELL_DATATYPE can be assigned since it contains a mix of strings, numbers, and numbers with 

tolerances. Further, the module determines that no body rows contain an HTML element 

(rowspan/colspan) causing a cell to exceed the height or width of a single row or column, and therefore 

classifies the table as BODY_CONCISE=false (does not contain merged cells). This classification 

indicates that the table is a regular grid, and therefore the module can characterize its columns. It 

determines that there are five columns, and that each has a consistent datatype (two columns are 

CELL_DATATYPE=“string”, two columns are CELL_DATATYPE=“number”, and one column is 

CELL_DATATYPE=“number with tolerance”). Note that if the column was mostly a certain datatype 

but contained cells indicating missing values (whitespace, dash, or “NA”), then it will still correctly 

assign the datatype.  Finally, the module determines that since the table contains at least two columns 

with distinct and differing datatypes (omitting the first column, which is often a header), it assigns 

MAIN_CLASSIFICATION=“horizontal”. In a horizontal table, each row represents an entity, and each 

column represents a characteristic of that entity.  In this example table, the entities are the samples, and 

the columns contain phases, particle sizes, densities, etc. of the sample. 

4.2. Syntactic Parsing & Table Flattening 

Once a table’s structural and syntactic characteristics have been identified, we further process it to 

simplify the semantic interpretation step. This includes identifying commonly encoded data in tables 

and separating the core (query/entity) string from its contextual metadata. The former assists in 

identifying a subset of the table (cells/rows/columns) that should not be semantically annotated while 

the latter produces string content per cell for direct use by the semantic interpretation module. 

Detecting & Labelling Commonly Encoded Data: Accurately interpreting table semantics requires 

not only linking strings to appropriate concepts/entities from a reference KG, but also not linking 

strings/numbers that represent literals. While literals found in scientific tables can be classified into a 

few basic types (e.g., strings, numbers, Boolean values, dates), it is useful to classify them into more 

specific types. For tables in the biomedical domain, examples of such specific types include DNA/RNA 

sequences, references, and clinical trial IDs. Similar to [33], we develop a specialist-based framework 

for detecting commonly encoded data in tables. A “specialist”—either a regular expression/pattern-

based, dictionary-based, or machine learning approach, independently assesses cells in a column/row 

for the likelihood that the column belongs to a specific type that it is designed for. For example, there 

could be independent specialists to detect zip codes, SSNs, and sequences. We implement specialists to 

detect two basic types and three semantic types (Table 2). These were identified by inspecting common 

entries in the tables in our dataset. Cells/rows/columns identified as one of these types do not require 

any additional semantic interpretation. The syntactic parsing module uses each specialist to determine 

the basic and/or semantic type for each cell. Further, it propagates this value to the column/row (header) 

if all cells in a column/row have the same type (ignoring cells with empty entries, “NA”, or dashes). 

Table Flattening: A final step before semantic interpretation involves normalizing or flattening a 

subset of tables with “complex” structures. We leverage the inferred table characterizations to identify 

tables with a single simple header row and concise body containing only row spans. We flatten such 

tables using specialized data libraries (e.g., pandas) and re-export table HTML filling missing entries. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5923605/


Table 2 
List of “specialists” and how we implemented them in our system  

Basic Type: Date Pattern-based approach to recognize dates 

Basic Type: Quantity Use the Python package Pint (https://pint.readthedocs.io/en/stable) 
to recognize strings representing magnitude and units (e.g., 20 ft.)  

Semantic Type: 
DNA_RNA_SEQUENCE 

Pattern-based approach to detect cells comprised of strings matching 
3 or more of {G, A, T, C, U} 

Semantic Type: 
CLINICAL_TRIAL_ID 

Pattern-based approach to detect strings of the format NCT* (e.g., 
NCT12345678) 

Semantic Type: 
REFERENCE 

Cells referencing works cited in an article; detected by the presence 
of an HTML <xref> tag containing attribute ref-type=“bibr” 

4.3. Semantic Interpretation 

We implement our table interpretation module for scientific literature with a focus on CTA and CEA 

[21], mapping header and data cell strings to Wikidata [8] items (i.e., concepts and entities).  At the 

core of our module is a scalable entity linker designed and optimized for the biomedical domain [9]. 

Additionally, our module includes a joint inference component, which, wherever applicable, 

collectively assigns entities to header and all data cells in a column. 

Core Entity Linker: We developed a practical, scalable entity linker that takes a mention string 

(from a table cell) and retrieves ranked lists of top k Wikidata items that it deems to be best matches to 

that mention string. In [9], we describe how we customized this linker for the biomedical domain and 

optimized the linking process for hundreds of thousands of table cells by setting up a localized instance 

of the Wikidata knowledge graph—specifically, indexing 95.8M items and the type hierarchy 

comprising 2.6M types. We use the ‘sitelinks’ count for each item as a proxy for its popularity. 

Joint Inference: The core entity linker uses limited context while generating and ranking candidate 

entities for table cell strings. In a well-formed (simple/flattened) table, there are several 

relations/interactions between its constituent header and data cells, which can be leveraged to 

disambiguate entity assignments for table cells. These include (1) semantic type of headers influencing 

the entities assigned to data cells in a column and vice-versa; (2) semantic type of a header influencing 

and being influenced by the semantic types of adjoining headers; and (3) entity assignment of a data 

cells influencing and being influenced by the assignments of adjoining data cells in a row [24]. We 

implement a joint inference component specifically focusing on collectively assigning entities to cells 

in a table column. At the core of this component is a KG embeddings-based “agreement function” to 

compute compatibility between the entities assigned to data cells in a column. KG embeddings [23] are 

vector representations of nodes in a knowledge graph. We leverage existing pre-trained embeddings for 

Wikidata provided via Wembedder [34]. It provides both pre-trained models as well as REST APIs for 

accessing embeddings for Wikidata items and properties. 

The algorithm starts with the ranked list of candidates retrieved by the core linker for each data cell 

in a column. For each candidate, we use the Wembedder API to retrieve its corresponding embedding 

vector (if available). Once the vectors for all the candidates for all cells are retrieved, we perform K-

means clustering over the collection of vectors, producing a cluster assignment prediction for each 

candidate vector. At this point, each cell is associated with an ordered list of candidate entities with 

corresponding vectors and cluster IDs. The algorithm identifies the cluster ID (“mode cluster ID”) most 

frequently associated with the top-ranked vectors across the cells. For each cell, the algorithm selects 

the highest-ranked candidate entity that is assigned to the mode cluster ID. If no candidate entities are 

assigned to the mode cluster ID, then the algorithm picks the first candidate entity for which a vector 

was available. If none of the candidate entities have associated vectors, then it selects the first-ranked 

candidate. The K-means clustering algorithm requires a key input indicating the target number of 

clusters. The joint inference algorithm cannot be applied to all tables - it works best when our system 

is able to identify a column in a flattened table. In cases where joint inference is not applicable, the 

module chooses the top-ranked candidate returned by the core linker. 

https://pint.readthedocs.io/en/stable


4.4. Evaluations 

Table Characteristics Evaluations: We select 8 table-level labels likely to be most useful for the 

downstream table flattening and semantic interpretation modules. We selected PMC [7] articles at 

random from our dataset and manually annotated their tables with values for these 8 labels. For each 

label, we calculate precision (of the labels assigned by the system, what percentage are correct) and 

recall (of the labels expected to be assigned by the system, what percentage are assigned). Results are 

shown in Table 3. The “# Sys.” column indicates the number of tables characterized by the module with 

each of the labels across the entire set of over 120,000 tables (e.g., Tables with Concise Headers =36,182 

indicates the table characterization module inferred that 36,182 tables have a concise header).  

 

Table 3 
Table Characterization is evaluated across 8 labels 

Tables with … # Sys. # Anno. Pr. Re. 

Header rows 113,582 110 1.00 0.94 

Header columns 48,733 103 1.00 0.55 

Concise header rows 36,182 34 0.84 0.94 

Multi-level header rows 32,169 33 1.00 0.97 

Only numeric data cells 12,969 29 1.00 0.83 

Concise body 40,158 39 0.97 0.67 

Horizontal orientation 21,863 38 0.95 0.50 

Vertical orientation 7,205 16 0.91 0.62 

 
The column “# Anno.” indicates the number of tables annotated for use in evaluating the 

characterization accuracy for each label. Precision (“Pr.”) for all labels is relatively high, indicating that 

if the system generates a label, it is likely to be correct. We observed lower recall (“Re.”) for labels 

related to concise body, header columns and main classification (related to table orientation), indicating 

areas where the system fails to detect an expected label. It is often challenging to detect a concise table 

body because a table’s appearance often does not match its underlying formatting (specifically, a cell 

that appears to be merged is often formatted as a set of cells, some of which are empty). The system 

often misses identifying horizontal and vertical tables if it has no way to differentiate column or row 

data types (e.g., if every column is a number), or if it cannot characterize columns due to the table being 

concise. It is challenging to identify header columns if the algorithm cannot detect anything different 

about the header column (e.g., all bold, or the only string column in the table). 

Syntactic Parsing and Semantic Interpretation Evaluations: We manually annotated 47 tables 

drawn at random from 45 PMC articles. Each table cell was mapped to one of: Wikidata item/property 

(henceforth referred to as Wikidata), Literal, Reference, Clinical Trial IDs, Index (header cells 

representing index columns in a table), or NA (indicating that it should be mapped to a concept/entity, 

but none exists in the reference KG). NA was also used in a small fraction of cases where the table cell 

composed of multiple entities (e.g., “Maine, Ohio, California” as single cell value). A total of 3600 

table cells were annotated. Unlike web tables where most cells represent entities, in our dataset, a 

majority of the table cells (~70%) are literals, followed by Wikidata annotations (~25%) as the second-

most frequent type. We use this annotated data to evaluate the syntactic parsing and semantic 

interpretation modules’ capabilities. Joint inference was evaluated using Wembedder’s pre-trained 

model [34] over a June 2017 snapshot of Wikidata, NUM_CLUSTERS parameter set to 4, and # of 

initial candidates retrieved by the core entity linker set to 25. 

Table 4 shows the breakdown for precision (Pr.), recall (Re.), and F-score for the different types 

predicted by the system. We skip reporting on NA and index as they are not supported by our system 

yet. Rule-based methods to detect basic types, and specialist-identified semantic types achieve high 

precision for detecting Literals, Clinical Trial IDs, and References. Though, as is typical with rule-

based methods, recall gets impacted if patterns do not have sufficient coverage (as evidenced in the case 

of Trial ID). The numbers for the semantic interpretation module to produce accurate Wikidata links 

appear lower on the surface.  



Table 4 
Distribution of manual annotation and system performance across different types 

 
We first analyze the candidate set of 

Wikidata items generated by the core 

entity linker. Of the 910 table cells 

manually annotated with Wikidata 

items, the linker is able to retrieve the 

correct expected annotation in the top 

25 candidates for 554 cells (~60%), 

while it is unable to for the remaining 

356 cells (~40%). If we consider the 

subset of 554 cells for which the expected annotation was retrieved in the candidate set, the Wikidata 

recall increases to 458/554 (0.82). The lower precision for Wikidata can be analyzed by looking into 

the 1373 table cells for which the system produced Wikidata links. The expected annotation for 488 of 

those cells is either literals, reference, index, NA, or clinical trial IDs which the linker mischaracterizes 

as Wikidata items. Out of the remaining 885 cells with expected Wikidata annotations, the system 

accurately links 458 cells. If we consider this subset, precision increases to 458/885 (0.51). Using an 

older version of Wikidata embeddings also arguably has an impact on the overall accuracy. 

4.5. Triple Generation and Knowledge Graph Construction 

To model tables in scientific documents and their annotations, we developed an ontology to represent 

metadata from PMC documents along with the data extracted from their constituent tables and their 

inferred semantic meaning. This ontology builds upon a model [35] which, in turn, extends a subset of 

the standard W3C PROV ontology. We subclass the core ENTITY class from PROV and extend it to 

represent PMC documents and tables. The Triple Generation module takes the output from the Table 

Characterization and Semantic Interpretation modules and represents the data as RDF triples grounded 

in our ontology. Specifically, it includes a pipeline that auto-generates triples as follows: First, it creates 

triples at the document level (e.g., title) followed by creation and linking of the document to instances 

representing its authors, publishers, and sponsors. Next, it creates triples for tables in the document, 

starting at the table level (e.g., number of rows) down to the cell level (e.g., parsing minimum and 

maximum numeric values from a cell containing a range). It then adds triples for the Wikidata 

assignment for cells as returned by the Semantic Interpretation module. The number of triples generated 

per document varies widely according to its contents but is on the order of 1000 per PMC article. These 

triples are persisted in a knowledge graph for table discovery purposes. 

5. Search and Discovery of Scientific Tables 

We developed a framework for enhanced search and discovery of relevant information across 

scientific tables captured in a knowledge graph, and for organizing this information in the form of 

tabular responses. This section presents a preliminary evaluation of a prototype discovery engine that 

uses the inferred semantics of tables to serve table-based semantic search requests. 

Hybrid Table-based Semantic Search: When searching over tables in scientific documents, a 

meaningful response is often predicated on greater query expressivity and semantic resolution of user 

requests than can be provided by a simple keyword search. To this end, we provide a hybrid search 

experience that supplements keyword search with the ability for users to figuratively ‘sketch’ their 

desired (relational) result table—including specifying semantic markups of its header/data cells, along 

with constraints around its contextual metadata. This ensuing table-based semantic search request is 

systematically translated into queries to retrieve appropriate data from the knowledge graph.  

We first parse any table-based discovery request into an intermediate query plan where both tables 

and operations on tables are first-class citizens. Inspired by relational database systems, our query plans 

are composed of primitive operators (SELECT, FILTER, RANK, and FUSE) to process scientific tables 



expressed as linked data objects in a knowledge graph. The SELECT operator simply returns a list of 

identifiers for all tables in our graph that match with the discovery request. The FILTER operator 

prunes this list by applying one or more contextual constraints on the tables. RANK orthogonally 

reorders the list of tables based on some ranking criteria. 

Discovery Engine and Semantics-guided 

Table Discovery: We built a prototype 

discovery engine that takes as input an 

intermediate query plan and incrementally 

constructs and executes appropriate SPARQL 

queries against a knowledge graph of scientific 

tables. This is accomplished by adding or 

modifying ad hoc query clauses corresponding 

to each operator instance in a query plan. This 

engine is also responsible for taking the results 

of SPARQL query execution and packaging 

them in the form of relational result tables for 

easy consumption.  

 

Figure 3. Using Wikidata QIDs of header cells to guide discovery engine operations 
 

Discovery of relevant tabular information involves matching the semantics of a list of search terms 

from a user request against the appropriate inferred semantics of tables and filtering the matches to 

include only those tables that meet some similarity criteria. Consider a simplified search request around 

latest findings on effective treatments for COVID-19 (see Figure 3). The matching algorithm underlying 

the SELECT operator takes the semantics (in this example, Wikidata identifiers or QIDs) associated 

with header cells in the table-based search request and compares them against those associated with 

header cells for each table in the graph. If the two sets of QIDs overlap completely, or if the set overlap 

exceeds a threshold as established by some query constraint (e.g., min_coverage=2), then the 

candidate table is included in the search results.  By default, RANK sorts the list of candidates based on 

this header-cell coverage metric (i.e., tables with maximum set overlap are ranked higher). 

Evaluation: We evaluated the ability of our discovery engine to return a ranked list of relevant tables 

corresponding to a search request – here, a request comprises a desired list of entities that a result table 

header is expected to contain, and relevancy is based on a semantic match between this list and the 

header cells of tables. Specifically, we carried out a preliminary evaluation against a knowledge graph 

comprising a subset of 118 tables drawn at random from our full set of tables, and manually examined 

for relevance to a query set. Our query set includes 5 queries motivated by realistic scenarios, where 

each query is a list of QIDs corresponding to three desired entities. We compute Average Precision 

(AP): the mean of precision scores at each point where a relevant result is returned, and Recall: the ratio 

of relevant results to the expected number of relevant results based on a manual search. We also 

compute Mean Average Precision (MAP) scores across all queries. 

Table 5 
Performance of semantics-guided table discovery on ranked retrieval tasks 

Metric Result 
size (# 
tables) 

Query 1: 
Q12136 

Q134808 
Q18420531 

Query 2: 
Q12136 

Q134808 
Q186408 

Query 3: 
Q33829 

Q65096341 
Q2221906 

Query 4: 
Q6256 

Q92307203 
Q55215251 

Query 5: 
Q6256 

Q92307203 
Q41792217 

MAP 

AP 

5 0.5 0.33 0.83 1 0.7 0.67 

10 0.5 0.33 0.83 0.67 0.61 0.59 

25 0.5 0.33 0.83 0.5 0.55 0.54 

Recall 

5 1 1 0.67 0.33 0.25 

10 1 1 0.67 0.67 0.625 

25 1 1 0.67 1 1 

https://www.wikidata.org/wiki/Q12136
https://www.wikidata.org/wiki/Q134808
https://www.wikidata.org/wiki/Q18420531
https://www.wikidata.org/wiki/Q12136
https://www.wikidata.org/wiki/Q134808
https://www.wikidata.org/wiki/Q186408
https://www.wikidata.org/wiki/Q33829
https://www.wikidata.org/wiki/Q65096341
https://www.wikidata.org/wiki/Q2221906
https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q92307203
https://www.wikidata.org/wiki/Q55215251
https://www.wikidata.org/wiki/Q6256
https://www.wikidata.org/wiki/Q92307203
https://www.wikidata.org/wiki/Q41792217


As seen in Table 5, overall precision scores are relatively low across all queries, whereas all queries 

demonstrate high recall. We are exploring hybrid approaches to better match against header cells, 

including going beyond strict QID matches to also compare against a hierarchy of an entities’ super-

types, and semantic similarity based on pre-trained Wikidata embeddings from Wembedder [34]. With 

scientific tables, the ideal response to a search request is one that merges relevant information from 

tables potentially drawn from multiple documents. To this end, our engine also supports a FUSE 

operator that can union the rows of two or more semantically-compatible candidate tables on the fly 

and generate a fused table in response to the request (details beyond the scope of this paper). 

6. Conclusions 

The discovery of relevant information from scientific documents, till date, has predominantly 

focused on unstructured text, ignoring crucial information encoded in structured artifacts such as tables. 

In this paper, we demonstrated preliminary prototype systems for populating and searching over a 

knowledge graph of scientific tables, enabling semantics-guided discovery from these structured 

artifacts. Our two-stage table interpretation methodology highlighted the vast structural and syntactical 

heterogeneity prevalent in scientific tables by characterizing over 120,000 tables from PMC articles. 

Preliminary evaluations of the characterization and semantic interpretation modules on a subset of these 

tables show promising results. While the characterization is a high precision module, it’s recall could 

be improved for certain labels by including additional rules or exploring the development of supervised 

algorithms. Semantic interpretation and disambiguation performance is good when our system is able 

to discover the appropriate entity in its ranked candidate result set but fails otherwise. Candidate search 

needs to be further adapted to the domain strings’ idiomatic nature. Entity linking systems have 

traditionally focused on linking strings to nodes in a knowledge graph, but in scientific tables—where 

a majority of the cells are literals—they also need to detect and learn to not link literals. Distinguishing 

between a literal and an entity string will be a key driver for this. Our preliminary evaluation of table 

discovery, based solely on strict header-based semantic matching, showed low average precision but 

high recall. Enhanced semantic matching of tabular content and the system’s ability to fuse knowledge 

from multiple tables on the fly will drive a successful discovery experience over scientific documents 

in the future. In this paper, we believe we have taken initial steps towards developing a scalable and 

practical scientific table-centric knowledge graph population and search system. 
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