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Abstract
Personal Data Stores (PDS) like SoLiD is an emerging data and knowledge management solution in recent years. They promise
to give back ownership and control of data to the user, and provide protocols for developers to build applications using the
data. However, existing Solid-based applications often focus on using a single-user’s data. In this article, we use a simple but
realistic calendar-and-meeting-scheduling scenario to demonstrate the feasibility and design considerations for enabling
cooperative data-use across multiple users’ SoLiD Pods. This scenario identifies the bottleneck for certain cooperative use
cases, namely those involving offline-changing and synchronization of knowledge information. We demonstrate a viable
approach to mediate this issue, introducing a long-living thin service, the orchestrator. We describe our implementation and
discuss its applicability to other ecosystems. We conclude by discussing the implication of such services, in particular their
risks and challenges for building decentralised applications.
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1. Introduction
With the increasing awareness of the importance and
value of personal data, legal and technological solutions
are being pushed forward for supporting such concerns
of the individuals, such as the EU GDPR [1] (in particular
those related to data portability) and Personal Data Stores
(PDS). PDSs like SoLiD [2], openPDS [3] and Databox
[4] are a promising solution in not only keeping the per-
sonal data under individual’s control, but also allows the
use of such data from other parties to produce values
for the individual. In particular, SoLiD is a PDS solution
that stores information in Linked Data, which essentially
organizes personal and interpersonal data as knowledge
graph; it also provides standard Web-compatible proto-
cols for building applications to utilize such data.

However, research and applications ([5, 6]) of such
systems often focus on using a single store’s data, due
to the nature of “personal” and thus privacy in such sys-
tems. There have been limited explorations on coopera-
tive use of data across stores, which can provide exciting
opportunities, e.g., for improving our response to global
pandemic through aggregating individuals’ health and
mobility logs[7], to climate change through the sharing
of energy consumption habits[8], or to improve working
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condition through analysing many ‘gig’ workers’ indi-
vidual pay rates[9].

We argue that the realization of cooperative data use
raises not only privacy challenges but also a series of
practical design challenges. In this paper, we will use a
simple case – calendar and meeting scheduling, to illus-
trate the challenges and design considerations involved
in building the cooperative knowledge use application in
SoLiD involving interoperability with existing services.
We show how to use a long-living thin service, the or-
chestrator, to overcome this issue, and our technological
solution. Our case study provides important lessons for
us to discuss similar challenges to be faced by other co-
operative data use applications and what this may imply
for the SoLiD ecosystem and beyond. We conclude by
discussing the challenges and opportunity of such long-
living services for decentralized knowledge use.

2. Example case – calendar and
meeting scheduling

Calendar data is an interesting combination of sensitive
and non-sensitive data. On one hand, they contain the
activities a person would have everyday, which can of-
ten be very private; on the other hand, we often want
to schedule events (especially meetings) with others by
finding joint availability of time slots, which requires
sharing some information from everyone’s calendar. Ex-
isting calendar services often support this requirement by
allowing the sharing of the original and the busy-or-free
projection of the calendar.

The situation will be similar to store calendar data in
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PDS. But one important advantage of storing them in
PDS is the ability to use the calendar data in different
ways that were previously unsupported by the existing
centralized, or platform-provided services.

2.1. Work pattern for centralized services
To find the joint availability, one person needs to be
the active party to find the availabilities (and make the
decision), and others receive the decision, assuming the
calendar information already exists. We call the active
party the activist while the rest the passivists.

In existing centralized calendar systems, to find the
joint availability, the users need to:

1. (Passivists) Share all calendars to each other user
who may schedule meetings with them;

2. (Activist) Import others’ calendars shared to
them;

3. (Activist) Update their local cache (of everyone’s
calendar) to the latest;

4. (Activist) Look at the calendars and find the joint
availability;

5. (Activist) Sends the meeting information to all
passivists;

6. (Passivists) Update their calendar with the re-
ceived information.

It is worth noting that this list provides an extensive view
on relevant actions, where in practice not all steps need
to be repeated every time (i.e. Step 1 & 2) and some steps
are usually automated (i.e. Step 3, 5 & 6). In particular,
Step 5 and 6 are critical for meeting scheduling if multiple
activists want to schedule meetings while the passivist
is offline, otherwise there can be a clash in slot selection
by the different activists.

In practice, Step 1 and 2 both involve manual actions
and can be boring and time-costing simultaneously, if the
user has many calendars and there are many participants;
it will also need to be repeated when a new participant
joins. Some (third-party) services exist (e.g. Doodle1) to
simplify this process. Their working model mainly in-
volves requiring every user to deposit their calendars to
this service, and share or compute internally the time
slots. Basically, this keeps a local (to their service) copy
of the original calendars and maintain sharing and per-
mission within the (third-party) service itself. This poses
a potential privacy concern, as well as a redundancy of
data.

2.2. Support and burden in SoLiD
Assume that a Solid Calendar App exists that provides
individuals to manage their calendar data stored in their

1Doodle: https://doodle.com/

data store (i.e. Pod). In this context, most steps can be
mirrored, where the activists and passivists are the Pod
owners, and sharing of calendar is the sharing of the
calendar resource. An advantage for SoLiD storing data
in Linked Data format is that one can organize/advertise
their calendars together, and share that to others, instead
of sharing each calendar separately, given an agreed com-
mon schema2.

However, there is a problem for Step 5 and 6 in SoLiD
or other similar systems: where should the activist send
the meeting information to, and how can the calendar
information be merged to the calendar information in
the passivist’s Pod while offline (i.e. no App open)?

This is not a consideration in centralized settings, be-
cause the central service will always be online (or no
service) and can receive and operate on behalf of the
passivists. Therefore, this online service can handle the
merging of incoming meeting information with the cal-
endar of the passivists, even when they are offline. But
this does not hold in SoLiD or other decentralised data
architectures, which are designed with general mecha-
nism as data and information stores, not specialized for
calendar actions.

The mechanism in SoLiD for dealing with incoming
information is to use the inbox, a dedicated location for
others to write/append information to, implementing
the Linked Data Notification (LDN) specification [10].
However, it is a generic mechanism – the Pod will only
store the notification to the inbox, and processing of such
information is due to the specification of each App. This
routes back to requiring the Pod owner to be “online”
(having appropriate App opened). Therefore, for the
meeting notification, this mechanism does not help when
a passivist is offline.

There are naive solutions such as giving write permis-
sion to the calendar information directly to the activists,
or giving everyone read permission to the inbox. How-
ever, they can easily form a bad pattern as there are many
potential activists, which may result in malicious or incor-
rect writing due to various reasons, or reading sensitive
notifications in the inbox from other applications. Trust-
ing many users and keeping data privacy and integrity
forms a challenge.

The problem becomes more complicated if we also
consider a hybrid or transitional scenario, where both
existing (centralized) calendar services and decentralized
data architectures like SoLiD are used simultaneously.
This may be inevitable for the time being because some
existing workflow or tools only integrate with the cen-
tralized calendar services. This is also the requirement
to avoid a cold-start of decentralized data architectures.

In this scenario, one must keep synchronization of the

2To simplify the discussion, we assume there is one combined calen-
dar information entry for each Pod owner.
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calendar within their Pods and that in external calendars
(and gradually migrates to Pod-only scenarios). They give
permission and use calendar App as above. But instead
of storing the meeting information in their Pods, they
must also store the information to the external calendar.
This would keep compatibility and solve the cold-start
issue simultaneously, but also poses challenges on the
synchronization mechanism while the user is offline.

Thus, we observe the requirements to enable this coop-
erative data usage involving updating data in passivists’
Pod: 1) enable access control of calendar data; 2) inter-
operate with existing calendar systems; 3) maintain the
calendar in synchronization, even when the passivists
are offline. Requirement 1 is already supported by Solid,
and the rest needs to be address properly.

3. A solution using orchestrator
We propose to use a dedicated long-living thin service,
called the orchestrator3, to mitigate this issue. The or-
chestrator is dedicated to one main functionality: to fetch
and transform (external) calendars into the calendar in-
formation stored in the user’ Pod.

3.1. Orchestrator in the hybrid scenario
At the moment, the main scenario is the hybrid case,
where the external calendars are the main source of the
calendar information in the Pod; later we will discuss how
it works for other scenarios, in particular the SoLiD-only
scenario.

With the orchestrator, the users still need to grant rele-
vant permission and share information. In the meantime,
the relevant synchronization and transformation jobs
are performed by the orchestrator. In particular, as the
external calendars are the main source, the orchestrator
fetches the specified external calendars, combines them,
and stores them into user’s Pod. They are controlled by
the configuration specified by the user, stored in their
Pod.

When scheduling a meeting, the activist picks the time
slot, and sends them through the external centralized
calendar services. The orchestrator will later pick this
up, and synchronize them into the passivists’ Pods. This
mechanism can also be extended to the inbox-based sce-
nario, as to be discussed later.

Figure 1 illustrates the architecture and working pat-
tern for using the orchestrator, based on our current
implementation. KNoodle is the relevant calendar and
meeting scheduling App; the Orchestrator Configurer is

3Sande et al proposed the concept of orchestrator as an autonomous
agent based on triggers; we borrow the name. However, they did
not discuss the necessity of orchestrators in depth, and it lacks a
direct way of supporting the calendar case discussed in this paper.

the companion App for registering users to the orches-
trator and creating configuration files in the Pod. This
works for scenarios even when an actor is doing actions
based on information in external calendars and another
doing actions based on information in the Pod.

The main advantage is that the write operation is only
performed by the orchestrator, so the user only needs to
trust it, rather than everyone as in the naive solutions;
in the meantime, the orchestrator does not have write
permission to external calendars, so it will never pollute
the information source even if becoming malicious. If for
some reason the orchestrator becomes malicious or not
functioning, the user can simply revoke the permission
on its own Pod; de-registering on the orchestrator is
not indispensable for the user to block access from the
orchestrator.

Because the orchestrator has a clear role and function-
ality, it is easy for others to provide alternative orches-
trator services for competition, or the calendar owner
to self-host. This is the possibility that decentralization
and openness brings. The competition may bring multi-
ple benefits, in particular stimulating the orchestrator to
provide better and trustworthy service in the long run,
and to prevent vendor lock-in of a particular orchestra-
tor provider thus centralization back to the orchestrator
provider.

Putting them together, by introducing the orchestra-
tor, the user only needs to trust one agent rather than a
large number, controls the critical permission from the
Pod, and can switch the orchestrator provider easily. We
believe this is a sensible approach with limited drawback
to tackle the problem.

3.2. Implementation with Knoodle
We implemented an alternative version of Knoodle4 with
the orchestrator5. Knoodle is a SoLiD App for calendar
viewing and meeting scheduling, originally developed by
the Ghent University. Our version keeps Knoodle as the
core user-facing App for meeting scheduling, but also
developed the orchestrator to accomplish the full picture,
as reflected from Figure 1. We also did some functionality
and UI improvements, which are omitted in this paper.

In the original version, a modified server implementa-
tion (based on Community Solid Server, CSS)6 was used.
It serves a very similar purpose to the orchestrator, and
performs real-time fetching and transformation of ex-
ternal calendars upon request. But it is configured and
tightly coupled with the SoLiD service itself. In particu-
lar, the user needs to modify the service’s configuration

4Knoodle https://github.com/OxfordHCC/knoodle
5Calendar Orchestrator https://github.com/renyuneyun/
calendar-orchestrator

6Solid Calendar Store https://github.com/KNowledgeOnWebScale/
solid-calendar-store
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Figure 1: Architecture for the calendar system with the or-
chestrator.

file and restart the service to make changes, even if just
changing external calendar’s URL. The reason it was de-
veloped in this way was that it allows some advanced
transformations (e.g. time filtering) and aggregation of
external calendar. However, it posed many user expe-
rience challenges, particularly with the configuration
complexity and portability.

In our version, the orchestrator is deployed as a sepa-
rate service, not coupled with the SoLiD Pod’s service. A
companion configuration App is developed to facilitate
the user to manage the configuration (stored to user’s
Pod) and to manage the registration to the orchestra-
tor. The configuration App talks with the orchestrator
through its API, thus can be deployed as a normal SoLiD
App. Upon registration, the orchestrator obtains an ac-
cess token from the Pod service, and routinely fetches and
updates the calendar information in the Pod. Only the
user’s basic information (e.g. WebID, identity provider)
and the access token is stored on the orchestrator’s local
storage. Naturally, one orchestrator can support multiple
users simultaneously. Both the orchestrator and the orig-
inal implementation on modified CSS uses RMLMapper7

to convert the representation of calendar data. One can
also view the orchestrator implementation as a SoLiD
App without user interface8.

We are working on improving the orchestrator and
configuration App to support more SoLiD implementa-
tions, and to support the rich transformation that the
Solid Calendar Store supports.

3.3. Other scenarios
Although we mainly discussed and designed the orches-
trator based on the contemporary situations thus the hy-
brid scenario, it can be extended/adapted to support other
scenarios, in particular the SoLiD-only scenario, without
breaking the promises and requirements discussed above.

In a SoLiD-only scenario, the main difference is to

7RMLMapper https://github.com/RMLio/rmlmapper-java/
8But contrary to ordinary ephemeral Apps, the orchestrator always
runs on the server

use LDN inbox as a replacement of the external calendar
service. The orchestrator acts as the consumer, reading
the calendar notifications in the inbox (in the Pod), and
merge that to the calendar information in the Pod. Simi-
larly, the calendar App, as the sender, sends the meeting
information as notifications to the inbox.

A more complicated scenario is for the SoLiD-first
hybrid case, where the information needs to be synchro-
nized for both directions. For the SoLiD-related part, the
LDN inbox is required; for the external part, the synchro-
nization mechanism discussed earlier is required. Apart
from them, an additional function should be implemented
for pushing/synchronizing the new meetings from the
LDN inbox to external calendars. Different implementa-
tion details (or configuration options) can be provided,
such as keeping a separate calendar resource in Pod ded-
icated for those from inbox and synchronize to external
calendar, storing it an ICS calendar in Pod to act as a
“remote” calendar, or using a separate remote calendar.

In general, the proposed orchestrator mechanism can
be extended or adapted for future with the migration
progress in decentralized personal stores. It is still essen-
tial in those scenarios.

4. Application to related work
SoLiD is a good example of decentralized knowledge
graph and PDS. It has clear separation of roles, and there-
fore we anticipate the designs working on SoLiD would
also work on other ecosystems as well (with appropriate
modification), discussed in this section.

The key observation above is the necessity of long-
living services for certain tasks. This needs to be made
explicit because SoLiD’s PDS service is designed to not
run custom code (and only Apps can, with or without UI),
and therefore can not be used as the orchestrator. Some
other PDSs also possess the same design, e.g. myDex9 and
openPDS [3]. Therefore, the same need of long-living
services also exists for them. Databox [4] holds a different
view, considering the data and applications as a series of
configurable nodes in data flow. In their architecture, it
might be possible to develop an application acting as the
orchestrator, and install it on every users’ store. But it did
not present the way to handle events and triggers, still
leaving questions. These other PDSs also lack schemas
and can not be treated or queried as a knowledge graph.

In blockchain-based decentralized knowledge graph
(e.g. OriginTrail10), the blockchain itself can store the
data and can also execute custom code (in the form of
smart contracts), thus reducing the needs of external
long-living services – though reading off-chain data may
still require that. However, storing and sharing private

9MyDex https://mydex.org/
10OriginTrail https://origintrail.io/
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or sensitive data on the blockchain remains a challenging
task [11]. In addition, the blockchain itself may be a
challenge for resources.

5. Conclusion and open questions
In this paper, we discussed the problem of supporting
calendar-and-meeting-scheduling use case on SoLiD, as
an example of cooperative decentralized knowledge use.
We showed the problem and proposed the use of long-
living service like the orchestrator to support such cases,
and presented our implementation and its application to
related work.

Bringing up the long-living service like the orchestra-
tor into a decentralized context poses opportunities and
threats. On one hand, it is essential for certain tasks for
decentralized knowledge use. On the other hand, it poses
a potential challenge of re-centralization if the service
becomes too big to switch. There is also currently no
guarantee that the orchestrator will not be malicious, as
they have access to sensitive information either in the
configuration or the data obtained. A methodology or
mechanism is needed to restrict or mitigate such poten-
tials. In the meantime, there are also business opportu-
nities on running such services and therefore accelerate
adoption of SoLiD or any other decentralized systems.

Apart from investigating the technologies to constraint
centralization and improving trust, one may also explore
alternative designs that do not involve a third-party long-
living service. In particular, one may want to study how
to extend the access control model to express the neces-
sary permission for such use cases, thus eliminating the
needs.
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