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Abstract  
One of the essential competitive problems today is the primary healthy lifestyle. Self-

activeness is the most important part in leading a healthy life. Practicing and exercising 

regularly is the only way that will help us to improve our health. There is many positivity, like 

sinking the risk of chronic diseases and enhancing overall health and fitness. Doing regular 

exercises in our daily schedule makes our life healthy that overcomes health issues. This work 

monitors the simple physical actions of the students. The widely used UCI-HAR (Human 

Activity Recognition) dataset is used in this work for analysis. The major goal of this strategy 

is to track physical activities using the collected data by the gadget, which allows them to 

examine their performance. Long Short Term Memory (LSTM) along with Recurrent Neural 

Network (RNN) are used in this approach that ensembles to fit the model that achieves best 

result 93% accuracy. The activity of all the 30 volunteers, are trained and tested with the total 

train data of 7352, and test data of 2947 records. To test the dataset's accuracy, the ensemble 

technique is tested with 10 key attributes of their mean. 
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1. Introduction 

Maintaining a healthy lifestyle is a huge issue in our daily lives. Physical activity aids in the 

improvement of one's health and the maintenance of one's physical condition. Physical activity has an 

impact on a variety of health disorders, and the amount and type of activity that is beneficial depends 

on the disease. The issue in producing rules to health is to add systematic evidence to the physical 

activities. Analysis related to physical activities states that it results in many health benefits when 

additional amount of physical activity is accumulated. The study also shows that, less than 2 hour 15 

minutes per week on aerobic-activity and walking decreases the chance of chronic illness and 

antagonistic health results. 

 

This work focuses on observing and monitoring daily physical activities. The widely used UCI-HAR 

dataset, published in the machine learning repository of UCI, includes data collection like acceleration, 

and gyroscope. There is complete related works on the use of sensors for tracking human behaviours 

using smartphones and wearable devices to identify and recognize. The widely used UCI-HAR dataset, 

has accelerometer observations from 30 volunteers labelled like walking upstairs, sitting, walking 

downstairs, walking and laying. We must be able to distinguish between activities and in-activities, as 

well as the speed of the activity in comparison to running, such as walking, jogging, and all other 

activities.  
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Students' physical activities like lying, standing, running and walking is being monitored as 

everyday activities and tracked as physical activities in HAR dataset. In this work, ensemble deep 

learning method is used to trail the physical activity coaching among students and also to track the daily 

actions. Huge applications like healthy ageing, medical screening are included in physical monitoring. 

Research on medical field proves that there are more advantages on undergoing physical activities. If 

enough physical activities is not done on a daily basis, would result in inactive behaviour associated 

from all origins [1]. In addition to the increased long-term risk of premature death, insufficient physical 

exercise also has an impact on short-term quality of life, work ability, and social involvement [2].  

 

The research study proves that school kids and teen-agers require physical exercise at their initial 

phase of physical human changes [3]. Weekly activities on sports by teen-agers gets more benefits that 

improves their mental as well as physical health [4]. Absence of physical exercise at the young age also 

leads to mental problems during their physical development [5]. Recognition of physical activities is 

accessible by products like wearable gadgets and smart phones. These gadgets contain a set of sensors, 

such as accelerometers and gyroscopes, as well as GPS, which, according to [6], can give the basic data 

required for activity detection, offering a full picture of the past. More technologies, patents and 

research are carried out on monitoring physical activities [7-9]. In some cases, these provide 

individualized personal training functionality [10,11]. Monitoring the physical activity is one of the 

major issues established few decades ago [12-14]. Development of new gadgets helps to create new 

applications in variety of industries, including healthcare, sports and defense. Recent surveys [15-17] 

have looked into the most important past research in this field in depth. This is the case, the scikit-learn 

library has been used to identify physical activity. The majority of contemporary research work, among 

other things, relies on WEKA [12, 18-20], ATLAB[21], or patentable developments, such as the work 

presented by [22]. Scikit-learn package has many algorithms peer-reviewed by professionals and it’s 

frequently utilised and grown popular nowadays.  

 

In this work, Scikit-learn package is used with Ageing Population Physical Activity Monitoring 

PAMAP2 [23] dataset for monitoring that can be easily replicated. Recent study predicts that deep 

learning approaches are used to classify and extract features with the dataset [24-30]. In this study, the 

results obtained with deep learning approaches are exceeded by those obtained with other classifiers, 

indicating that multiple analysis and evaluation is required. The reason behind using deep learning 

techniques is to compare with existing classification algorithms working with signals that have already 

been translated in to frequency domain [30]. Finally, when working with sensors incorporated in 

battery-operated systems, one key study topic is to maximise the usage of energy [31-34].  

 

Wearable sensors for monitoring the activities is related to precision and battery consumption. 

Collect and transfer all data gathered from all accessible sensors via the data network. Last but not least, 

when dealing with sensors incorporated in battery-operated devices, one essential study topic is how to 

maximise their energy consumption [31-34]. The UCI-HAR dataset collects all the activity labels such 

as sitting, normal walking, standing, walking upstairs and downstairs. In this database, 57, 85,091 

records having 561 features, 7352 training data, and 2947 test data for 30 volunteers. The training and 

testing dataset are used to train and fit the LSTM and RNN models, which ensemble the results 

numerous times for the best accuracy. 

 

Neural network models are non-direct which have a high difference that makes the final model 

difficult to make prediction. There are many models in neural networks that are combined using 

ensemble learning to decrease the prediction variance and generalization error. Ensemble learning 

strategies can be grouped based on variables such as training data, model, and how predictions are 

integrated. The outcome of the neural network model achieves above 93 percent precision by using 

ensembling LSTM and the RNN model with the main 10 features like tBodyGyro-Mean-X, tBodyGyro-

Mean-Y,    tBodyGyro-Mean-Z,    tBodyAccMag-Mean-X,      tBodyAccMag-Mean-Y,   tBodyAccMag-

Mean-Z, tGravityAccMag-Mean-X,     tGravityAccMag-Mean-Y, tGravityAccMag-Mean-Z, 

tBodyGyroJerkMag-Mean-X, tBodyGyroJerkMag-Mean-Y  and  tBodyGyroJerkMag-Mean-Z [22]. 
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2. Methodology 
 

2.1. Ensemble Learners 

To achieve better results, these models incorporate the predictions of a large number of base 

estimators built using a specific learning technique [11]. The random forest technique is made up of 

112 decision-making algorithms [35] with predictions that use feature subset that are selected randomly 

[36]. Since the decision trees has many different weights, analysis becomes too complicated. It requires 

complex parameter settings or domain knowledge to perform with high-dimensional data. The number 

of random forest decision trees and the important features are the key parameters to be updated by using 

these techniques. The decision trees are fixed as 30 with a limit of 10 by testing some values. Maximum 

n features are used in these classifications [49] that are similar to the randomized random forest 

algorithms for achieving better computational splits [37]. There are two divisions that an additional tree 

divides nodes and builds trees using the all-learning samples.  

 

In this study, Adaptive boosting, couples all types of algorithms that helps to enhance the efficiency 

[38]. Voting classifier algorithms like adaptive boosting and bagging algorithm produce better 

outcomes on any datasets [39]. The adaptive boosting algorithm, is selected as the top classifier 

algorithm [40]. This algorithm such as bagging and AdaBoost have been very successful in improving 

outcomes for various different classifiers on both simulated and real-world datasets [39]. AdaBoost, in 

particular, has been voted the top out-of-the-box classifier in the world [40]. The AdaBoost algorithms 

are used and recommended for constant multilevel-class domains. AdaBoost was used to evaluate the 

situation [41]. We used AdaBoost to assess random forest output and other randomization. 

2.2. Deep Learning 

Deep learning is one of the important techniques used in the area of neural networks [42]. This 

technique is used by processing multiple layers to form non-linear transformations. With the help of 

progressive learning, the outputs of each layer are grouped. RNN, convolutional deep neural networks, 

Deep and Deep belief neural networks are used in layers processing. As a result of these strategies, the 

data inputs will be mechanically built, offering an additional generic answer because the feature 

generation approach will be completely done automatically. These techniques are applied to a variety 

of fields like pc vision, tongue processing, and speech recognition and so on, with progressive results 

on numerous tasks [43–45]. Deep learning techniques have been used in a few publications to recognize 

activities; a representative set may be found in [26-31]. The TensorFlow framework are recently 

introduced by Google (Mountain View, CA, USA) [46] are used in DNN. The essential need for 

applying these strategies is to test 280 attributes into classification. 

 

Varieties of topologies are tested that revealed two things: (1) Only exact topology styles have a 

significant impact on the produced results; and (2) Simple architectures are closer to the optimum results 

than the complex architecture. 

2.3. Parameter Setup 

Table 1 shows the train and test data used of the accelerator and gyroscope sensors. The parameter 

values indicate all the 561 feature labels. The 3-axis signals (X, Y and Z) for the accelerometer and 

gyroscope were used to create the features for this database. These signals with ‘t’ as prefix are time 

domain signals with a rate of 50 Hz. Median filters are used again, to remove noise, a 20 Hz corner 

frequency are used as other filter for 3rd order low pass Butterworth.  

 

Table 1: Activity Labels 

Data\ 
Activity WALKING 

WALKING_
UPSTAIRS 

WALKING_ 
DOWNSTAIRS SITTING STANDING LAYING 
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Training 
Data 689012 603026 554132 722732 772188 790734 

Testing 
Data 278256 264231 235620 275451 298452 301257 
Total 967268 867257 789752 998183 1070640 1091991 

 

 
Figure 1: Activity Labels 

 

The acceleration signals related to body, gravity as well as the magnitude are considered as essential 

parameter. All three axes have both positive and negative results from these sensors. The sample 

accelerometer data are given in Table 2. 

 

Figure 1, shows the activity labels considered in the dataset to monitor the reading of all the student’s 

activity. By considering, all these features, the main 10 features are taken as the essential parameters to 

predict the model. 

2.4. LSTM Ensembles 

LSTM is used for short term input that gives long term results [47], that transforms single unit to 

complex unit with Input gate (i), Output gate (o), Memory cell (c) and Forget gate (f). The LSTM 

technique is also used to transfer the data within the gates that decides the number of new inputs and 

also the memory to be maintained by the forgotten gate. Equations (1)-(6) gives the details about the 

functioning of LSTM. 

 

                            𝑖𝑡 = 𝑔(𝑊𝑖
𝑥𝑥𝑡 + 𝑊𝑖

ℎℎ𝑡−1 + 𝑏𝑖) ,                                                                (1) 
                            𝑓𝑡 = 𝑔(𝑊𝑓

𝑥𝑥1 + 𝑊𝑓
ℎℎ𝑡−1 + 𝑏𝑓)                                                                 (2) 

                            𝑜𝑡 = 𝑔(𝑊𝑜
𝑥𝑥𝑡 + 𝑊𝑜

ℎℎ𝑡−1 + 𝑏𝑜)                                                                 (3) 
                                          𝑚𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑚

𝑥𝑥𝑡 + 𝑊𝑚
ℎ𝑥1 + 𝑏𝑚)                                                            (4) 

                                          𝑐𝑡 = 𝑓𝑡. 𝐶𝑡−1 + 𝑖𝑡 . 𝑚𝑖                                                                                     (5) 
                                          ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡).  𝑂𝑡                                                                                          (6) 

 
To aggregate the predictions of k LSTM spanning from 1 to 3, we have used ensemble algorithm 

predictive system involves the usage of an ensemble algorithm. An ensemble can be easily executed by 
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taking the average of individual predictions. As a result, the ensemble's prediction for Activity A and 

instance t at Equation (7), for example, 

 

                                        𝑃 𝐴,𝑡
(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)

=
1

𝑘
∑

𝑘

𝑖=1

𝑃𝐴,𝑡
(𝑚𝑜𝑑𝑒𝑙𝑖)

                                                               (7) 

To compare the ensemble LSTM, the total error reduction are calculated based on the average 

percentage reduction [48]. The 𝑒𝑟𝑟𝑜𝑟𝑖𝑗 are calculated using Mean Squared Error or Mean Absolute 

Error. The error is formed from ith time series and jth ensemble method by 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟𝑖 then, the 

error_reductionj, denoted as, jth ensemble prediction method is defined as follows in Equation (8): 

 

𝐸𝑟𝑟𝑜𝑟_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑗 =
1

𝑘
∑

𝑘

𝑖=1

(𝑚𝑎𝑥 _𝑒𝑟𝑟𝑜𝑟𝑖 − 𝑒𝑟𝑟𝑜𝑟𝑖𝑗)

(𝑚𝑎𝑥 _𝑒𝑟𝑟𝑜𝑟𝑖)
𝑋 100 (𝑗 = 1 𝑡𝑜 𝑡)         (8) 

 
Therefore, next step after training on first data set (n train), is to test the models and then forecasting 

the next observation is represented in Equation (9): 

 

𝑃𝐴,𝑡
(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒)

=
𝑘

𝑖 = 1
∑

𝑘

𝑖=1

𝐴𝑈𝐶𝐴,𝑡
(𝑚𝑜𝑑𝑒𝑙𝑖)

∑𝑘
𝑟=1 𝐴𝑈𝐶𝐴,𝑡

(𝑚𝑜𝑑𝑒𝑙𝑖)
𝑃𝐴,𝑡

(𝑚𝑜𝑑𝑒𝑙𝑖)
                                          (9) 

 

Where 𝐴𝑈𝐶𝐴,𝑡
(𝑚𝑜𝑑𝑒𝑙𝑖)

, indicates the AUC score of the modeli, at time period t at 128 element time that 

results in best result using LSTM ensemble. 

3. Results 

After applying the ensemble LSTM models, the accuracy of the model could be visualized clearly. 

Table 2, show the accelerometer mean values of all the 6 activity labels. The chosen mean values of all 

the three-dimensional data are trained and tested to monitor the physical activity. Figure 2, shows the 

graphical representation of these mean values of all the cumulative outputs of all the 30 volunteers. By 

considered the result of these activities, one could able to monitor the students and analyse the 

performance and actions of all individuals. 

 

Table 2: Sample Accelerometer Mean Axis Values 

Activity Mean WALKING 
WALKING_
UPSTAIRS 

WALKING_ 
DOWNSTAIRS SITTING STANDING LAYING 

tBodyAcc-mean()-X 0.287 0.279 0.313 0.279 0.289 0.278 
tBodyAcc-mean()-Y -0.155 0.426 0.205 0.278 0.278 0.205 
tBodyAcc-mean()-Z 0.205 0.205 0.278 0.279 0.279 0.278 

tBodyAcc-XYZ 0.426 0.278 0.278 -0.155 0.282 0.205 
tGravityAcc-mean-X 0.205 0.278 0.278 0.278 0.282 0.278 
tGravityAcc-mean-Y 0.205 0.278 0.278 0.278 0.426 0.278 
tGravityAcc-mean-Z 0.205 0.279 -0.155 0.282 0.278 0.278 

tBodyAccJerk-mean-X 0.205 0.282 0.278 0.426 0.278 0.278 
tBodyAccJerk-mean-Y 0.205 0.426 0.282 0.278 0.205 -0.155 
tBodyAccJerk-mean-Z 0.278 0.278 0.278 -0.155 0.278 0.205 
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Figure 2: Sample Accelerometer Mean Axis Values 
 

Table 3, shows the sample Gyroscope axis values of all the activity mean of all activity. Figure 3, 

shows the result of this table graphically. 

 
Table 3: Sample Gyroscope Mean Axis Values 

Activity Mean WALKING 
WALKING_
UPSTAIRS 

WALKING_ 
DOWNSTAIRS SITTING STANDING LAYING 

tBodyGyro-mean-X 0.278 0.278 -0.155 0.426 0.205 0.426 
tBodyGyro-Mean-Y 0.426 0.426 0.278 0.205 0.278 0.205 
tBodyGyro-Mean-Z 0.205 0.205 0.278 0.278 0.278 0.278 
tBodyAccMag-Mean-X 0.278 0.278 0.279 0.278 0.279 0.278 
tBodyAccMag-Mean-Y 0.278 0.278 0.282 0.278 0.282 0.278 
tBodyAccMag-Mean-Z 0.278 0.278 0.205 0.279 0.278 0.279 
tGravityAccMag-Mean-X 0.279 0.278 0.278 0.282 0.278 0.282 
tGravityAccMag-Mean-Y 0.282 0.278 0.278 0.278 0.278 0.278 
tGravityAccMag-Mean-Z 0.278 0.279 0.278 0.278 0.279 0.279 
tBodyGyroJerkMag-Mean-X 0.278 0.282 0.279 0.279 0.282 0.282 
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Figure 3: Sample Gyroscope Mean Axis Values 
 

The outcome of these values are tested and predicted to find out the accuracy of the dataset. Table 

4, shows the result of batch loss and accuracy of both training and test dataset. 

 

Table 4: Prediction Accuracy  

Batch Loss Accuracy Batch Loss Accuracy 
3.4162 0.1507 2.994722 0.247031 
1.440027 0.654 1.435424 0.638276 
1.181833 0.772 1.246315 0.730573 
0.948902 0.875333 1.09274 0.798439 
0.846772 0.912667 1.083907 0.816084 
0.779508 0.924667 0.969212 0.855107 
0.788127 0.896667 0.976748 0.866305 
0.717167 0.933333 0.893816 0.886325 
0.642282 0.954667 0.896881 0.885307 
0.609238 0.956 0.858809 0.896844 
0.586757 0.982667 0.893448 0.888022 

 

 
Figure 4: Prediction Accuracy 
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Figure 4, shows the visual representation of the prediction accuracy, the test batch loss is little higher. 

The overall prediction accuracy, gives 93% on applying the ensemble model. The overall goal is 

achieved better. 

4. Conclusion 

In the present work, we train our deep learning algorithms on activity labels at all-time intervals. 

The monitoring parameters, indicates the movements of all the students. The features selected are used 

to check the accuracy based on the mean values of the data collected that indicates the essential 

parameter to analyse the monitoring benefits of all the individuals. The ensemble learning model are 

tested to find the best combination models. The multiple LSTM RNN are ensembled to fit the model. 

The selected features improve the monitoring system, to analyse the physical activity. The study 

indicates that the multiple ensembled model with LSTM RNN neural network improves the prediction 

accuracy about 93%.  
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