
Improving Natural Product Automatic Extraction
With Named Entity Recognition
Stefan Schmidt-Dichte1,∗, István J. Mócsy1

1AKSW, Leipzig University of Applied Sciences (HTWK), Gustav-Freytag-Straße 42a, Leipzig, 04277, Germany

Abstract
Knowledge graphs (KGs) play a vital role in providing structured data for various applications, but their
creation is time-consuming and prone to errors. To address these challenges, automatic knowledge
extraction methods using machine learning (ML) have gained attention. ML algorithms have shown
promise in capturing subtle nuances in language data, offering comprehensive and robust solutions.
In the field of biochemistry, knowledge extraction is crucial for advancing scientific research, product
development, and policy-making. The First International Biochemical Knowledge Extraction Challenge
focuses on extracting biochemical knowledge from scientific articles. This paper presents an updated ap-
proach that incorporates named entity recognition (NER) using scispaCy models to improve the accuracy
and relevance of extracted entities. The evaluation of the approach utilizes the NatUKE benchmark and
demonstrates improved performance in extracting bioactivity and isolation type. However, challenges
remain in identifying compound names and species. Future research may explore hybrid approaches
combining different techniques to address these specific challenges.
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1. Introduction

Knowledge graphs (KGs) are important sources of structured data for various applications [1].
However, creating KGs can be time-consuming and prone to errors and incompleteness [2]. It
involves complex natural language processing techniques and keeping the dataset updated is
challenging [3]. Developing automatic knowledge extraction methods is crucial for easier KG
curation and maintenance.
In recent times, there has been considerable progress in the field of machine learning (ML),

particularly in its application to natural language tasks. ML methods have emerged as a promis-
ing approach, showcasing impressive results in various language-related endeavors. What sets
ML apart from traditional, rule-based approaches, which are often created by humans based on
limited data observations, is its ability to effectively capture and handle subtle intricacies within
the data. ML algorithms can uncover nuances that might otherwise go unnoticed, offering a
more comprehensive and robust solution to language challenges [4].
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When we talk about natural products, we are referring to chemical compounds that are
produced by living organisms [5]. Natural products have had a substantial impact on the field
of pharmacotherapy throughout history, particularly in the treatment of cancer and infectious
diseases [6].
To make biodiversity knowledge more accessible, organizing and sharing it through knowl-

edge graphs can aid scientific advancement, bio-friendly product development, and informed
public policies. The Semantic Web architecture can facilitate this process, enabling researchers
and institutions to publish, share, and utilize valuable information effectively. Automating
the extraction of biochemical knowledge from scientific articles can accelerate research and
increase awareness of biodiversity’s significance, leading to the development of environmentally
conscious products [7].
The First International Biochemical Knowledge Extraction Challenge aims to tackle the

problem of extracting biochemical knowledge. To assess the progress in this area, the challenge
utilizes a benchmark introduced in the NatUKE paper [8]. This work goes beyond NatUKE by
incorporating Named Entity Recognition (NER) to enhance the results. Integrating NER into the
existing framework has successfully achieved improved performance and accuracy in extracting
biochemical knowledge. This extension demonstrates the commitment to advancing the field
and finding effective solutions to the challenges of knowledge extraction in biochemistry.

2. Related Work

Automatic extraction of knowledge from text has been a topic of significant research
interest in recent years. Several approaches have been proposed to tackle this task, aiming
to automate the process of extracting valuable information from unstructured text data. The
proposed PLUMBER [9] framework integrates disjoint Knowledge Graph (KG) information
extraction efforts, offering reusable components and dynamically generated pipelines for
effective KG triple extraction, outperforming baselines and providing analysis of failure
cases, component similarities, and limitations. The t2kg framework [10] is designed to
extract knowledge graphs from text, enabling the representation of structured information
from unstructured sources. Furthermore, kgbert [11] utilizes a pre-trained BERT model to
perform automatic extraction of knowledge from text. Additionally, seq2RDF [12] is a method
that combines sequence labeling with semantic parsing techniques to extract structured
information in the form of RDF triples. NatUKE [8] introduces a benchmark for natural product
knowledge extraction from academic literature and evaluates unsupervised embedding methods.

Named entity recognition plays a crucial role in information extraction by identify-
ing and classifying named entities within text. A comprehensive survey on deep learning
approaches for NER is presented in [13], which explores various neural network architectures
and techniques employed for effective entity recognition. Additionally, scispaCy [14] is a
popular library specifically designed for biomedical NER, providing pre-trained models and
tools to extract entities from scientific texts.

Knowledge graph embeddings have gained significant attention for representing



structured knowledge in a vector space. Several embedding models have been proposed to
capture the semantic relationships between entities and relations in knowledge graphs. These
models include TransE [15], TransH [16], TransD [17], TransR [18], DistMult [19], ComplEx
[20], RotatE [21], TuckER [22], and Ephen [23]. Each of these models leverages different
techniques, such as translation-based, projection-based, or tensor-based approaches, to embed
entities and relations into a low-dimensional vector space.

3. Approach
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Figure 1: This graphic visualizes our journey of experimentation and highlights the successful ideas
we eventually implemented. While exploring the idea of incorporating a classifier, we experimented
with SVR and GaussianNB, but unfortunately, they did not yield the desired outcomes. In our pur-
suit of extracting locations, we tested the spaCy transformer model en_core_web_trf, but the results
were unsatisfactory. Similarly, we explored scispaCy models such as en_ner_bio_nlp13cg_md and
en_ner_craft_md, but they also produced unfavorable results. However, we finally achieved positive
outcomes when utilizing the scispaCy model en_ner_craft_md, marking a breakthrough in our efforts.

In our research endeavor, we undertook the task of refining the existing NatUKE approach by
introducingmodifications to several of its components. NatUKE, in its original form, employed K-
nearest neighbors (KNN) to sort by embedding similarity in a efficient way. However, we sought
to enhance its performance by transforming it into a pair-to-pair binary classification approach,
utilizing Support Vector Regression and Gaussian Naive Bayes models. Our experiments with
these modifications yielded poor results, suggesting that the original KNN might not be be the
bottelneck of NatUKE’s performace.

The next ideawe are exploring is to incorporate named entity recognition (NER) as an essential



component. Previously, the original approach relied on slicing phrases at the beginning of the
pipeline according to the token size limit of 512 from DistilBERT [24]. Since slicing by token
limit might separat and add irrelevant information we decieded to leverage NER for the slicing
process. By utilizing NER, we aim to identify and extract meaningful entities within the text.
When an entity is found, the corresponding sentence containing that entity is extracted for
further analysis. This approach not only ensures that important information is captured but
also helps in maintaining the context of the identified entities. To accomplish NER, we opted to
employ scispaCy. While scispaCy offers various NERmodels, we encountered suboptimal results
when using SpaCy for location identification. Therefore, we embarked on experimenting with
different built-in models. We discovered that the en_ner_bc5cdr_md model yielded the most
promising results. This particular model, which is specifically designed for biomedical entity
recognition, proved to be effective in identifying entities related to the biomedical domain [25].
By leveraging the strengths of en_ner_bc5cdr_md, we were able to enhance the accuracy and
relevance of the extracted entities, thereby improving the overall performance of our pipeline.

In summary, our updated approach replaces the initial slicing of phrases with NER, allowing
us to extract sentences based on identified entities. The utilization of scispaCy, particularly
the en_ner_bc5cdr_md model, has proven to be valuable in achieving accurate and meaningful
entity recognition within the context of our pipeline.

4. Evaluation

The evaluation was perfomed using the official BiKE challenge benchmark NatUKE [8]. It
focuses on three aspects: (A) using the NuBBE𝐷𝐵 dataset to extract characteristics from papers,
(B) obtaining knowledge extraction results through KG completion using graph embedding
models, and (C) comparing the behavior of four different graph embedding models. The dataset
used for evaluation and training was manually built from peer-reviewed scientific articles, and
it includes information on various properties of natural products. The problem of knowledge
extraction from unstructured data sources is addressed, and machine learning graph embeddings
is proposed. The BERTopic model is employed to extract topics from papers, and the paper’s DOI
is used as a central node in a knowledge graph [26]. The evaluation includes different stages with
varying amounts of training data, and the accuracy of each approach is measured using hits@k
metric. There are four graph embeddingmethods (DeepWalk [27], Node2Vec [28], Metapath2Vec
[29], and EPHEN[23]) used for knowledge extraction. The goal is to create embeddings for each
node in the graph without requiring a complete knowledge graph, predetermined weights, or
ontology, and to ensure that the models can generate embeddings within a reasonable amount
of time and computational resources.

Hits@k enables us to assess each feature extraction method based on our specific expectations
by adjusting the value of k. In accordance with the methodology employed in NatUKE, the final
k values ranging from 1 to 50, where only multiples of 5 are considered. Two thresholds are
taken into account. First when a score of 0.50 or higher is attained, and second when a score of
0.20 or higher is attained.

The results of the original NatUKE pipeline are presented in table 1. For more comprehensive
information, please consult the NatUKE benchmark paper.



Table 1
NatUKE results table for extracting: compound name (C), bioactivity (B), specie (S), collection site (L),
and isolation type (T). The results consider different final 𝑘 values corresponding to two different rules.
The best results for each extraction are bold.

Property 𝑘 DeepWalk Node2Vec Metapath2Vec EPHEN
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

C 50 0.08 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.10 0.08 0.09 0.20 0.09 0.02 0.03 0.04
B 5 0.41 0.12 0.10 0.07 0.41 0.07 0.03 0.03 0.27 0.17 0.13 0.12 0.55 0.57 0.60 0.64
S 50 0.37 0.24 0.27 0.25 0.36 0.22 0.25 0.24 0.40 0.41 0.42 0.44 0.36 0.24 0.29 0.30
L 20 0.56 0.41 0.38 0.29 0.57 0.36 0.28 0.23 0.40 0.42 0.42 0.40 0.53 0.52 0.55 0.55
T 1 0.25 0.14 0.14 0.09 0.10 0.07 0.05 0.01 0.28 0.22 0.19 0.19 0.71 0.66 0.75 0.75

5. Results

The outcomes of extracting five distinct natural product characteristics from biochemical
academic papers are presented in Table 2. We utilize the NuBBE[KG] ontology and dataset
to make predictions about properties 1. The selection of values for k, which determines the
difficulty level in property-value prediction, varies proportionally. For example, it is more
challenging to accurately predict the name of a natural product compared to predicting the type
of isolation. There are significantly fewer distinct possible characteristics for isolation type
compared to compound name. Consequently, predicting the correct compound name poses a
significantly greater challenge.

Overall, EPHEN demonstrates the highest performance in extracting bioactivity and isolation
type, progressively improving accuracy across the evaluation stages. For instance, in the first
evaluation stage, EPHEN achieves a hits@5 score of 0.60, which steadily increases to 0.69 in the
fourth evaluation stage. In contrast, DeepWalk obtains the best results in the first evaluation
stage with a score of 0.39 but experiences a decline, reaching the second-worst results of 0.07 in
the fourth evaluation stage.
Comparing NatUKE with NatUKE + NER in Table 1 and 2 reveals notable differences. The

inclusion of NER in NatUKE has led to significant improvements in the EPHENmodel concerning
bioactivity, collection site, and isolation type. However, it is worth mentioning that there was
no improvement observed in the identification of compound names and species for EPHEN
when using NatUKE + NER. Furthermore, when considering the utilization of NatUKE + NER
in conjunction with DeepWalk, Node2Vec, and Metapath2Vec, no significant enhancements
were observed, indicating that these embedding methods did not benefit considerably from the
inclusion of NER in the model.

6. Conclusion & Future Works

The utilization of NER within a pipeline has shown potential for improving results. However,
it is important to note that NER alone may not be sufficient for enhancing the recognition of
compound names and species, as these areas have presented significant challenges. Therefore,
it is necessary to explore alternative methods to address these specific issues.

1https://nubbekg.aksw.org



Table 2
NatUKE + NER results table for extracting: compound name (C), bioactivity (B), specie (S), collection
site (L), and isolation type (T). The results consider different final 𝑘 values corresponding to two different
rules. The best results for each extraction are bold.

Property 𝑘 DeepWalk + NER Node2Vec + NER Metapath2Vec + NER EPHEN + NER
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

C 50 0.09 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.10 0.08 0.09 0.17 0.09 0.00 0.00 0.00
B 5 0.39 0.10 0.05 0.07 0.38 0.07 0.05 0.03 0.26 0.15 0.13 0.15 0.60 0.65 0.65 0.69
S 50 0.37 0.24 0.25 0.26 0.40 0.23 0.25 0.20 0.40 0.42 0.43 0.43 0.34 0.23 0.27 0.29
L 20 0.54 0.40 0.32 0.27 0.56 0.36 0.26 0.22 0.40 0.36 0.37 0.32 0.55 0.58 0.60 0.57
T 1 0.15 0.12 0.12 0.13 0.10 0.06 0.08 0.07 0.26 0.20 0.18 0.20 0.73 0.74 0.77 0.76

One suggested approach for future research is to adopt a hybrid approach, combining different
techniques or models to leverage their respective strengths. This could involve integrating
NER with other strategies or technologies to create a more comprehensive and robust pipeline.
Such an approach has the potential to yield better outcomes by capitalizing on the strengths of
different methods.

Additionally, the use of Large Language Models (LLMs) has demonstrated promising results
in other related work. Considering this, it would be intriguing to explore how LLMs can be
effectively integrated into the pipeline. This integration could enhance the overall performance
by leveraging the contextual understanding and language capabilities of LLMs.
In summary, while NER has shown potential in improving pipeline results, addressing the

challenges related to the compound name and species recognition requires further exploration.
A hybrid approach that combines different methods and incorporates LLMs into the pipeline
could be a worthwhile avenue for future investigation. By continuously refining and evolving
the pipeline, we can strive for improved accuracy and efficiency in recognizing and extracting
relevant information. In future work, we plan to explore extraction on multilingual [30] and
also evaluate the models’ information bias [31].
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