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Abstract
This paper presents an empirical study on the value of concept embeddings for relation classification,
with a particular focus on hypernymy detection. Knowledge Graphs have become popular due to their
ability to represent knowledge in a standardized form that enables reasoning, but often suffer from
incompleteness. Relation Classification is a task that can help alleviate this issue. Recent advances
in Deep Learning applied to Natural Language Processing have provided researchers with powerful
tools for detecting relations between concepts: word embeddings. We investigate the effectiveness
of different types and combinations of embeddings for the automatic relation classification task. We
conduct experiments on two datasets based on WordNet and the AI-KG Knowledge Base. Our results
confirm previous results that it is challenging to deduce the semantic relations from embeddings alone.
We observe that hypernymy cannot be captured solely by a sub-space of the embedding space, despite
specific dimensions carrying more information about this relation than others. Additionally, we show
that it is difficult to apply a model learned on a general ontology to other domains, and that imbalance
problems are aggravated in large knowledge bases where one relation dominates over all the others.
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1. Introduction

Knowledge Graphs (KGs) have become very popular in various tasks, thanks to their versatility
and their ability to represent knowledge in a standardized form that enables reasoning, both in
open and closed-domain applications. Examples of public, cross-domain knowledge graphs that
encode common knowledge include DBpedia [1], and YAGO [2]. However, KGs often suffer
from incompleteness problems [3]. Relation Classification is a task that can help alleviate the
problem of incompleteness in KGs; it consists in determining the presence of a named relation
between two semantic entities.
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Recently, the outstanding achievements of Deep Learning applied to Natural Language
Processing provided researchers with powerful tools for the detection of relations between
concepts. In particular, the significance of word embeddings in present-day Natural Language
Processing (NLP) techniques cannot be overstated. Besides their usefulness in encoding textual
data in neural network models, they are crucial due to their ability to capture a substantial
amount of linguistic and semantic information. Word2Vec [4] showed that it is possible to
encode some kind of relational information within the embedding space, in particular the ability
to capture word analogies (e.g. 𝑘𝑖𝑛𝑔 −𝑚𝑎𝑛+ 𝑤𝑜𝑚𝑎𝑛 ≃ 𝑞𝑢𝑒𝑒𝑛). However, some works such
as [5, 6] proved that the expectations regarding relation prediction from the entity embeddings
were excessively optimistic. Approaches such as TransE [7] have somehow “fixed" the problem
by introducing techniques to modify the position of concepts in the embedding space depending
on the relations in which they occur in the Knowledge Base. However, such methods can still
consider invalid relations that they have not seen in the knowledge base used for training,
despite them being correct.

Some works have shown that it is actually possible to discover relations by looking at the
embedding of the concepts. Kata Gabor et al. [8] tried various combinations of the entities
concept to see which ones were the most useful to predict relations. They proved that the vector
offset method for analogies is the least efficient in capturing generic semantic relations at a
large scale, while pairwise similarities can be better exploited in an additive or concatenative
setting. Maurizio Atzori and Simone Balloccu proposed an algorithm to deduce the existence
of the hypernymy (or is_a) relation between two concepts from their word embeddings [9].
Their work tries to unentangle the contextual information contained in the embedding space.
They obtained the best accuracy in hypernym discovery for unsupervised systems on data from
SemEval-2018 [10].

In this work, we carry out an empirical study, in the wake of these works, trying to understand
what is the value of concept embeddings for relation classification. Despite the diffusion and the
interest of this task, only a few works have tried to carry out an experimental study on the role
of embeddings for relation classification, and always on specific types of relations: for instance,
temporal [11] and discourse-based relations [12]. We considered two datasets: a general one
and a domain-specific one, both including the hypernymy relation. This consideration was
important as something we wanted to verify is if it is possible to learn a hypernymy detection
model from a general dataset and apply it to a domain-specific one, and what would be the
accuracy loss in doing so. In the rest of the paper, we present in Section 2 the dataset used, in 3
the different types of embeddings used and in 4 the experiments carried out. Finally, we present
in 5 our conclusions from these experiments. The code used for this work is available at the
address https://github.com/chejuro/Relation-prediction-from-embeddings.

2. Knowledge Bases and Datasets

2.1. WordNet and WN18RR

The WN18 dataset was introduced in 2013 by Bordes et al. [13]. It included the full 18 relations
scraped from WordNet for roughly 41,000 synsets (the equivalent of a concept in WordNet).
This dataset was affected by leakage due to the presence of symmetric relations, therefore
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in 2018 [14] introduced the WN18RR dataset. This dataset features 11 relations, no pair of
which is reciprocal. Wordnet is a manually-curated resource of semantic concepts, restricted
to more “linguistic" relations compared to those expected in general world knowledge. The
most common semantic relation is the hypernymy one, representing more than 45% of total
relations, while some relations are very rare, such as antonymy (1.2%) or attribute (0.4%) [15].
The number of synsets is more than 175, 000 in the latest version.

2.2. Artificial Intelligence Knowledge Graph

AI-KG [16] is a large-scale automatically generated knowledge graph that is made up of a
large number of articles and describes around 2.3M triplets that are connected by 55 semantic
relations. These relations include hypernymy (encoded as the skos:broader relation) and others
related to the scientific discourse (for instance: method A uses resource B to perform task C.
Similarly to Wordnet, AI-KG also has some reciprocal relations and an imbalance problem. After
cleaning and filtering out the least frequent relations we keep 10 relations with 1𝑀 triplets.
The details about the relations are shown in Table 1.

Table 1
Relations distribution in the AI-KG dataset

Relation Triples
methodUsedBy 460724
otherEntityUsedBy 136310
OtherEntityIncludedBy 113678
hypernym 107812
materialUsedBy 41075
methodIncludedBy 30332
OtherEntityPredictedBy 29382
taskUsedBy 22341
methodEvaluatedBy 18622
materialIncludedBy 11295

3. Word Embeddings

3.1. Word2Vec

Word2Vec [4] is one of the most famous and widely spread word vectorization techniques.
Word2Vec embeddings are learned either using the CBOW (Continuous Bag-of-Words) or skip-
gram model. In the CBOW approach, the model predicts the target word given a context of
surrounding words. The context words are summed together to form a continuous bag-of-words
representation, which is then used as input to the model to predict the target word. The CBOW
algorithm is trained by iteratively adjusting the word embeddings to improve the accuracy of
the predicted target word given its context. Compared to the skip-gram model, which predicts
the context words given a target word, CBOW is faster to train.



3.2. GloVe (Global Vectors)

GloVe [17] is another model of non-deep representation of words, proposed in 2014 by a group
of developers at Stanford. It uses a co-occurrence matrix that describes how frequently different
words appear together in a corpus of text. The co-occurrence matrix is then factorized to obtain
word embeddings that capture the semantic and syntactic relationships between words. GloVe
is able to capture both local and global relationships between words, and it has been shown to
perform well on a wide range of NLP tasks, including language modeling, sentiment analysis,
and machine translation.

3.3. FastText

FastText is an extension to Word2Vec proposed by Facebook in 2016. It addresses an important
problem with embeddings, the Out-Of-Vocabulary (OOV) words. With GloVe and Word2Vec, if
a word is not known, then it is not possible to obtain an embedding. FastText addresses the
problem by breaking words into several character n-grams (sub-word tokens). Therefore, it is
possible that even OOV words can be reconstructed by assembling sub-word tokens.

3.4. ConceptNet Numberbatch

ConceptNet Numberbatch [18] are another type of Word2Vec-like embeddings trained on a
heterogeneous set of sources, including Wikipedia and ontologies such as OpenCyc and even
WordNet. The concept repository is based on ConceptNet, a semantic network that encodes
general knowledge about the world in a machine-readable format. These embeddings have
been conceived with the objective to include both structured and unstructured data sources,
which allows them to capture both explicit and implicit relationships between words. Therefore,
these embeddings address the flaws highlighted by [5] and [6] regarding the ability of word
embeddings to capture semantic relations between words.

3.5. BERT

BERT [19] is a bidirectional transformer-based machine learning technique pretrained using
a combination of masked language modeling objective and next sentence prediction on a
very large corpus. The BERT model is based on the Transformer model [20], which includes
the attention mechanism that highlights the contextual relationship between the words in a
phrase. The basic part consists of an encoder to read the input text and a decoder to generate
a prediction, filling the masked parts of the training sentence. In order for BERT to create a
language representation model, it only needs the encoder part. The encoder input to BERT is a
sequence of tokens that are converted into vectors and then processed in a neural network. The
main advantage of BERT embeddings is that they are contextual, i.e. a word does not have a
fixed embedding but it changes in the function of its context. BERT embeddings can also be
computed for OOV words as they use sub-word tokenization, similarly to FastText.



3.6. Sentence-BERT

One of the problems of word embeddings is that they are representing a single word or a
compound word (if this compound word has been labeled as such in the training corpora). If
a concept is represented by multiple words, the usual way to obtain a representation is by
averaging or maxing over the embedding dimensions. But this method has been proven to
be sub-optimal. Sentence-BERT [21] is a modified version of the pre-trained BERT network
that creates comparably meaningful sentence embeddings utilizing a cosine similarity or triplet
loss on top of a siamese network architecture. To create a fixed-size sentence embedding,
Sentence-BERT adds pooling to the token embeddings produced by BERT. This network is
capable of encoding phrase semantics and therefore it can be used to encode concepts that are
expressed using multiple words.

4. Classification experiments

Given a pair of entities or concepts (ℎ, 𝑡) extracted from a Knowledge Base 𝐾 , our objective
is to predict a relation 𝑟 such as (ℎ, 𝑟, 𝑡) is a valid relation in 𝐾 . Therefore, we can treat the
problem as a multi-class classification task in which, given the representation for the (ℎ, 𝑡) pair,
we predict the target 𝑟. We select from the dataset a training set (80% of triplets) in which 𝑟 is
known for each pair of concepts and use the rest of the dataset as a validation set.

There are various possibilities regarding how to combine the representations (i.e. the em-
beddings) of the ℎ and 𝑡 together. According to the study by [8], analogy combinations do not
work well; therefore we considered averaging and concatenation. Given 𝑒𝑚𝑏(ℎ) = (𝑥1, . . . , 𝑥𝑛)
and 𝑒𝑚𝑏(𝑡) = (𝑦1, . . . , 𝑦𝑛), with 𝑛 embedding size, for averaging we obtain 𝑒𝑚𝑏(ℎ, 𝑡) as
the pairwise mean: 𝑒𝑚𝑏(ℎ, 𝑡) =

(︀𝑥1+𝑦1
2 , 𝑥2+𝑦2

2 , . . . , 𝑥𝑛+𝑦𝑛
2

)︀
. For concatenation, 𝑒𝑚𝑏(ℎ, 𝑡) =

(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . 𝑦2𝑛). The 𝑛 size of the embeddings varies depending on the model. For
word2vec and derived models it is 300 dimensions, while for BERT and S-BERT is 768.

4.1. WN18RR dataset

4.1.1. Logistic Regression model

Logistic regression was chosen as a basic classification algorithm because it has a lot of ad-
vantages in comparison with other algorithms: it is efficient to train, effective for multi-class
problems, and it can estimate feature importance by model coefficients. Table 2 and Table
3 present results of classification for every word embeddings approach with pairwise mean
operation and with vector concatenation. Accuracy is calculated as the correct prediction over
the total number of examples, independently from the class. Precision is calculated as the
macro-average precision (TP/(TP+FP)) over each class. F1-score is the harmonic mean between
macro-average precision and macro-average recall (TP/(TP+FN)). According to the results, the
concatenation operation works significantly better and this can be explained by the fact that
we save the information of each entity in the final vector, and with the mean operation, we mix
that information. This result confirms the conclusions by [8].



Table 2
Results for the Logistic Regression model with vector pairwise mean operation. WN18RR dataset.

Embedding type Accuracy Precision (macro) F1-score (macro)
Word2Vec 0.7920 0.6549 0.60
FastText 0.7970 0.6937 0.5988
GloVe 0.7910 0.7008 0.6038
ConceptNet Numberbatch 0.7945 0.6865 0.6078
BERT 0.8348 0.7312 0.6493
Sentence-BERT 0.8481 0.7377 0.6589

Table 3
Results for the Logistic Regression model with vector concatenation. WN18RR dataset.

Embedding type Accuracy Precision (macro) F1-score (macro)
Word2Vec 0.8629 0.7876 0.7170
FastText 0.8686 0.7817 0.7044
GloVe 0.8516 0.7478 0.7003
ConceptNet Numberbatch 0.8717 0.7769 0.7224
BERT 0.9013 0.8020 0.7504
Sentence-BERT 0.9297 0.7984 0.7477

4.1.2. Logistic Regression interpretation for hypernymy relation

We considered the concatenation representation to derive an interpretation of the embeddings
from the Logistic Regression model and we performed feature selection. This selection can
highlight the most important features, that is dimensions in the embedding space that are
expected to carry the most information regarding the hypernymy relation. Thus we trained
a new logistic regression model on a truncated set of features and compared the results with
those obtained with the model based on all features.

We extracted the ten most important features (see Table 4) from the logistic regression model
based on ConceptNet-NB embeddings. It is interesting to observe that only 2 of these features
are related to the subject of the relation (the hyponym or more specific word) while the others
are related to the object (the hypernym). It is difficult to tell what the individual features mean
as each dimension of the embeddings is not linked to any specific linguistic feature. We used
these 10 best features to retrain a new “compressed" logistic regression model. We obtained a
precision of 0.7227 on the validation set while with all 600 features, it was 0.83426. According
to this result, the hypernymy relation is not encoded by a subset of dimensions (although some
are more informative than others), but rather the full embedding is required to capture the
meaning of the semantic relation.

4.1.3. Multi-Layer Perceptron (MLP)

Next, we implemented Multi-Layer Perceptron as a deep model baseline. It consists of 5 to 10
fully connected linear layers, with alternating hidden layers of size 300 and 100 and a final layer
of 𝑁 units, corresponding to the number of relations to predict. The loss is cross-entropy loss.
Between each layer we have an activation function and a dropout layer (dropout=0.2). Table 5



Table 4
Study on hypernym feature importance (logistic regression coefficients). Each feature id correspond to
the position in the embedding. Features with 0 ≤ 𝑖𝑑𝑓 < 300 are from the embedding of the subject
word (the hyponym or more specific word). Features with 𝑖𝑑𝑓 ≥ 300 are from the embedding of the
object word (the hypernym).

feature_id weight source emb.
315 3.269 object
423 2.619 object
508 2.570 object
354 2.491 object
255 2.466 subject
538 2.345 object
404 2.269 object
566 2.241 object
280 2.191 subject
379 2.166 object

shows the different hyperparameters of the model and the number of hidden layers. ReLu is
also tested, but the outcome does not change too much, even if it is the best one. According to
the results, MLP works much better than logistic regression.

Table 5
Study on hyperparameters effect of MLP model over WN18 data and NumberBatch embeddings.

depth activation dropout learning rate epoch precision
5 sigmoid 0.2 0.001 10 0.9216
5 Relu 0.2 0.001 10 0.9255
8 sigmoid 0.2 0.001 10 0.9188
10 sigmoid 0.2 0.001 10 0.9204

4.2. AI-KG dataset

4.2.1. Classification models

The AI-KG dataset with 10 relations and 971, 571 triplets was divided into train and validation
sets of size 90% and 10% respectively. Similarly to the WordNet experiments, we trained
Logistic Regression and MLP models and they obtained 0.5365 and 0.6197 precision scores
respectively. In Figure 1 we show the confusion matrix for the MLP model.

4.2.2. Class imbalance problem

We can notice from the confusion matrix that there is a class imbalance problem. As we saw
in Table 1, there is a large difference in the number of triplets supported by different relations.
To overcome this problem we tried to group together some relations to reduce the problem
to 5 relations. We did this as in AI-KG some relations are semantically similar while their
difference is only the category of one of the entities involved. For instance: methodUsedBy,



Figure 1: Multi-Layer perceptron confusion matrix on AI-KG dataset in the 10 relations setup.

otherEntityUsedBy, materialUsedBy, taskUsedBy were grouped in just one class usedBy. In
this way, we got a more balanced situation with 5 classes and consequently got slightly better
results: 0.7811 in precision. The confusion matrix for this reduced dataset is shown in Figure 2.
We also show in Table 6 the precision and recall scores for each relation.

4.2.3. Hypernymy relation prediction

Another hypothesis that we wanted to test was to train a model on WordNet (general knowledge)
and see if this model could be applied to the more domain-specific data (AI-KG) to predict the



Figure 2: Multi-Layer perceptron confusion matrix on AI-KG dataset in the 5 relations setup.

Table 6
5-relations classification results using the MLP model with ConceptNet-NumberBatch embeddings.

relation precision recall
evaluatedBy 0.798 0.847
hypernym 0.296 0.576
includedBy 0.408 0.637
predictedBy 0.823 0.859

usedBy 0.944 0.801

existence of a hypernymy relationship between two entities. The hypernymy relationship can
be mapped to the “skos:broader" relation in AI-KG. In Figure 3 we can see that similar concepts
are arranged in a similar way in the two knowledge graphs, which would suggest a certain
compatibility of the relations learned in WordNet with those present in AI-KG. However, the
result of the best model obtained only 0.13 in precision. It is still better than random choice
because in the AI-KG dataset there are 80425 hypernymy relations and 721,156 non-hypernymy
relations which means that random choice to predict correctly is around 11%. However, this



Figure 3: Excerpts of taxonomies regarding computer viruses, malware and trojans in AI-KG (left) and
WordNet (right).

is an interesting result that lays some doubts about the generalization capability of relation
prediction models.

5. Conclusions

In this work, we tested various embeddings types and combination of embeddings for the
automatic relation classification task. The classification has been tested on two datasets based on
the WordNet and AI-KG Knowledge Bases. Our results confirm what emerged in previous works
that is difficult to extrapolate semantic relations from embeddings alone. As our experiment with
reduced dimensions shows, hypernymy cannot be captured just by a sub-space of the embedding
space, even if some dimensions seem to carry more information regarding this relation than
other ones. We also showed how imbalance problems may affect relation classification in some
more specific knowledge bases such as AI-KG, and that models built to predict a relation on a
general knowledge base cannot be used to predict the same relation on a different more specific
knowledge base. We plan in future to extend this experimentation to further embeddings and
Knowledge Bases.
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