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Abstract
Knowledge Graph (KG) has emerged as a favored tool in many areas of research and industry. One
of the research areas in the KG domain is knowledge graph embedding, which involves mapping
entities and relationships to low-dimensional vectors. Many knowledge graph embedding models
have been proposed in the literature. However, minimal efforts have been made to investigate the
reproducibility of these models. This research focuses on a reproducibility study of four state-of-the-art
knowledge graph embedding models viz. CompGCN, NodePiece, PairRE, and TorusE. The PairRE results
are 80% comparable to the corresponding published results on the Hit@10 parameter. On the other
hand, for the MRR parameter, TorusE provided 95% comparable findings to results reported in the
accompanying publication. This research has also demonstrated that reproducibility is a significant
challenge in knowledge graph embedding research and highlighted the importance of transparency and
standardization in this field.
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1. Introduction

Google, in 2012, proposed the knowledge graph as a large-scale knowledge base consisting of
many entities and relationships among them. Recently KG has been viewed as a structured way
of representing human knowledge by both industry and academia. Hence Knowledge graphs,
big data, and deep learning are shaping the development of AI.

Most of the KGs are constructed manually or semi-automatically. Hence many entities and
relations remain undiscovered. Thus incompleteness has become a most important drawback
of KG [1, 2, 3] and makes it impractical to use in certain industrial applications. Knowledge
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Graph Completion (KGC) tries to solve this problem by identifying the missing entities or
relations. Most of the research in KGC focuses on finding the low-level embedding for entities
and relations. These models are called Knowledge Graph Embedding Models (KGEMs).

Many neural-network-based methods [4, 5, 6, 7, 8] have been proposed for KGEM, showing
promising results. However, they have a complex scoring function in the form of a black-box
neural network. Due to this black-box nature, it becomes difficult sometime to correlate the
architectural changes with better performance. To alleviate these problems, Ali et al. [9] has
performed extensive experimentation over 21 KGEM models with various training approaches,
loss functions, and many other hyperparameters. However, four latest KGEM models, viz.
TorusE[10], PairRE[11], NodePiece[12], and CompGCN[13] are not considered in that research
work.

Keeping research work by Ali et al. [9] as a base for our study, we have performed similar
experimentation on those four KGEM models. Hence this study aims to replicate the same
result under similar circumstances to examine whether embedding models are particularly
successful for link prediction tasks. Thorough experimentation is done on those KGEMs on
four widely popular datasets, and reported the results on four well-known performance metrics.
Pykeen library has been used for the implementation. Our experimentation results show that
reproducing the results published in respective research papers is difficult, and performance
varies drastically with slight changes in hyper-parameters. These observations point to the
need for more study on KGEM algorithms and their evaluation on a complex, practical dataset.

This paper is organized in the following way: Section 2 introduces the basics of KG and
its embedding concepts along with discussion on interaction models. Section 3 discusses the
experimental setup and a detailed discussion on evaluation metrics and the dataset. Section 4
presents the results of this experimentation along with a discussion and implication. Finally,
the conclusion and future work is discussed in section 5.

2. Knowledge Graph Embedding Models

KGs are being widely used for storing knowledge in the form of vertices and edges. All the
important entities in the text are treated as vertices, while the relation between two entities is
expressed as the edge. Figure 1 shows the sample knowledge graph of drug discovery. Such
KGs can then be processed to derive insights from the vast amount of heterogeneous data or
to perform the inference on it. KGs thus possess the possibility of becoming the ‘brains’ of
machines. Hence A collection of triples (ℎ, 𝑟 , 𝑡)may be used to describe KG, where h and t stand
for the head node and tail node, respectively, and r indicates the relationship between them. If
𝔼 is an entity collection, and ℜ is a collection of relations, KG can be defined as 𝕂 ⊂ 𝔼 ×ℜ × 𝔼.

In KGEM, entities and relations are represented in vector space, preserving the latent struc-
ture, as demonstrated in figure 2. One can manipulate the KG entities and relations through
vector manipulation. Due to simplicity in manipulation, KGEM has gained attention recently
due to its applicability in recommendation systems [14, 15], information retrieval [16, 17],
question answering [18] etc. In the subsequent section, a few interaction models that have been
considered for the experimentation are explained.
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Figure 2: Knowledge graph embedding

2.1. Interaction model

Interaction models calculate the plausibility of the fact (ℎ, 𝑟 , 𝑡) when embedding for the head
entity, relation, and the tail entity is given. Thus interaction model can be summarized
as a mapping function 𝑓 ∶ 𝔼 × ℜ × 𝔼 → ℝ, that gives the plausibility score of the triple
(ℎ, 𝑟 , 𝑡) ∈ 𝕂 Generally, interaction models can be categorized into two, viz., 1. Translation
models 2. Semantic matching models.

Translation Model finds the distance between entities and uses it as a scoring func-
tion. Figure 3 illustrates the translation principal, which models this problem as the
minimization of (ℎ + 𝑟) − 𝑡.
Canonical methods that come under this category are TransE[19] and its variants like
TransR[20], TransH[21], TransD[22]; RotatE[23], HakE[24], MuRE[25], KG2E[26], PairRE[11].
All these methods follow the general principle of translation while adopting different
representation spaces.
SemanticMatchingModel preserves the latent semantic by using a similarity-based scoring

function. Entities and semantically close relations are mapped to nearby points on vector space
as demonstrated in figure 4. Usually, semantic matching is done using factorization or a
neural network approach. RESCAL[27], ComplEx[28], QuatE[29], TuckER[30], DISTMULT[31],
SimplE[32], etc. are few factorization based approaches. Whearas, ProjE[33], ERMLP[34],



Figure 3: Translation Model: TransE[19]

NTN[35], ConvKB[4], ConvE[5], etc. are neural network based models.
For this study four latest KGEM models viz. TorusE, PairRE, CompGCN, and NodePiece are

considered. In the following subsection, these models are explained in depth.
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Figure 4: Semantic matching model: Distmult[31]

2.1.1. TorusE

Since regularization affects the TransE algorithm negatively as it forces embedding to be on
a sphere of embedding space, reducing its link prediction capability [36], TorusE[10] avoids
the regularization by projecting n-dimensional Euclidean space into n-dimensional torus space.
TorusE also, as shown in figure 5, follows the underlying translational principle of TransE i.e.,
[ℎ] + [𝑟] ≈ [𝑡]. It uses equation 1 as a scoring function on the n-dimensional torus.

𝑀𝑖𝑛(𝑥,𝑦)∈([ℎ]+[𝑟])×[𝑡] ‖𝑥 − 𝑦‖𝑖 (1)



Figure 5: Entities A, A’, B, and B’ are represented on Torus Space [10]

2.1.2. PairRE

Two major challenges in embedding any relations are: 1. Handling the complex relations.
2. Preserving the inherent property of relation. To overcome both challenges, the PairRE model
proposed in [11] considers relation vector as a vector pair [𝑟𝐻, 𝑟𝑇]. As shown in figure 6, the
Hadamard Product of these head and tail entity vectors project them in euclidean space and
plausibility of the triple (ℎ, 𝑟 , 𝑡) is calculated from a distance between projected vectors. Thus
the vector pair [𝑟𝐻, 𝑟𝑇] is adjusted so that ℎ ∘ 𝑟𝐻 ≈ 𝑡 ∘ 𝑟𝑇 if triple is present. Otherwise, ℎ ∘ 𝑟𝐻 and
𝑡 ∘ 𝑟𝑇 should not be close. Thus scoring function becomes the minimization of equation 2

𝑓𝑟(ℎ, 𝑡) = − ‖ℎ ∘ 𝑟𝐻 − 𝑡 ∘ 𝑟𝑇‖ (2)

Figure 6: Entities are projected on the unit circle. They are projected inside the circle using the relation
vectors. [11]

2.1.3. CompGCN

Most of the multi-relation GCN methods suffer from the over-parameterization problem.
CompGCN [13], which is a generalization of multi-relation GCN, alleviates these problems
by using the same embedding space for entities and relations. Subsequently, using many
composition operators on them.
Basically CompGCN views the KG as (𝔼,ℜ,ℤ,𝕏), where 𝔼 and ℜ are as defined earlier, while
ℤ ∈ ℝ|𝔼|×𝑑0 and 𝕏 ∈ ℝ|ℝ|×𝑑0 mean 𝑑0 size input feature of entity and relation respectively.



GCN uses equation 3 to update the embedding for nodes. Since it doesn’t involve relation-
specific input features, it suffers from over-parameterization.

ℤ𝑣 = 𝑓 ( ∑
(𝑢,𝑟)∈𝜂(𝑣)

𝑊𝑟𝑍𝑢) (3)

where 𝜂(𝑣) : Neighbourhood of v
𝑊𝑟 : Trainable matrix representing all the relation types.
To reduce the problem of over-parameterization, CompGCN uses the composition operator
Φ over the node in a neighborhood with respect to relation r. For better information flow,
CompGCN assumes bi-directional edges in the graph. Hence, the relation set is expanded by
adding inverse relation for each relation type. To incorporate these points, CompGCN uses
equation 4.

ℤ𝑣 = 𝑓 ( ∑
(𝑢,𝑟)∈𝜂(𝑣)

𝑊𝜆(𝑟)Φ(𝑍𝑢, 𝑋𝑟)) (4)

where, 𝑊𝜆(𝑟) specifies the relation type parameter.
𝑍𝑢 and 𝑋𝑟 are initial representation of u and r respectively.
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Figure 7: Working of CompGCN

Figure 7, explains the intuition of equation 4 in detail. As seen in 7, u1 and u2 are neighbors
of v; hence they are considered for updating the node v’s embedding. Equations 5 and 6
demonstrate the difference between the workings of GCN and CompGCN with respect to the
graph given in figure 7.

ℤ𝑣 = 𝑓 (𝑊𝑟𝑍𝑢1 + 𝑊𝑟𝑍𝑢2) (5)

ℤ𝑣 = 𝑓 (𝑊𝜆(𝑟1)Φ(𝑍𝑢1, 𝑋𝑟1) + 𝑊𝜆(𝑟2𝑖𝑛𝑣)Φ(𝑍𝑢2, 𝑋𝑟2𝑖𝑛𝑣)) (6)



2.1.4. Node Piece

Large Language Models (LMM) like BERT and GPT don’t employ shallow embedding by finding
the embedding for all the words. However, it learns the embedding for a few words and tries to
find the embedding for other words by using the learned embedding. This reduces the number
of parameters drastically.
Taking a cue from this, NodePiece [12] uses a few selected entities (anchor nodes) and all
relations as vocabulary set 𝕍. Hence, |𝕍| ≪ |𝔼|. Similar to CompGCN, NodePiece also assumes
bi-directional relations; hence inverse relation of each relation type is added to the relation set.
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Figure 8: Working of NodePiece

Figure 8 explains the procedure to calculate the hash function for each entity. To calculate
the hash for entity e, k closest anchors and all m incident relation types are considered. The
encoder function for the same is given in equation 7.

ℎ𝑎𝑠ℎ(𝑒) = [{𝑎𝑖}𝑘, {Δ𝑎𝑖}
𝑘, {𝑟𝑗}𝑚] (7)

where
{𝑎𝑖}𝑘 and {Δ𝑎𝑖}

𝑘 represents embedding for k anchors and their distance from target node respec-
tively.
{𝑟𝑗}𝑚 represents embedding for all m incident relations.

3. Experimental setup

Models selected for this study belong to different categories; separate experimental setups
are considered by looking at the advantages and prerequisites of each model. KG is split into
training and testing parts in every experimentation, and then Hyper-Parameter Optimization
(HPO) is performed on TorusE, PairRE, CompGCN, and NodePiece models. As prescribed by
Ali et al. [37], the detailed experimental setup is designed, which is also discussed in figure 9.

Datasets: Four Well known datasets are used in this research.
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Figure 9: Experimental setup [37]

1. Kinships: The dataset Kinships[38] has 104 entities representing the people of some
tribe, and those people are related to each other with 26 different relationships. It has
10,686 triples.

2. Nations: The Nations [39] dataset is one of the oldest knowledge graph datasets com-
prising 14 countries and their various relationships.

3. WN18: WN18 [40] dataset is part of WordNet dataset. There are 40,943 sunsets (i.e.,
entities) and 18 conceptual semantic relationships. WN18 has a test leakage, inverse
relations present in WN18 are removed, and WN18RR[41] dataset is formed. Though
WN18RR is a better version of WN18, most of the methods have used WN18; hence for
consistency purposes, we have used the WN18 dataset for detailed analysis.

4. FB15k-237: Since FB15K [19] also has similar leakage issue, FB15k-237 [42] dataset is
formed by removing the inverse relations. It has 14541 entities and 237 relations.



Table 1
Datasets

Dataset Number of relation Number of Entities Number of triples

FB15K [19] 1345 14,951 592,213
FB15K-237 [42] 237 14,541 272,115
WN18 [40] 18 40,943 151,442
WN18RR [41] 11 40,559 92,583
Kinships [38] 26 104 10,686
Nations [39] 56 14 11,191

Table 1 summarizes the datasets. CompGCN and NodePiece are applicable to graphs with
symmetric relations only. hence these datasets are extended by adding the inverse relations for
those models only. This can be achieved by simply adding triple (𝑡, 𝑟𝑖𝑛𝑣, ℎ), ∀(ℎ, 𝑟 , 𝑡) ∈ 𝕂.

Evaluation Metric KGEMs are mostly evaluated using link prediction tasks. There are
many metrics available to evaluate knowledge graph embedding; however, Mean Rank(MR),
Adjusted Mean Rank (AMR), Mean Reciprocal Rank (MMR), and Hits@K are used more
frequently in the literature.

Mean Rank : MR is the arithmetic mean of ranks of all triples (ℎ, 𝑟 , 𝑡) ∈ 𝕋𝑒𝑣𝑎𝑙. It is given in
the equation 8:

𝑀𝑅 = 1
|𝕋𝑒𝑣𝑎𝑙|

∑
𝑡∈𝕋𝑒𝑣𝑎𝑙

𝑟𝑎𝑛𝑘(𝑡) (8)

Adjusted Mean Rank: As explained in [43], MR is flawed since getting a low rank with
fewer possible candidates is easy. AMR neutralizes this by taking the ratio of MR with the
expected mean rank. Thus making it useful to compare the results of two different-sized datasets.

Mean Reciprocal Rank: MRR, also known as Inverse harmonic mean rank, is the mean of
the reciprocal of a rank. Thus defined as equation 9

𝑀𝑀𝑅 = 1
|𝕋𝑒𝑣𝑎𝑙|

∑
𝑡∈𝕋𝑒𝑣𝑎𝑙

1
𝑟𝑎𝑛𝑘(𝑡)

(9)

[44] and [45] argues that MMR is theoretically incorrect as ranks are in an ordinal scale and
finding their reciprocal is wrong. However, these arguments are countered by [46]. Moreover,
MMR is a frequently used metric. Unlike the Hits@K metric, it doesn’t ignore the changes in
high-rank values. At the same time, unlike MR, it is more sensitive to changes in low-rank
values than high-rank values. Thus it gives more importance to small ranks while remaining
less affected by outliers.

Hits@K: Hits@K (Mostly K= {1,3,5,10}) is a simple metric that measures the ratio of test
triples appearing in top K entries. Mathematically it can be represented as equation 10.



𝐻𝑖𝑡𝑠@𝐾 =
{𝑡 ∈ 𝕋𝑒𝑣𝑎𝑙|𝑟𝑎𝑛𝑘(𝑡) ⩽ 𝑘}

|𝕋𝑒𝑣𝑎𝑙|
(10)

One of the biggest drawbacks of the Hits@K metric is it considers the entries appearing in
top k ranks but ignores all the cases where 𝑟𝑎𝑛𝑘(𝑡) > 𝐾. In consequence, it doesn’t make any
difference to Hits@K whether 𝑟𝑎𝑛𝑘(𝑡) = 𝐾 +1 or 𝐾 +𝑚where 𝑚 » 1. Thus Hits@K is practically
useless for comparing different models. However, most of the published articles include Hits@K
as an evaluation metric. Hence, this metric has been used for reproducibility study.
With this experimental setup, a series of trials have been performed. The following section
discusses the outcome of these trials.

4. Result and Discussions

This research objective was to assess whether the findings of four current Knowledge Graph
Embedding techniques were reproducible and provide comprehensive results of these models for
their comparability with newer models. In order to assess reproducibility, this study replicated
the key findings from ToursE, PairRE, CompGCN, and NodePiece. Analysis revealed that results
are reproducible only in some cases, indicating a substantial challenge in reproducing results
across scientific research. This section is divided into two parts. Section 4.1 compares the
obtained results with published results. It also discusses the probable reasons for the deviations
in results. Section 4.2 gives the results1 for the selected models for various datasets and for
different evaluation metrics.

4.1. Comparison with published results

The PyKEEN framework, a Python toolkit for KGEMs, has been used for all work. In addition,
the Optuna package is used for hyperparameters optimization. The evaluation metrics used are
rank-based. Hence it becomes very necessary to select the strategy to break a tie. Due to the
absence of any strategy reported in the selected publications, the ’realistic rank’ method on
’head’ and ’tail’ prediction is used.

In this research, 160 experiments, ten each for every model-dataset pair, were carried out.
Each experiment is repeated multiple times for better reporting of a study. Moreover, CompGCN
and NodePiece methods are also used to train a model on the WN18RR dataset. But results of
WN18RR and WN18 were found to be similar. Table 2 shows the best results 2 obtained for the
respective setup. For the FB15k237 dataset, results for the PairRE method are 80% and 70% of
published results for Hit@10 and MRR, respectively. Moreover, with 95% comparable results,
the TorusE method has also performed exceptionally well with respect to the MRR parameters.
However, the results were not near to the published results for other methods. Reproducing
the same result under similar conditions is challenging. Also, due to different implementations
and various interpretations about the link prediction task evaluation metric, it becomes difficult

1The source code and results obtained have been made available at https://github.com/bhushan-zope/Reproducibility-
Study

2 Results in bracket uses WN18RR dataset



Table 2
Results on WN18/WN18RR and FB15K237 dataset; where O represents Obtained results while P refers
to published results. Moreover, results are not available for WN18 of PairRE model

Model WN18 (WN18RR) FB15K237
Hits @10 MRR Hits @10 MRR

TorusE O 0.127 0.080 0.400 0.242
P 0.954 0.619 0.832 0.256

PairRE O 0.891 0.734 0.437 0.248
p NA NA 0.544 0.351

CompGCN O 0.008 (0.006) 0.004 (0.001) 0.298 0.165
P 0.546 0.479 0.535 0.355

NodePiece O 0.107 (0.027) 0.048 (0.007) 0.289 0.182
p 0.515 0.403 0.420 0.256

to compare two previously published results [9]. This difference in the observed and reported
results could be attributed to various factors discussed below.

1. Difference in ranking approach: As discussed in [47], [48], various authors have
implemented the ranking metrics differently. If more than one triple has the same rank,
which should be ranked higher, it is an important question to answer and affects the
overall scores. Yet, no author has declared their ranking approach in the publication.
However, in this research, a realistic ranking approach is used, which is the mean of the
pessimistic and optimistic ranking approaches.

2. Difference in the implementation: This complete study is based on the PYKEEN
library, whereas all the respective authors have implemented the methods independently.

3. Missing finer details: In most cases, the hyper-parameter values have not been reported.
Additionally, some publications have used grid search for hyper-parameters. However,
the best configuration is not reported, leaving scope for various possible combinations to
experiment with. These hyper-parameters initialized to different values can significantly
affect the results [9].

Additionally, WN18 is based on WordNet, which consists of English words and their semantic
relationships. It mainly consists of semantically similar relations. Hence due to Humongous
relations (i.e., all the relations of the same type) and Data Imbalance (i.e., some relations occur
more frequently), the results of all the methods are better for the FB15K-237 dataset than the
WN18 dataset.

Moreover, figure 10 represents the central tendency of the results obtained. From figure 10a
and figure 10b, it is evident that the results for CompGCN and NodePiece are away from the
central tendency. The interquartile range(IQR) indicates the reliability of the results. More



points clustered around the median give a narrow IQR indicating that the data is more reliable
or mored representative of the population. Hence, wide IQR for TorusE (as shown in figure 10c
and figure 10d) indicates that the results obtained might not be very reliable; on the other hand,
narrow IQR for CompGCN, NodePiece, and PairRE(up to a certain extent) makes their results
more reliable. A highly skewed distribution around the median also indicates the results’ poor
quality.

(a) Hit@10 (b) MMR

(c) MR (d) AMR

Figure 10: Performance Distribution of all models for each parameter on FB15K237 dataset

4.2. Comprehensive results

Due to the availability of various performance parameters and datasets, researchers in the KGEM
domain have used various combinations of them. As a result, it becomes practically impossible
to compare the two KGEMs. To eliminate this problem, another objective of this study was
to present the result of selected models on more datasets with various parameters. Section
3 explains the considered datasets and evaluation metrics in detail. This section discusses
the results of ToursE, PairRE, CompGCN, and NodePiece methods with those datasets and
evaluation metrics.

Results listed in appendix A show that themodels’ performance varied significantly depending
on the dataset and the performance parameter being used. Figure 11 shows the complete results



of all the models on all four datasets using all four parameters. The blue line in figure 11
represents the results of CompGCN, whereas the red, yellow, and green lines represent the
results for NodePiece, PairRE, and TorusE, respectively.

(a) Hit@10 (b) MMR

(c) MR (d) AMR

Figure 11: Comprehensive results of all models on all datasets using parameters (a) Hit@10, (b) MMR,
(c) MR, (d) AMR.

Unlike MR and AMR, larger values represent better results for Hit@10 and MMR parameters.
Thus in figure 11a and 11b, the yellow line covers most of the area; at the same time, in figure 11c
and 11d, the yellow line covers the smallest area compared to the other three lines representing
an excellent performance of PairRE method on all the datasets. Similar observations can be
drawn on other models from figure 11. Moreover, It is surprising to notice the inconsistent
gain on some datasets. For example, in PairRE, there is ≈a 30% increase in the hit@10 metric
compared to TorusE on WN18 and Kinships dataset. However, there is only a 3% increase on the
FB15K237 dataset and a 1% decrease on the Nations dataset. This also leads to less confidence
in the methods.

Overall, the findings can be summarized as follows:

1. Results of PairRE method were satisfactorily close to the results mentioned in its publica-
tion Chao et al. [11]. However, the results of other methods were difficult to reproduce.

2. Compared to the other three methods, PairRE performed outstandingly well on all datasets
considering all metrics.



3. CompGCN and NodePiece performed worst on WN18 dataset. Nevertheless, PairRE
achieved exceptional results on the same dataset.

4. TorusE is more suitable for smaller datasets and its performance degrades for more
complex datasets.

These findings suggest that the choice of model and performance parameter can significantly
impact the effectiveness of knowledge graph embedding models. Our study provides valuable
insights for researchers and practitioners seeking to use these models for knowledge graph
completion tasks.

5. Conclusion

In this work, knowledge graph embedding models’ reproducibility was examined. The study’s
main objective was to replicate the findings of four cutting-edge embedding models on four
benchmark datasets. Findings showed that several factors, such as the selection of hyperpa-
rameters, the evaluation dataset, and the implementation specifics, significantly impact the
reproducibility of these models. In order to ensure reproducibility, the study emphasizes the
significance of including thorough explanations of the experimental setup and hyperparameters
in research articles. It also highlights the necessity of uniformity in embedding model evaluation
to enable comparison and benchmarking across various research.

In summary, the reproducibility analysis of knowledge graph embedding models offers
insightful information on the challenges and opportunities of this emerging research area. This
work will serve as a catalyst for future studies to enhance the consistency and dependability of
knowledge graph embedding models, which will ultimately result in better comprehension and
implementation of knowledge graphs in many contexts.
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A. Appendix

Result Table:

Table 3
Hit@10

H@10 FB15K-237 WN18 Kinships Nations
CompGCN 0.297500856 0.0953 0.82537453 0.96984925
NodePiece 0.288685382 0.1668 0.13826816 0.97512438
PairRE 0.436551409 0.917 0.90355805 0.98994975
TorusE 0.400034235 0.632 0.6076779 0.99748744

Table 4
MMR

MMR FB15K-237 WN18 Kinships Nations
CompGCN 0.165278926 0.05154396 0.42467765 0.49864036
NodePiece 0.182313681 0.07850143 0.06817643 0.48113236
PairRE 0.248175338 0.75713515 0.52688816 0.69444773
TorusE 0.242489144 0.47465894 0.28483222 0.59244135
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Table 5
MR

MR FB15K-237 WN18 Kinships Nations
CompGCN 394.4117126 1130.12012 6.31086159 3.5351758
NodePiece 405.4782715 1021.547 41.70298 3.67412925
PairRE 288.2659912 629.351074 4.74485016 2.24623108
TorusE 324.5093994 1132.15527 13.3066483 2.71859288

Table 6
AMR

AMR FB15K-237 WN18 Kinships Nations
CompGCN 0.055199518 0.06918933 0.13077983 0.7217235
NodePiece 0.056748328 0.04992046 0.87392746 0.82055553
PairRE 0.040343994 0.03075482 0.09832741 0.45857911
TorusE 0.045416406 0.06007955 0.27575335 0.55501409
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