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Abstract
Novel inverted index-based learned sparse ranking models provide more effective, but less efficient,
retrieval performance compared to traditional ranking models like BM25. In this paper, we introduce
a technique we call postings clipping to improve the query efficiency of learned representations. Our
technique amplifies the benefit of dynamic pruning query processing techniques by accounting for
changes in term importance distributions of learned ranking models. The new clipping mechanism
accelerates top-𝑘 retrieval without any loss in effectiveness.

1. Introduction

Sparse term importance representations such as DeepImpact [2] and uniCOIL [3, 4] have enabled
the use of effective transformer-based text representations that can match the effectiveness of
recent dense text representations [5, 6] while still being supported by inverted indexes and their
query operations. This is of importance as inverted indexes have been optimized to provide
search functionality in distributed settings at web-scale through 40 years of research, providing
a variety of time, space, and retrieval quality tradeoffs; while also supporting efficient updates,
advanced querying modes such as phrase matching or filtering, and good scalability, all of
which are crucial in real-world settings [7, 8].

One of the key indexing techniques that enables efficient top-𝑘 query processing is storing
additional metadata about index term importance scores (also referred to as impacts), seeking
to facilitate the bypassing of the majority of the matching documents, and thus allow faster
retrieval than would be possible via exhaustive disjunctive processing. For example, dynamic
pruning algorithms such as MaxScore [9] and WAND [10] store the index-wide maximum impact
of each term; at query-time, these impacts can be used to rapidly estimate document scores,
allowing documents that have no prospect of entering the current min-heap of 𝑘 results to be
bypassed.
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Figure 1: Normalized maximum list impact distribution stratified by list length buckets 𝑏 ∈ [2𝑏, 2𝑏+1).

Traditional similarity models such as BM25 guarantee that frequent terms have low impor-
tance scores, a symbiotic relationship that allows fast query processing. On the other hand,
recent transformer-based learned term importance techniques such as DeepImpact [2] are not
constrained by term occurrence frequency when assigning importance scores to terms in
documents.

Indeed, learned representations assign high term importance to even very frequent terms,
whereas BM25 always assigns low importance to such terms. This divergent behavior sub-
stantially reduces the ability of MaxScore and WAND to bypass low-impact documents during
querying, with both techniques relying on maximum list-wise impact scores to prune the search
space. Figure 1 highlights the pervasive nature of this issue.

We present a new form of impact decomposition that we call postings clipping and adapt
dynamic pruning mechanisms to enable efficient query processing for learned term importance
schemes. When integrated into the retrieval engine, postings clipping allows faster top-𝑘
term-based querying, with negligible increases to index storage costs, and no effect on result
quality.

2. Postings Clipping

Several authors have proposed explicitly or implicitly splitting postings lists into two (or
more) parts, a high-impact segment ℋ(𝑡) and a low-impact segment ℒ(𝑡) to facilitate efficient
processing; see, for example, Strohman and Croft [11], Ding and Suel [12], Daoud et al. [13],
Daoud et al. [14], Kane and Tompa [15] and Mackenzie et al. [16].

Our proposal – denoted postings clipping – is illustrated in Figure 2. Rather than partitioning
the set of postings in ℐ𝑡 across ℒ(𝑡) and ℋ(𝑡), every posting remains in ℒ(𝑡), and we “clip” the
high-impact postings by slicing them into two parts, and forming a posting pair . The base part
remains in ℒ(𝑡) as a posting with an impact equal to 𝑈ℒ(𝑡), the maximum score contribution
permitted in ℒ(𝑡); and the second component of the pair becomes a new posting in ℋ(𝑡), to
account for the “trimmed” part of the original impact value, and retain the same total.

This arrangement has the singular advantage of no additional upper bounds management
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Figure 2: Postings clipping involves trimming the impact scores in the low-impact list, and creating new
postings in a separate list ℋ(𝑡) to account for the remainder.

(smart bounds) being needed, nor equivalent run-time manipulation of score estimates. Such
adjustments in the list splitting approach of Kane and Tompa [15] to correct for the constraint
that no document can appear in both ℒ(𝑡) and ℋ(𝑡), and hence that 𝑈ℒ(𝑡) + 𝑈ℋ(𝑡) is an over-
estimate (by an addend of 𝑈ℒ(𝑡)) of 𝑡’s true upper bound 𝑈𝑡. With postings clipping, 𝑈ℋ(𝑡)

is instead set to the maximum residual amount across all of 𝑡’s postings, and hence we have
𝑈𝑡 = 𝑈ℒ(𝑡) + 𝑈ℋ(𝑡). In turn, that means that when queries are being processed the lists ℒ(𝑡)
and ℋ(𝑡) can be treated as if they were derived from completely independent terms, with all
interactions between them handled by the underlying processing logic, be that MaxScore, WAND,
or BMW. That is, while there are more total postings to be stored and processed, the change
from list splitting with smart bounds to postings clipping substantially simplifies the query-time
processing logic.

As an orthogonal enhancement, priming can be applied whenever any high-impact list
contains 𝑘 or more postings, |ℋ(𝑡)| ≥ 𝑘. If that holds, then

𝜃0 = max{𝑈ℒ(𝑡) | 𝑡 ∈ 𝑄 ∧ |ℋ(𝑡)| ≥ 𝑘} (1)

can be used as an initial value for the heap bound, without risking top-𝑘 integrity. In combination,
the result is that – as we demonstrate in Section 3 – quite dramatic reductions in query processing
times for learned sparse retrieval models can be achieved.

3. Experiments

We now describe experiments that quantify the benefits arising from the postings clipping ap-
proach. Our experiments make use of both MSMARCO-v1 (8.8 million passages) and MSMARCO-
v2 (138.4 million passages) collections, four representative ranking algorithms, and the PISA [17]
query processing system which was recently shown to outperform the commonly used Anserini
system for document-at-a-time retrieval over learned sparse indexes [18].
Index Size Since clipping is applied only to postings with more than 256 elements, and even
then only adds 1/64 as many new postings, the space overhead compared to the default index is
negligible. For instance, the largest overhead of 600 MiB to the ≈ 33 GiB index for the uniCOIL
model on MSMARCO-v2 represents an increase of only 1.8%.
Query Speed Table 1 presents query processing times recorded for the MSMARCO-v1 col-
lection and DeepImpact retrieval, with response latency measured as average milliseconds per



Table 1
Query processing times, all in average milliseconds per query, for the MSMARCO-v1 collection and the
DeepImpact retrieval model. Similar relativities were also observed in regard to median query times,
and 90% and 99% tail latency query times.

Method 𝑘 = 10 𝑘 = 1000

MaxScore baseline 8.1 18.8
+ postings clipping 1.6 5.9

WAND baseline 14.9 34.0
+ postings clipping 2.7 10.8

VBMW baseline 4.2 12.2
+ postings clipping 3.3 9.7

query, and with the three blocks of values corresponding to dynamic query pruning approaches.
The last row in each block shows the combination of postings clipping, with 1/64 postings

taken into ℋ(𝑡), in conjunction with priming (and length-based ordering for MaxScore). The
fastest query time in each of the six sections is highlighted in blue.

As can be seen, for DeepImpact retrieval, the fastest querying is achieved by MaxScore pruning
with postings clipping. That combination takes less than half the time of standard MaxScore
processing. The gains from posting clipping are less for WAND and VBMW, in part because both
algorithms exhibit greater sensitivity to doubling the number of query terms.

Table 2
Query processing times, all in average milliseconds per query, for the MSMARCO-v2 collection.

Method BM25 DocT5Query DeepImpact uniCOIL

𝑘 = 10 1000 𝑘 = 10 1000 𝑘 = 10 1000 𝑘 = 10 1000

MaxScore baseline 11.0 38.7 8.8 28.2 828.0 1170.4 164.9 267.9
+ postings clipping 10.5 30.8 8.7 26.2 50.6 108.2 46.5 114.6

Table 2 then applies all four retrieval models to the large MSMARCO-v2 collection. The first
row shows “standard” retrieval, applying an inverted index and MaxScore dynamic pruning
method; and then the second row compares that baseline against what can be achieved by
postings clipping, priming using the same 𝑈ℒ(𝑡) information that arises from the clipping. The
best time in each column is shown in blue.

4. Conclusion

To keep up with increasingly large volumes of data, search practitioners require sophisticated
structures and processing algorithms, so that response times can remain plausible. In this paper,
we have demonstrated the speed benefits that arise through the use of a novel technique we
call postings clipping. We have established new benchmarks for querying speed, with minimal
costs overheads, for both shallow 𝑘 = 10 and deep 𝑘 = 1000 retrieval.
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