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Abstract
Being able to compare Information Retrieval (IR) systems correctly is pivotal to improving their quality.
Among the most popular tools for statistical significance testing, we list t-test and ANOVA that belong to
the linear models family. Therefore, given the relevance of linear models for IR evaluation, a great effort
has been devoted to studying how to improve them to better compare IR systems. Linear models rely on
assumptions that IR experimental observations rarely meet, e.g. about the normality of the data or the
linearity itself. Even though linear models are, in general, resilient to violations of their assumptions,
departing from them might reduce the effectiveness of the tests. Hence, we investigate the use of the
Generalized Linear Models (GLMs) framework, a generalization of the traditional linear modelling that
relaxes assumptions about the distribution and the shape of the models. We discuss how GLMs can be
applied in the context of IR evaluation. In particular, we focus on the link function used to build GLMs,
which allows for the model to have non-linear shapes.

1. Introduction

Evaluation in Information Retrieval (IR) allows researchers and practitioners to study and
compare their systems in order to understand how to improve them. To this end, sound
statistical inference methods are needed to obtain robust and generalizable insights and to
predict what happens when systems run in a real-world scenario. Therefore, statistical analyses,
such as bootstrap, randomization tests [2, 3], t-tests, and ANalysis Of VAriance (ANOVA) [4, 5, 6]
have been widely studied and successfully employed in IR evaluation.

In particular, t-test and ANOVA belong to the family of statistical methods called General
Linear Models (GLiMs), a generalization of the multiple linear regression, which is based on
the following assumptions: i) independence of the observations, ii) constant variance of the
data, i.e. homoscedasticity iii) normal distribution of the data, i.e., normality; last but not least
and too often overlooked: iv) linear correlation between experimental conditions and the
expectation of the response i.e., linearity. These assumptions allow for an analytical solution of
the model and its practical computation. Furthermore, the more such assumptions are satisfied,
the more accurate is the estimation of the model and the inferences drawn from it. Previous
literature showed great interest in studying the empirical consequences of using data violating
such assumptions, both from a theoretical standpoint [7, 8], and also considering empirical IR
data [5, 9, 10, 11]. Such works show that, in general, linear models are resilient to the violation
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of their assumptions. At the same time, several works have explored how to make IR data closer
to the GLiM assumptions, e.g. by transforming the data [5, 10]. In all the cases, the ultimate
goal is to obtain models which are capable to better and more reliably distinguish among IR
systems. The Generalized Linear Model (GLM) framework is a generalization of the GLiMs that
relaxes some of the underlying assumptions to increase models’ applicability. In particular,
the data is no longer required to follow a normal distribution or to have constant variance.
Moreover, GLMs also relax the fourth assumption, allowing the link between the response and
the experimental conditions to have different forms besides the linear one. In this work, we
investigate the application of Generalized Linear Models to IR evaluation and show how they
can help us in better comparing and distinguishing among systems.

2. Methodology

Parametric statistical tests, such as t-tests or ANOVA, rely on the assumption that data can be
modelled using a linear model. Given a system 𝑠 and a topic 𝑡, we can compute a measure, e.g.
Average Precision (AP), that quantifies how well 𝑠 performs on 𝑡. We refer to such a score as 𝑦𝑡𝑠
and call it response. 𝑦𝑡𝑠 is a realization of a random variable 𝑌 . The experimental conditions – i.e.,
topics and systems – are correlated with the response, thus called covariates. Using traditional
linear models, the expectation of the response 𝐸[𝑌 ], is modeled as a linear combination 𝜂 of the
covariates (linearity) as follows: 𝐸 [𝑌 ] = 𝜂 = 𝜇+ 𝜏1𝑡1+ ...+ 𝜏𝑛𝑡𝑛+𝛼1𝑠1+ ...+𝛼𝑚𝑠𝑚, where
𝑡𝑖 and 𝑠𝑗 are respectively the dummy coding variables for the topic and systems considered, 𝜏𝑖 is
the effect due to the 𝑖-th topic, 𝛼𝑗 is the effect due to the 𝑗-th system. The intercept 𝜇 represents
the grand mean of our data. To compute the linear model and grant its inferences, we assume
𝑌 ∼ 𝒩 (𝜂, 𝜎2) – 𝑌 distributes normally (normality) and has the same variance 𝜎2 everywhere
(homoscedasticity). Without losing generality, we can say that we model 𝑔(𝐸[𝑌 ]) = 𝜂, where 𝑔
is the identity function 𝑔(𝑥) = 𝑥. In this sense, 𝑔 is the function that links 𝐸[𝑌 ] to 𝜂. Summing
up, fitting a linear model requires defining the following elements: 1. a linear combination 𝜂 of
the different explanatory variables; 2. a link function 𝑔 to connect 𝐸[𝑌 ] to 𝜂; 3. a distribution
for 𝑌 . Compared to a traditional linear model, a GLM relaxes the assumptions for items 2
and 3. First, it models 𝑔(𝐸 [𝑌 ]) where 𝑔, the link, can be any monotonic continuous function.
Secondly, the response 𝑌 can follow a distribution 𝑓(𝜃) that is not necessarily Gaussian. The
homoscedasticity assumption is relaxed as well since the variance can change with the expected
mean. Thus, a GLM can be expressed in the following form:

𝑔(𝐸 [𝑌 ]) = 𝜂, with 𝑌 ∼ 𝑓(𝜃)

The chosen probability distribution 𝑓(𝜃) must be a member of the exponential distributions
family. A location parameter 𝜃 characterizes distributions belonging to the exponential family -
e.g., the normal distribution’s mean. If we observe that 𝑔(𝐸[𝑌 ]) = 𝜃 for a given distribution of
𝑌 , then we say that 𝑔 is the canonical link of such a distribution.

We are now interested in understanding the effect on the IR evaluation, switching from
the traditional evaluation based on linear models to considering GLMs. As pointed out in the
previous section, to fit GLMs, we need to select the link function and the response distribution.
In this work, we focus only on the effect that the link function has on the IR evaluation. Any



Table 1
Deviance. The color indicates optimal (green), average (white) or low (red) results.

Robust 04 Core 18 Core 18-wo

link AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP

identity 356.79 901.51 622.67 467.98 381.62 52.48 156.32 99.05 69.21 75.90 44.93 135.61 74.46 59.89 63.23
log 334.06 886.42 646.34 471.87 368.30 40.90 132.00 91.57 61.73 59.00 40.76 128.12 75.36 60.18 57.76
exp 387.52 955.56 719.93 505.65 400.98 61.31 219.01 159.33 90.92 98.80 49.19 160.79 79.90 64.29 72.55
tanh 348.91 894.19 640.07 467.54 376.76 50.30 147.13 95.89 66.00 71.15 43.81 132.13 75.84 59.80 61.00
logit 329.46 882.14 593.82 458.04 366.89 40.50 132.77 85.47 60.51 59.44 40.36 128.52 72.21 58.93 58.12

probit 330.36 882.66 590.87 458.05 367.65 40.71 133.26 85.52 60.63 59.81 40.57 128.84 72.13 58.99 58.42
cauchit 332.49 884.67 627.34 463.81 367.40 40.87 132.24 86.80 60.63 59.03 40.73 128.42 74.05 59.05 57.81

possible monotonic continuous function can be a suitable link. The choice of which link to
use depends on the shape of the data. Therefore, we try to empirically determine the best
link for IR data. In particular, we include the log, exponential and hyperbolic tangent (tanh)
functions in our experiments. We also experiment with a series of sigmoidal functions: logit,
probit and cauchit. Previous works on transforming AP [10, 12, 13, 14] observed that the logit
transformation renders the score distribution more normal but it has the drawback of making
observations for which AP is zero or one unusable. GLMs based on the logit link avoid such
corner cases. However, when even the expectation of a system’s performance is close to zero,
using log-based links – e.g., log and logit – determines a high variance of the coefficients
associated with such a system. As a consequence a larger variance increases the standard error.
It is therefore advisable to remove outliers with close-to-zero expected performance.

3. Experimental Analysis

In our experimental analysis, we consider two collections for ad-hoc retrieval: TREC 13 Robust
04 [15] and TREC 27 Core 18 [16]. Systems mean performance is very close to 0 can challenge
the log-based links. Since this happens in the case of Core 18, we also consider a second version
of it, where we remove eight outlier runs, performing extremely low in terms of MAP.

The most common goodness-of-fit statistics under the GLM framework is the deviance [17],
which is analogous to sum of squares of residuals (RSS) under the GLiM framework. Table 1
illustrates the deviance measured for different GLMs using several link functions, IR measures,
and experimental collections. The traditional GLiM approach based on the identity link, (cor-
responding to the current evaluation methodology) presents a low goodness-of-fit, given its
high deviance compared to other links. This evidence supports the idea of investigating and
using GLMs instead. The exponential link is the worst, systematically underperforming on
all experimental conditions and its high deviance indicates poor goodness-of-fit compared to
all the other links. Its poor capability in fitting IR data leads to overall instability, especially
concerning shallow performing systems, and to convergence problems when fitting the model –
highlighted by the increased iterations to reach convergence, not reported here due to space
constraints. The log link shows improved goodness-of-fit compared to identity one, especially
for the Core 18 collection (both with and without outliers). The tanh link exhibits an interme-
diate behaviour in all scenarios: it appears slightly better than the identity without providing
substantial improvements. Finally, The logit link has the best goodness-of-fit in most cases,
achieving the lowest deviance. Logit, probit and cauchit links tend to perform quite similarly.



Table 2 contains the number of statistically significantly different (ssd) pairs detected by the
GLMs based on different links, using Tukey’s HSD [18] test. On Robust 04 collection, all the
links outperform the traditional modelling strategy – i.e., identity link – using AP, P@10, and
RBP as performance measures. Logit is the best-performing link: it detects 7.9%, 8.9%, and
7.0% more ssd pairs compared to identity, when regarding AP, P@10, and RBP, respectively.
On the other hand, considering Recall and Normalized Discounted Cumulated Gain (nDCG),
log and tanh fail to identify more pairs than identity, while logit, probit and cauchit increase
the number of ssd pairs found. Concerning the Core 18 collection, Table 2 show that when
log-based links are used in presence of low-performing outliers, they tend to underperform
compared to the identity link. In particular, we observe that log, logit and cauchit almost always
fail to outperform the identity baseline. Indeed, in our specific case, almost all the ssd pairs lost
against the identity link correspond to the eight outlier runs – 8 runs appear in 540 pairwise
comparisons. Notice that these runs have extremely low mean performance, being their MAP
between 0.003 and 0.007. Probit outperforms the identity on all the measures except AP. This
might be due to the shape of the link functions. The cauchit function is the steepest and thus the
most vulnerable to outliers. The logit function has intermediate steepness, exhibiting medium
vulnerability to outliers. Finally, probit is the least steep and the more resilient to outliers. If
we consider Core 18-wo collection all the new links obtain a consistent improvement over the
identity baseline for what concerns AP, P@10, and RBP. Logit and probit links are the best,
gaining 17.4% new pairs on the AP. Logit, probit and cauchit perform well also with Recall and
nDCG. Similarly to Robust 04, both tanh and log links lose several ssd pairs with respect to
identity when using Recall and nDCG.

4. Conclusions and Future Work

We studied GLMs, an extension of the traditional linear models typically used in IR evaluation to
compare systems. GLMs overcome the main reasons of departure of IR data from assumptions
underlying linear models: non-normality and heteroscedasticity of the data and non-linearity
of the empirical mean. In this work, we focused on the latter and studied how to address it
using different link functions. We observed that log, logit, tanh, prob, and probit provide general
improvements concerning the identity link used today. We then dug into the log and logit
links, which were the most promising ones, and we found out that they can detect a sizeably
greater number of consistent ssd pairs than the identity link. In future work, we plan to consider
different distributions, to deal with the non-normality and heteroscedasticity of the data.

Table 2
statistically significantly different pair found. The color indicates good (green), sota (white) or bad (red) results.

robust 04 - (5995 systems pairs) core 18 - (2556 systems pairs) core 18-wo - (2016 systems pairs)

link AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP AP P@10 Recall nDCG RBP

identity 3427 2347 3848 3704 2837 1210 1054 1115 1270 1247 789 596 427 786 803
log 3556 2383 3622 3550 2946 925 934 672 1097 1220 878 635 384 748 941
tanh 3509 2354 3639 3641 2905 1301 1130 1086 1283 1361 843 633 380 766 892
logit 3700 2557 4018 3773 3035 976 1034 1267 1251 1257 926 713 594 818 929
probit 3693 2541 4027 3766 3034 974 1079 1304 1340 1341 926 710 597 815 928
cauchit 3682 2552 3929 3764 3016 848 739 877 872 968 796 713 597 823 937
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