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Abstract
Recent advancements in Information Retrieval and Natural Language Processing have led to significant
developments in the way users interact with search engines, with traditional one-shot textual queries
being replaced by multi-turn conversations. As a highly interactive search scenario, Conversational
Search (CS) can significantly benefit from Query Performance Prediction (QPP) techniques. However,
the application of QPP in the CS domain is a relatively new field and requires proper framing. This
study proposes a set of spatial-based QPP models, designed to work effectively in the conversational
search domain, where dense neural retrieval models are the most common approach and query cutoffs
are small. The proposed QPP approaches are shown to improve the predictive performance over the
state-of-the-art in different scenarios and collections, highlighting the utility of QPP in the CS domain.

1. Introduction

Conversational Search (CS) is the Information Retrieval (IR) paradigm where users converse with
an automatic agent to satisfy their information needs. CS allows for an intuitive human-machine
interaction since the user interrogates the machine using natural language. Rhetorical figures –
e.g., anaphoras, ellipses, coreferences – and complex speech constructs in users’ utterances make
CS challenging. Nevertheless, thanks to recent advances in Natural Language Processing (NLP)
and the advent of Large Language Models (LLMs), it is becoming increasingly popular and
ubiquitously adopted. CS can benefit from the employing Query Performance Prediction (QPP)
techniques in tasks such as determining the utterance rewriting approach to adopt, identifying
the topic shifts, or determining if the system needs to ask the user clarifying questions. QPP
is the task of estimating the performance of an IR system in the absence of human-assessed
relevance judgements [2]. It has been successfully employed in many tasks, such as query
suggestion [3], adaptive model selection [3, 4, 5, 6], and pathological queries discovering [2].
We argue that the QPP for CS cannot be addressed using the traditional strategies due to the
profound differences between CS and classical adhoc-ish IR. In a similar fashion to what pointed
out by Hashemi et al. [7] about Question Answering (QA), we observe that CS involves i) highly
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precision-oriented metrics and small cutoff retrieval, while traditional QPP techniques have been
often devised and tested to predict Average Precision (AP) at large cutoffs; ii) retrieving passages
or short documents, while classical QPP techniques are often designed for long documents; iii)
heavy usage of Neural Information Retrieval (NIR) techniques which have not been yet explored
extensively in the QPP domain; iv) in the CS domain, utterances are correlated and grouped
into conversations, making the evaluation of CS systems intrinsically different from classical
ad-hoc IR [8]. This characteristic should be taken into consideration, at least when evaluating
the QPP models. While a good share of effort has been devoted to both the CS and QPP tasks
alone, at the current time only a few works studied the application of QPP techniques to CS.
Most of these works rely on the use of well-established classical QPP methods to choose how
the system should interact with the user [9] or to determine if the answer provided to the user
contains the relevant information [10], without taking into consideration all the peculiarities of
the CS domain described above. In this work, we aim at address this gap by proposing a set of
predictors explicitly designed to synergize the best with CS models. We start by considering that
most of the modern CS approaches rely on NIR techniques. Thus, we focus on CS models that
exploit documents’ and queries’ dense representations and propose QPP methodologies relying
on measuring how close retrieved documents’ representations are to the query. We devise
two predictors that measure the volume of the hypercube encompassing the top 𝑘 retrieved
documents in response to a given query and show that such quantity effectively correlates with
the actual performance achieved.

2. Hyper-Volume Based Predictors

In this work, we focus on dense representations of the documents and the queries. In particular,
we consider two well-known dense representation approaches STAR [11] and ConvDR [12].
Concerning the notation, we call 𝑣𝑞 the 𝑑-dimensional vector representation of the utterance,
and 𝐷𝑖 the vector representation of the 𝑖-th document retrieved in response to the information
need. As commonly done for most post-retrieval predictors, only the top-𝑘 documents retrieved
are considered in computing the prediction – we call the top-k retrieved documents 𝒟@𝑘.

Given a query 𝑞, we consider the top-𝑘 documents retrieved to answer it. Given the multi-
dimension representation of the query 𝑣𝑞 and documents 𝐷1, ..., 𝐷𝑘, we consider the volume
that encompasses the query and all the top-k retrieved documents. If such a volume is small, we
can expect a high semantic correlation between the query and the documents. Contrarily, a large
volume might indicate documents poorly coherent with the query. In particular, we compute the
volume of the hyper-cube containing all the documents. To do this, we consider each dimension
ℎ of the learned representation and determine the length of the hyper-cube’s edge laying on ℎ
as: 𝑙ℎ = |max({𝐷𝑖(ℎ), ∀𝑖 ∈ [1, 𝑘]}∪{𝑣𝑞(ℎ)})−min{{𝐷𝑖(ℎ), ∀𝑖 ∈ [1, 𝑘]}∪{𝑣𝑞(ℎ)}}|, where
𝑘 is the ranked list cutoff, 𝑣𝑞(ℎ) and 𝐷𝑖(ℎ) are respectively the values of the ℎ-th dimension
for the query and 𝑖-th document. Finally, the volume 𝜈𝑘𝑞 of the hyper-cube constructed around
the top-k documents for query 𝑞 is computed as: 𝜈𝑘𝑞 =

∏︀𝑑
ℎ=1 𝑙ℎ. Notice that, while no specific

bound is present on 𝑙ℎ, it is likely that such values are small, thus it is numerically more stable



to compute the log sum of such value. We define the first predictor, Reciprocal Volume (RV), as:

𝑅𝑉𝑘(𝑞) = − 1∑︀𝑑
ℎ=1 𝑙𝑜𝑔(𝑙ℎ)

.

Assuming that each dimension represents a latent aspect of the query, having a smaller hyper-
cube on a certain dimension suggests that all the retrieved documents are closely related to that
query’s latent aspect. Vice versa, if the cube is particularly big on that dimension, it is likely
that the retrieved documents treat the latent aspect in a very different way from the query.

The reference measure used most often in conversational search [13, 14] is normalize Dis-
counted Cumulative Gain (nDCG) [15]. nDCG is based on the model of a user browsing the
ranked list of retrieved documents and accruing utility proportional to the relevance of the
document and inversely proportional to its position [16]. Inspired by it, we propose a second
predictor, dubbed Discounted Matryoshka (DM), defined as follows:

𝐷𝑀𝑘(𝑞) =
𝑘∑︁

𝑗=1

𝑅𝑉𝑗(𝑞)

log(𝑗 + 1)
.

Starting from the first document retrieved, we construct the hyper-cube containing the docu-
ment(s) and the query and determine its volume. Each hyper-cube constructed by adding a new
document contains (or is equal to) the previous one 𝐷𝑀𝑗(𝑞) ≤ 𝐷𝑀𝑗+1(𝑞) – they can be seen
as Matryoshka dolls. If moving from document to document such volume remains limited – all
Matryoshkas are similar and small – we assume that all top retrieved documents are consistent
with the query in all its dimensions and therefore we could assume a successful retrieval. Notice
that, the hyper-volume of each hyper-cube used to compute 𝐷𝑀𝑘(𝑞) is discounted by a discount
factor proportional to the number of points in the space used to construct it.

3. Experimental Evaluation

Our experiments are based on 2019, 2020, and 2021 TREC Conversational Assistant Track
(CAsT)1 datasets2. In our experiments, we try to predict nDCG@3, the most commonly used
measure in CS [13, 14]. In our experiments, we use dense representations of original, auto-
matically rewritten, and manually rewritten queries, where missing keywords or references to
previous topics are resolved by human assessors. Original and manually rewritten queries are
encoded using the STAR model, while the automatically rewritten ones are obtained by using
the ConvDR model. For ConvDR we used publicly available weights3. For all models employing
it, the cutoff hyperparameter 𝑘 has been selected from the set {3, 5, 10, 50, 100, 500}. QPP models
have been fine-tuned using two-fold repeated sampling [17, 18, 19, 20] with 30 repetitions.

Table 1 reports our experimental findings. First of all, it is interesting to notice that, when
using STAR vectors the DM predictor is either the best predictor or not statistically significantly
different from the best. This holds for all correlation measures considered. The high RBO

1Conversational Assistant Track, https://www.treccast.ai/
2for space reasons, we report results only on CAsT 2019. Full results are available in [1]
3https://github.com/thunlp/ConvDR

https://www.treccast.ai/


Table 1
Prediction Performance on CAsT 2019. Results for other collections available in [1]

Pearson Kendall RBO
CDR-o CDR STAR CDR-o CDR STAR CDR-o CDR STAR

CAsT 2019

Clarity 0.284 0.282 0.296 0.216 0.218 0.224 0.508 0.501 0.505
NQC 0.230 0.422† 0.129 0.189 0.271† 0.105 0.507 0.505 0.510
SMV 0.239 0.408 0.157 0.180 0.257 0.124 0.513 0.507 0.516
WIG 0.287 0.283 0.406 0.188 0.181 0.273 0.505 0.517 0.512
UEF𝐶𝑙𝑟 0.261 0.259 0.286 0.181 0.180 0.196 0.505 0.506 0.516
UEF𝑁𝑄𝐶 0.240 0.379 0.363 0.203 0.259 0.222 0.508 0.497 0.532†

UEF𝑆𝑀𝑉 0.254 0.389 0.363 0.208 0.274† 0.225 0.514 0.507 0.539†
UEF𝑊𝐼𝐺 0.306 0.257 0.280 0.244 0.185 0.201 0.519† 0.504 0.508

RV 0.323 0.323 0.410 0.236 0.236 0.239 0.524† 0.524† 0.522†

DM 0.376† 0.376 0.432† 0.262† 0.262 0.304† 0.523† 0.523† 0.528†

for the utterance labeling baseline is due to the fact that, by ranking higher self-explanatory
utterances, it is more likely to put in first positions utterances that are in fact “easier” – being
top-heavy, RBO awards this behaviour. To predict the performance of ConvDR, we consider
two alternatives, the first consists in using the same utterances that ConvDR uses, namely the
original ones (indicated with CDR-o), or the manually rewritten utterances (indicated with
CDR), to make results more comparable to those observed in STAR. It is important to notice
that while traditional predictors are influenced by the usage of either original or rewritten
queries, this is not the case for the proposed RV and DM predictors – they rely on the dense
representation of the utterance, regardless of its textual content. In terms of retrieval, both
ConvDR and ConvDR-o are exactly the same: the difference is the type of utterances used to
predict ConvDR performance for the traditional lexical QPP baselines. Notice that, in this sense,
the usage of ConvDR and rewritten utterances represent a non-realistic scenario, since they
would not be available to a real CS agent. Considering ConvDR with rewritten utterances, we
notice that the proposed predictors tend to fail compared to the baselines in the majority of the
cases with the exception of Rank-Biased Overlap (RBO) as correlation, where the performance is
statistically not diverse from the best method (WIG). If we consider the most conversational and
realistic scenario, ConvDR with original utterances and predictors based on original utterances,
we notice that DM is always the best method – with the only exception of the RBO measure,
where it ranks second, behind RV but statistically they are equivalent.

4. Conclusion and Future Work

In this study, we explore the potential of a geometric framework for performance prediction in
the CS domain. We propose two geometric post-retrieval coherency predictors, which measure
the proximity of retrieved documents to the query by encapsulating them within a hypercube.
The predictors are applied to two conversational dense retrieval models, ConvDR and STAR,
on three established conversational collections, using the evaluation procedures defined. The
results demonstrate that our proposed methodology outperforms QPP baselines on CAsT 2019
and CAsT 2021. In conclusion, the significance of QPP in the CS domain is emphasized, and our
proposed models show promising results in improving QPP for conversational search. In future
research, we plan to investigate how to incorporate in the predictors signals from previous
utterances and their linguistic content.
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