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Abstract
It has been shown that many Authorship Identification systems are vulnerable to adversarial attacks, where
an author actively tries to fool the classifier. We propose to tackle the adversarial Authorship Verification task
by augmenting the training set with synthetic textual examples. In this ongoing study, we present preliminary
results using two learning algorithms (SVM and Neural Network), and two generation strategies (based on
language modeling and GAN training) for two generator models, on three datasets. We empirically show that
data augmentation may help improve the performance of the classifier in an adversarial setup.
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1. Introduction

Authorship Identification (AId) is the branch of Authorship Analysis concerned with uncovering the
true identity of the author of a written document whose paternity is unknown or debated. Authorship
Verification (AV) is one of the main tasks of AId in which, given a single candidate author 𝐴 and a target
document 𝑑, the goal is to infer whether 𝐴 is the real author of 𝑑 or not [1]. AV is thus framed as a
binary text classification task with 𝐴 and 𝐴 as the possible classes.

However, the performance of the classifier might be negatively affected when an “adversary” is at play,
i.e., when an agent (a human or a computer) actively tries to mislead the classifier, either by concealing
their own writing style or by imitating someone else’s [2]. Our cultural heritage is indeed filled with
countless examples of presumed forgeries or false appropriations [3, 4, 5, 6]. To cap it all, modern
Neural Networks (NNs) are constantly improving their ability to autonomously generate convincing
human-like pieces of text that can be exploited as fake news or propaganda [7, 8]. Indeed, it has been
conclusively shown that many AId systems can be easily fooled in adversarial contexts [2, 9].

In this ongoing work, we investigate ways for improving the performance of an AV classifier by
augmenting the training set with synthetically generated examples. The intuition is that, if a classifier
has been exposed to textual examples that mimic an adversarial setting during training, it may develop
resiliency toward cases of forgery. In this short paper, we present some preliminary results of our study.
All the experiments are implemented in Python; the code to reproduce our experiments is available at:
https://github.com/silvia-cor/Authorship_DataAugmentation.
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2. Related work

The annual PAN shared tasks [10] offer a comprehensive overview of the most recent trends in AId. In
particular, SVMs have become a standard learning algorithm for these tasks, outperforming many other
methods [11]. However, deep NN methods are becoming more and more prevalent [12, 13, 10].

The use of data augmentation for improving classification performance is not a novelty. Researchers
have explored various techniques for generating synthetic textual examples, such as the random
combination of real texts [14, 15], the random substitution of words with synonyms [16], or by employing
large language models to generate texts [17]. Similarly, adversarial examples (i.e., examples specifically
generated to fool the model [18]) have been extensively used to improve the training phase of classifiers
in many text classification tasks. For example, Zhai et al. [19] feed the learning algorithm with (real)
texts that have been purposefully obfuscated, in order to improve the robustness of the classifier. Unlike
these projects, we do not modify pre-existing texts, but instead create new ad-hoc examples.

The work by Hatua et al. [20] bears some similarities with our methodology: in their experiments
tackling the fact-checking task, data augmentation with a GAN-based generator proved useful. Note
that, unlike this work, we cannot employ the generated examples as synthetic positive instances, but
rather as particularly difficult instances for the negative class. Otherwise, the AV classifier would learn
to label fraudulent instances as if written by the author of interest.

3. Experiments

3.1. Datasets

The datasets we consider are described below. For each dataset, we split each document into non-
overlapping chunks of 100 tokens (words and punctuation symbols); chunks with less than 25 words
are discarded. We exclude authors with less than 10 chunks in the training set.

• TweepFake . This dataset was created and made publicly available1 by Fagni et al. [7]. The dataset
consists of tweets from 17 human accounts and from 23 bots, each one imitating one of the human
accounts. We use this dataset as a reasonable proxy of the action of a forger. We use the training,
validation and test partitions provided in the dataset, but we remove all documents produced by
the bots from the training set, thus setting our AV problem as an open-set one.

• RJ . The Riddell-Juola Corpus was created and made publicly available2 by Riddell et al. [21]; we
focus on the “Obfuscation” setting. Participants on the Amazon Mechanical Turk platform were
requested to (i) upload some past textual examples of their own production, and (ii) write a new
short essay, where some random participants were asked to try and obfuscate their writing style.
We randomly select 10 authors, and split all their chunks gathered from step (i) into a training set
(90%) and a validation set (10%). We use the chunks gathered from step (ii) from all authors as the
test set, thus simulating an open-set scenario. This dataset is representative of cases where the
authors actively try to mask their writing.

• Victoria . This dataset was created and made publicly available3 by Gungor [22]. It consists of
books by American or English 18th-19th century novelists. We use these documents as examples
of literary production, where no author is presumably trying to imitate someone else’s style, nor
conceal their own identity. We limit the dataset to 5 randomly selected authors with at most
1, 000 chunks each. We devote 90% of the documents for training and the remaining 10% for test.
The training set is further split into a (proper) training set consisting of 90% of the documents,
and a validation set that contains the remaining 10%. This setting is representative of an AV
closed-set problem in which there are few authors, each with an abundant production.

1A limited version is available on Kaggle at: https://www.kaggle.com/datasets/mtesconi/twitter-deep-fake-text.
2Available on the Reproducible Authorship Attribution Benchmark Tasks (RAABT) on Zenodo: https://zenodo.org/record/
5213898#.YuuaNdJBzys

3Available at: https://archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution.
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3.2. Generators

We experiment with two architectures for generating adversarial examples. The first one is Distil-
GPT2 [23] (hereafter simply denoted as GPT), a distilled variant of OpenAI GPT-2, made available
as part of the Huggingface’s transformers library.4 The second one, denoted TRA1h, is based on the
TransformerEncoder module by Pytorch5 [24], and operates with one-hot vectors. The inputs are pro-
cessed by a linear layer (without bias) that converts the sparse one-hot vectors into dense embeddings.

We experiment with two different training strategies for the generators:

• LanguageModel Training (LM). Themodel is trained to predict the next word given a sequence.
More formally, given a real sentence [𝑤1, 𝑤2, … , 𝑤𝑡] of 𝑡 tokens, the model aims to maximize the
conditional probability 𝑃(𝑤𝑡 | 𝑤1, 𝑤2, … , 𝑤𝑡−1). In our case, following [25], we train the model
only using the written examples of 𝐴 (our author of interest). The generator thus is expected to
act as an imitator of 𝐴’s writing style.

• Generative Adversarial Network Training (GAN). A Generative Adversarial Network (GAN)
[26] has two components: a Generator (𝐺), that produces fake new examples, and a Discriminator
(𝐷), that labels examples either as “real” (i.e., coming from the real-world distribution) or “fake”
(i.e., produced by 𝐺). Both components play a min-max game, where 𝐷 tries to correctly discover
the forgeries issued by 𝐺, while at the same time 𝐺 tries to produce examples that manage to fool
𝐷. We explore various configurations inspired by GANs, in which we vary the generator and
the discriminator. In particular, we use one of the NN classifiers (NNgpt or NN1h) explained in
Section 3.3 as our discriminator 𝐷, while we use GPT or TRA1h as our generator 𝐺. The generator
is thus trained to generate examples that are supposed to be particularly difficult for the classifier.

In order to generate sequences of tokens, one typically resorts to the argmax of the posterior distribution
over the token vocabulary. However, the argmax operator breaks the flow of the gradient throughout
the network, thus obstructing the GAN training. In order to avoid this, we either generate sequences of
hidden states in the case of GPT, or apply the Gumbel-Softmax [27] in the case of TRA1h

6.

3.3. Learning algorithms

We consider two different learning algorithms, Support Vector Machine (SVM) and Convolutional
Neural Networks (NN) as methods for training the AV classifier.

For SVM, we employ the SVC implementation from the scikit-learn package7, with hyper-parameter
optimization. We employ a combination of features including the normalized relative frequency of
function words and the POS-tags, and the word lengths; we call these features BaseFeatures . We also
extract all character 𝑛-grams (with 𝑛 in the range [1, 3]) and compute their TFIDF weights; we retain
only the 10% most discriminating ones according to their 𝜒2 value.

For NN, we develop an architecture with two parallel branches. In one branch, when the input is
a real example, words are converted to one-hot vectors that are simply embedded through a linear
layer (without bias); when the input is a fake example, the embeddings are either generated by feed-
forwarding the “quasi” one-hot vectors resulting from the Gumbel-Softmax in the case of TRA1h (we call
this setting NN1h), or are instead directly taken from the hidden states of GPT(we call this setting NNgpt).
The rest of the branch is composed of two parallel convolutional blocks, each with two convolutional
layers with kernel size equal to 3 and 5 respectively. The other branch is made of two linear layers
and receives the same BaseFeatures as the SVM classifier as input; this branch is simply skipped when
the inputs are taken from hidden states, and thus cannot be converted into sentences. The outputs of

4Documentation available at: https://huggingface.co/distilgpt2.
5Documentation available at: https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html.
6This means that the examples we generate at training time are not comprehensible for a human. However, note this is not
a problem since they are solely intended to imitate the input format that the discriminator receives as input in the GAN
training. Viceversa, the trained generators do indeed produce examples that can be human-readable.

7Documentation available at: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 1
Results of the experiments. The best model for each learning algorithm is highlighted in bold, the overall best
model is in underlined, and the overall worst model is in italic.

TweepFake RJ-obf Victoria
𝐹1 Δ% Acc Δ% M 𝐹1 Δ% Acc Δ% M 𝐹1 Δ% Acc Δ% M

SVM .320 .870 .200 .932 .750 .903
SVM+GPTLM .323 + 0.98 .956 + 9.97 3 .217 + 8.35 .956 + 2.53 3 .732 − 2.37 .888 − 1.73 3
SVM+GPTGAN .333 + 3.98 .946 + 8.75 3 .200 — .949 + 1.80 3 .773 + 3.07 .910 + 0.80 7
SVM+TRALM

1h .310 − 3.08 .952 + 9.51 3 .210 + 4.75 .948 + 1.66 3 .762 + 1.60 .902 − 0.09 7

SVM+TRAGAN
1h .324 + 1.35 .943 + 8.40 3 .200 — .942 + 1.06 3 .753 + 0.35 .906 + 0.27 7

NNgpt .302 .962 .143 .904 .721 .898
NNgpt+GPTLM .359 + 18.88 .969 + 0.75 3 .125 − 12.77 .908 + 0.48 7 .684 − 5.13 .879 − 2.09 3

NNgpt+GPTGAN .371 + 23.17 .961 − 0.13 7 .227 + 58.13 .919 + 1.71 3 .729 + 1.11 .889 − 1.02 7

NN1h .353 .963 .127 .931 .739 .894
NN1h+TRALM

1h .351 − 0.70 .967 + 0.42 3 .117 − 8.33 .875 − 6.09 3 .722 − 2.27 .892 − 0.27 7

NN1h+TRAGAN
1h .363 + 2.68 .966 + 0.37 3 .226 + 77.44 .928 − 0.34 7 .730 − 1.14 .901 + 0.76 7

the two branches are finally concatenated and fed into two linear layers, that produce the posterior
probabilities for the classes 𝐴 and 𝐴. For the training process, we employ the AdamW optimizer [28] with
a learning rate of 0.001, a batch size of 32, and Cross Entropy as the loss function.

3.4. Experimental protocol and results

Given a dataset, we sequentially take each author in the training set as the author of interest 𝐴 and
all other authors as 𝐴. We focus on evaluating the improvement obtained by augmenting the training
data fed to the classifier (SVM, NNgpt, and NN1h). We first evaluate the classifier trained without any
augmentation, and use it as baseline to asses the contribution of the generated samples when added
to the training as negative instances. We define the classifiers trained via data augmentation with the
nomenclature 𝐶 +𝐺𝑇, where 𝐶 is the classifier, 𝐺 is the generator and 𝑇 is the generator training strategy.

Each time we generate examples (this happens for each epoch in the GAN training, and for generating
the final data augmentation when the generator training is over), we produce min{5 × 𝑛, 500} examples,
where 𝑛 is the number of training examples by 𝐴. The tokens are generated by prompting the first 5
original tokens from a randomly chosen example by 𝐴 until the length of the original text is reached.
We use vanilla accuracy and 𝐹1 as our evaluation metrics, and report averaged results across all AV
experiments. For each evaluation metric, we also report the relative improvement (Δ%) with respect
to the classifiers without data augmentation. We also carry out tests of statistical significance for the
performance difference (M) via the McNemar’s paired non-parametric test [29] at a confidence value of
0.05. The results are reported in Table 1.

Although it is not possible to identify one single approach that positively affects the classification of
every dataset, the results are indeed encouraging. Data augmentation leads to a significant improvement
in performance (both in accuracy and 𝐹1) in 10 cases out of 24, while it leads to a significant detriment for
both metrics only in 3 cases. The best overall result is always attained by the GPT-based augmentation.
Understandably, the effect on the Victoria dataset is less pronounced, likely due to the fact that this
dataset does not contain forgers, and since the number of documents per author is fairly high.

4. Conclusion and Future Work

In this study, we present preliminary experiments regarding the idea of improving the performance of
an Authorship Verification system by enhancing the training set with additional examples purposefully
generated to simulate an adversary. Despite not being conclusive, the results we have obtained are
promising, and encourage us to continue this research.

In future work, we plan to extend the experimentation to other datasets representative of different
settings, and explore the suitability of simpler architectures and different training strategies [30] that
might be better attuned to the typically limited number of available examples.
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