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Abstract
To date, graph collaborative filtering (CF) strategies have outperformed pure CF models in generating
accurate recommendations. However, concerns about fairness and potential biases in recommendations
have emerged, as unfair recommendations may harm the interests of Consumers and Producers (CP).
Recognizing the lack of a thorough evaluation of graph CF on CP-aware fairness measures, we initially
assessed the effects of eight state-of-the-art graph models and four pure CF recommenders on CP-
aware fairness measures. Surprisingly, graph CF solutions do not ensure significant item exposure and
user fairness. To unravel this performance puzzle, we propose a taxonomy for graph CF, highlighting
differences in node representation and neighborhood exploration. Through this lens, the experimental
outcomes become clear and pave the way for a multi-objective CP-fairness analysis (Codes are available
at: https://github.com/sisinflab/ECIR2023-Graph-CF).
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1. Introduction and Motivations

Recommender systems (RSs) have evolved from collaborative filtering (CF) to deep learning
(DL) models [2, 3, 4, 5], including graph-based methods that represent users and items as nodes
in a user-item bipartite graph. Recent research has focused on improving system accuracy
and enhancing explainability [6] and reproducibility [7], while issues surrounding fairness [8]
remain. Two core aspects of recommendation fairness are producer fairness (item exposure)
and consumer fairness (relevance). Existing graph-based approaches have addressed either
consumer or producer fairness, but not both simultaneously.

This work aims to bridge the knowledge gap in the literature by studying the effects of
state-of-the-art graph strategies on consumer fairness, producer fairness, and system accuracy.
We evaluate these dimensions in terms of overall accuracy, user fairness, and item exposure,
referring to their combination as CP-fairness when appropriate.
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Figure 1: Kiviat diagrams indicating the performance of pure and graph CF recommenders on overall
accuracy (i.e., O-Acc, calculated with the nDCG@20), item exposure (i.e., I-Exp, calculated with the
APLT@20 [9]), and user fairness (U-Fair, calculated with the UMADrat@20 [10]). Higher means better.

Motivating Example. We compare leading graph-based models, such as LightGCN, DGCF,
LR-GCCF, and GFCF, against classical CF baselines, BPRMF and RP3𝛽, on three Amazon datasets.
Our evaluation (see Figure 1), considering overall accuracy, user fairness, and item exposure,
indicates that graph CF is more accurate, but classical CF shows a better item exposure. No
clear winner is found regarding user fairness. We aim to answer two research questions (RQs):
RQ1. Can we explain the variations observed when testing several graph models on overall
accuracy, item exposure, and user fairness separately? We analyze the impact of graph CF
strategies for nodes representation and neighborhood exploration on accuracy and CP-fairness.
RQ2. How and why do nodes representation and neighborhood exploration algorithms strike
a trade-off between overall accuracy, item exposure, and user fairness? Using Pareto optimal-
ity [11], we determine the influence of these dimensions in two-objective scenarios, including
overall accuracy, item exposure, and user fairness.

2. Nodes Representation and Neighborhood Exploration in
Graph Collaborative Filtering: A Formal Taxonomy

Let 𝒢 = (𝒰,ℐ ,R) represent a bipartite, undirected graph connecting 𝑁 users and 𝑀 items. We
denote the node features for users 𝑢 ∈ 𝒰 and items 𝑖 ∈ ℐ as embeddings e𝑢 ∈ ℝ𝑑 and e𝑖 ∈ ℝ𝑑,
where 𝑑 is much smaller than 𝑁 and 𝑀. Different applications use message-passing schema to
update the model using 𝒢. Graph convolutional networks (GCNs), neural graph collaborative
filtering (NGCF), and LightGCN are examples of collaborative filtering (CF) applications that
utilize message-passing. The need to account for the varying importance of user-item interac-
tions has led to attention mechanisms and models such as graph attention networks (GATs)
and disentangled graph collaborative filtering (DGCF). The recent UltraGCN and GFCF address
over-smoothing by surpassing and simplifying the traditional message-passing concept. To
better understand graph CF models, we propose a classification system based on:
Node representation: This aspect concerns the strategies used for representing users’ and

items’ nodes, including the dimensionality of node embeddings and the weighting of contribu-
tions from neighboring nodes.
Neighborhood exploration: This aspect involves the methods for exploring multi-hop

neighborhoods to update node representations, including the types of node-node connections
and the message-passing schema (either explicit or implicit).



Table 1
Categorization of the chosen graph baselines according to the proposed taxonomy. For each model, we
refer to the technical description reported in the original paper and try to match it with our taxonomy.

Models

Nodes
Representation

Neighborhood
Exploration

Latent
representation Weighting Explored

nodes
Message
passing

low high weighted unweighted same different implicit explicit

GCN-CF* [12] 3 3 3 3
GAT-CF* [13] 3 3 3 3
NGCF [14] 3 3 3 3
LightGCN [15] 3 3 3 3
DGCF [16] 3 3 3 3
LR-GCCF [17] 3 3 3 3 3
UltraGCN [18] 3 3 3 3
GFCF [19] 3 3

*The postfix -CF indicates that we re-adapted the original implementations (tailored for the task of
node classification) to the task of personalized recommendation.

We propose (see Table 1) a taxonomy to classify the state-of-the-art graph models. In the
following two sections, we will assess eight graphs CF models based on this classification
system: GCN-CF [12], GAT-CF [13], NGCF [14], LightGCN [15], DGCF [16], LR-GCCF [17],
UltraGCN [18], and GFCF [19].

3. Taxonomy-aware evaluation
This section addresses RQ1 (“Can we explain the variations observed when testing several graph
models on overall accuracy, item exposure, and user fairness separately?”) by examining how the
taxonomy of graph strategies can elucidate recommendation evaluation on CP-Fairness and
overall accuracy. We test 48 hyper-parameter configurations on the Amazon Men dataset and
top-20 lists (Table 2), focusing on message-passing, explored nodes, edge weighting, and latent
representations. We report the best metric result for each <dimension, value> pair.
Message-passing. We study implicit and explicit message-passing strategies. Both approaches

perform similarly on accuracy and user fairness, but explicit techniques perform better on item
exposure, particularly Gini and APLT.
Explored nodes. We examine four node exploration methods: same and different, with 1 and

2 hops. Same-2 and different-1 are the most prominent, with different-1 outperforming same-2
on overall accuracy and same-2 being the best strategy for item exposure. User fairness does
not offer a reason to choose between same and different.
Weighted. We investigate weighted and unweighted graph CF techniques. Unweighted meth-

ods provide the best performance on almost all CP-fairness metrics, except for APLT, where
weighted GAT-CF performs better.
Latent representations. We compare graph CF techniques with 64, 128, and 256 features.

Higher latent representations (128 and 256) result in better performance on all measurements,
with 128 being the turning point for stable performance (see Table 1 as a reference).

4. Trade-off Analysis
This section examines the trade-off, through Pareto optimal solutions, between accuracy, item
exposure, and user fairness in graph CF baselines. The analysis is conducted on the AmazonMen
dataset and focuses on the message-passing and weighting of graph edges. Three categories



Table 2
Best results (and corresponding graph CF model) for each <dimension, value> pair, on the Amazon Men
dataset for top-20 lists. Bold indicates the best result in the pairs having a two-valued dimension, while
† indicates the best results on same and different configurations. The symbols ↑ and ↓ indicate if high
or low values are better. “rank” and “rat” stand for UMADrank@k and UMADrat@k.

Dimensions Values Overall Accuracy Item Exposure User Fairness

Recall↑ nDCG↑ EFD↑ Gini↑ APLT ↑ rank↓ rat↓

Message
passing

implicit
0.1222
(GFCF)

0.0911
(GFCF)

0.2615
(GFCF)

0.2871
(UltraGCN)

0.1808
(UltraGCN)

0.0123
(UltraGCN)

0.0022
(UltraGCN)

explicit
0.1223

(LR-GCCF)
0.0884

(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0169
(LightGCN)

Explored
nodes

same-1 0.1221†

(LR-GCCF)

0.0884†
(LR-GCCF)

0.2500†

(LR-GCCF)

0.4377
(LR-GCCF)

0.3433
(GAT-CF)

0.0002†
(DGCF)

0.0022†
(UltraGCN)

same-2
0.1184

(LightGCN)

0.0841
(LightGCN)

0.2380
(LightGCN)

0.5090†
(LR-GCCF)

0.3823†
(GAT-CF)

0.0002†
(DGCF)

0.0209
(NGCF)

different-1 0.1222†
(GFCF)

0.0911†
(GFCF)

0.2615†
(GFCF)

0.4093
(NGCF)

0.3424
(GAT-CF)

0.0002†
(DGCF)

0.0022†
(UltraGCN)

different-2
0.1210
(DGCF)

0.0850
(DGCF)

0.2407
(LightGCN)

0.4934†

(LR-GCCF)

0.3438†

(LR-GCCF)

0.0002†
(DGCF)

0.0388
(LightGCN)

Weighting weighted
0.1210
(DGCF)

0.0857
(DGCF)

0.2428
(DGCF)

0.3240
(DGCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0301
(DGCF)

unweighted
0.1223

(LR-GCCF)
0.0884

(LR-GCCF)
0.2536

(LR-GCCF)
0.5090

(LR-GCCF)
0.3438

(LR-GCCF)

0.0101
(GCN-CF)

0.0169
(LightGCN)

Latent
representations

emb-64
0.1193

(LR-GCCF)

0.0871
(LR-GCCF)

0.2479
(LR-GCCF)

0.5090
(LR-GCCF)

0.3627
(GAT-CF)

0.0002
(DGCF)

0.0054
(UltraGCN)

emb-128
0.1221

(LR-GCCF)

0.0883
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3644
(GAT-CF)

0.0002
(DGCF)

0.0111
(UltraGCN)

emb-256
0.1223

(LR-GCCF)
0.0884

(LR-GCCF)
0.2532

(LR-GCCF)

0.5038
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0022
(UltraGCN)

are studied: (1) implicit message-passing; (2) explicit message-passing with neighborhood
weighting; (3) explicit message-passing without neighborhood weighting. Plots with extensive
results are available in the extended work [1].
Accuracy/Item Exposure. Explicit/weighted models exhibit a trade-off, maximizing either

accuracy or item exposure. Explicit/unweighted models show a balanced trade-off, not prioritiz-
ing a single goal. Implicit models prioritize accuracy, at the expense of niche item exposure.

Accuracy/User Fairness. No graph CF strategy emerges as an absolute winner. Every graph
CF strategy is insufficient to guarantee adequate fairness among different user groups.

Item Exposure/User Fairness. Two groups of baselines are observed: those with poor item
exposure and those with acceptable exposure for long-tail items. Explicit/unweighted strategies
can generally ensure a satisfactory trade-off between user fairness and item exposure.

5. Conclusion and Future work
We assess the performance of graph CF models on Consumer and Producer (CP)-fairness metrics
showing that their superior accuracy capabilities is reached at the expense of user fairness,
item exposure, and their combination. By recognizing nodes representation and neighborhood
exploration as the two main dimensions of a novel graph CF taxonomy, we study their influence
on CP-fairness and overall accuracy separately and simultaneously. The outcomes raise concerns
about the effective application of recent approaches in graph CF (e.g., implicit message-passing



techniques). On such basis, we are performing further investigations on other datasets and
algorithms, and we are working on new graph models balancing accuracy and CP-Fairness.
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