“This (Smart) Town Ain’t Big Enough”: Smart Small Towns and Digital Twins for Sustainable Urban and Regional Development

Gabriela Viale Pereira1, Lukas Daniel Klausner2, Lucy Temple1, Thomas Delissen2, Thomas Lampoltshammer1 and Torsten Priebe 2

1 University for Continuing Education Krems, Krems, Austria
2 St. Pölten University of Applied Sciences, St. Pölten, Austria

Abstract

One of the major challenges today lies in the creation of governance concepts for regional development that not only promote growth but, at the same time, ensure promotion of inclusiveness, fairness, and resilience. Digital twins can support policymakers in developing smart, sustainable solutions for cities and regions and, therefore, urban and non-urban environments. The project SCiNDTiLA (Smart Cities aNd Digital Twins in Lower Austria) aims to define the state-of-the-art in the field of smart cities, identify interdependencies, critical components and stakeholders, and provide a roadmap for smart cities with application to both smaller-scale urban and non-urban environments. SCiNDTiLA uses the foundations of complexity theory and computational social science methods to model Austrian towns and regions as smart cities/regions and thus as systems of socio-technical interaction to guide policy decision-making toward sustainable development.

Keywords

smart city, digital twin, digital-twin-based sustainable smart city, small town, rural area, countryside

1. Introduction

This paper gives a brief introduction to the project Smart Cities aNd Digital Twins in Lower Austria (SCiNDTiLA, 2023–2026), in which we take stock of existing research on smart cities and digital twins and reshape and develop the state of the art for a new context. To wit, thus far smart city concepts have almost exclusively been implemented in the context of large urban environment, such as Barcelona, London, Milan and Seoul [1–3]. In contrast, SCiNDTiLA will complement existing research by adapting smart city and digital twin approaches to small-town and (urban–)rural regional sprawl use cases, with a particular focus on the interaction of policymaking and sustainable local governance and the needs, desires and expectations of the towns’ and/or regions’ inhabitants.

The main research question we have identified is: How can the existing knowledge on smart cities be transferred to smaller-scale urban and non-urban contexts, and how can technologies such as digital twins be used to support policymakers in developing smart sustainable solutions for cities and regions in Lower Austria?

Consequently, our project’s objectives are:

1. defining the state of the art in the field of smart city with focus on the sustainable aspects, including governance and social, economical and environmental dimensions, and identifying the characteristics that can be transferred to smaller-scale urban and non-urban contexts based on a systematic literature review and best practices assessment;
2. developing a conceptual framework of sustainable local governance via digital twins to validate the smart city generic model through an innovative transdisciplinary process, including the requirements elicitation for use cases in small cities in Lower Austria;
3. developing a digital-twin-based sustainable smart city and defining different scenarios concerning challenges of good governance in smaller-scale urban and non-urban contexts; and finally;
4. implementing the proof-of-concept use cases in Lower Austria and proposing a roadmap highlighting methodologies, guidelines, and policy recommendations on how smart and sustainable solutions in cities and regions shape inhabitants’ perceptions of local governance.

Our approach thus combines a systemic foundation, identifying interdependencies, critical components and fundamental stakeholders, and an operational upscaling to provide a roadmap for smart city and digital twin applications in both smaller-scale urban and non-urban environments. Moreover, our project team brings together an interdisciplinary team from both social and technical sciences and from various career stages.

Figure 1: Schematic overview over SCiNDTiLA’s objectives and planned schedule

As illustrated in Figure 1, the four objectives of the project provide a comprehensive response to the research question. The outcomes will establish the link between policy development towards sustainable smart cities/regions and their impacts on the public perceptions of local governance as well as the way government tackles societal challenges. As the two research agendas have thus far been developed in relative isolation, this joint approach can make a unique contribution and improve the effectiveness of smart city initiatives implemented in Lower Austria and beyond.

This project is applied in the context of Lower Austria, which is characterised by the growing number of policies that have been developed to support "digitalisation of the public sector" and, in particular, so-called "smart initiatives" at the regional and local level according to the Digitalization Strategy of Lower Austria. Regarding sustainable impact, a well-formulated data governance strategy is imperative towards evidence-based policymaking. Yet this governance strategy alone is not
sufficient: To ensure the improvement of the overall well-being of inhabitants, participation and communication during the development, execution and evaluation of policies are key in the context of the big societal challenges, i.e. climate change, energy and beyond.

2. Related Work and Main Concepts

There are many ways to approach the concept of governance in the context of smart cities. Existing research on smart cities with a governance focus is mostly seen from a user-centred perspective, with more emphasis on citizens and other stakeholders and the idea of developing productive interactions between networks of urban actors. Smart cities were defined by Rodríguez Bolívar and Meijer [4] as cities with smart collaboration for problem-solving. More broadly, smart cities involve sharing responsibility and authority between local governments and/or governmental departments, citizens, the private sector and other stakeholders working together towards data-driven decision-making [5]. Therefore, smart-city governance requires a strong focus on expanding collaboration with the wider local community and strengthening the cooperation of different stakeholders, which can be facilitated by increased engagement with beneficiaries of services and policies [6]. Smart-city strategies have been shown to intensify collaboration amongst stakeholders, with increased dependency on the context in which the city is embedded [7].

Moreover, the project highlights the importance of an information systems (IS) focus on smart-city-related studies as most existing studies lack a detailed analysis from an IS context, especially regarding the implementation and use of IS to design and develop smart cities [8]. Therefore, we take an IS perspective to address the smart city concept, following the approach by Ismagilova et al. [8, p. 90]: “Smart cities use an IS centric approach to the intelligent use of ICT within an interactive infrastructure to provide advanced and innovative services to its citizens, impacting quality of life and sustainable management of natural resources.” This perspective is aligned with SCI NDITiLA’s approach, especially regarding the way citizens and other stakeholders contribute to creating public value (e.g. collaboration, innovation, transparency, sustainable development) through the use of open data to better serve citizens’ needs [9], using smart technologies to support citizen-driven decision-making [10] and using ICT in the collaborative decision-making process in smart cities [5]. Viale Pereira et al. [11] describe smart governance as the intelligent use of ICT to improve decision-making and, particularly related to smart-city governance, state that it fundamentally deals with government decisions for improving quality of life and emphasises the citizens’ role in collaborative decision-making.

Complementing the smart city approach, digital twin technology has also seen increasing interest in both academia and industry, offering many benefits ranging from cost reduction in manufacturing [12] to supporting decision-making in asset lifecycle management processes [13]. Although different definitions of the digital twin concept exist, we will follow the definition of VanDerHorn and Mahadevan [14], who define a digital twin as “a virtual representation of a physical system (and its associated environment and processes) that is updated through the exchange of information between the physical and virtual systems”. In our project, we focus on the application of digital twins to smart cities as described by Wang et al. [15]; in their work, most of the smart city research projects focus on large, densely populated urban areas, where data are already collected on a large scale. We expect that creating digital twins for small towns and rural areas will pose additional challenges, but also offer additional opportunities – in particular because employing digital twins allows for context-specific aspects to be considered and deepens understanding of the kinds of conditions required for certain policies to succeed [16]. The use of digital twins has helped identify problems such as mismatches between residents’ needs, a lack of facilities or inadequate use of infrastructure [17]. This may enable more effective policy-making and a more evidence-based approach. The creation of a simulated environment begins with the identification of those elements that comprise the system, the boundaries of the digital twin and the rules that will define its behaviour and the behaviour of its elements. While working in small towns and rural areas, it is important to clearly identify the resident population and which elements they seek to include or exclude from the system, thus heightening the value of involving relevant stakeholders who thus act as a collaborative ecosystem that facilitates innovation [18].
3. Methodology

To address the interplay between people, organisations and technology as the nature of information systems research, the research method of this project follows a design science research approach [19] to define a smart city as a system (IT artifact) to be evaluated in a given organisational context – in this project, the state of Lower Austria. The conceptualisation of a smart city as an IT artifact includes the definition of constructs (vocabulary and symbols), models (abstractions and representations), methods (algorithms and practices) and instantiations (implemented and prototype systems) [19], allowing us to understand the problems (most pressing challenges of local governance in sustainable smart cities) and the feasibility of possible solutions (collaborative/evidence/algorithm-based decision-making processes of the policymakers towards smart solutions for regions, cities, and communities).

The project will also apply a novel transdisciplinary process to conceptualise sustainable smart cities and validate the generic model, including contextualising and identifying the main societal challenges to be addressed as use cases in small cities and regions in Lower Austria. Transdisciplinary processes organise societal learning processes to develop socially robust orientations for sustainable development [20]. “Socially robust” means that the orientation includes scientific state-of-the-art knowledge, the results from integrating and relating scientific knowledge (i.e. academic rigour) and best knowledge from science (i.e. experiential wisdom), whereby not only the uncertainty, but also the ignorance of human knowledge are acknowledged, and the constraints of the study become transparent [21]. To apply this approach, we initiate the process by an interdisciplinary roundtable and follow up on this with a moderated multi-stakeholder discourse to identify the most pressing challenges for local governance in sustainable smart cities. During the course of the project, we will devise a methodology for assessing policies and their effectiveness according to the changes in the state of the system and not just according to the intended or desired effects of those policies. With the use of algorithmic decision support and digital twins, our project will deliver a major step towards using simulated environments within which both artificial agents and humans (via their digital twins) can interact with each other and thereby improve the quality of conclusions and learnings from employing this kind of technology.

4. Expected Results

Due to its interdisciplinary nature, the expected results of the project will have implications in a variety of areas. We expect this to include

- contributions on modelling smart city ecosystems and adapting them to the specific context of Lower Austria, including for small towns, rural areas, regions and communities;
- the use of digital twins and other simulation and forecasting techniques in areas other than smart cities, such as the industrial sector [22], and specifically closing the simulation-to-reality gap therein [23];
- empirical contributions in the understanding of how digital applications and smart city initiatives shape sustainable behaviour at the city government level [5];
- conceptualisation of sustainable smart cities and future research trends with emphasis on their sustainable and societal impact [24, 25];
- contributions to interdisciplinary socio-technological understandings at the intersection of smart city/digital twins and science and technology studies, focusing on the mutual impacts of digital-twin-based simulations in smaller towns and non-urban environments and public perceptions of technology and government [26];
- methodological contributions in how transdisciplinary processes can shape complex debates on the effects of digitisation in smart cities [20, 27, 28];
- critical reflections on what the underlying implicit and explicit assumptions inherent to simulations, digital twins and smart cities/regions mean for policy-makers and society at large [29];
- explore the applicability of algorithmic decision support to assist policymakers in developing smart sustainable solutions [30].

The main contribution to practice consists in the translation of the results into a roadmap to guide policy outcomes and allow for generalisable findings for smart cities and local-government-driven
projects in new environments and use cases. We will develop a research and knowledge roadmap for tackling societal challenges in smart cities with a focus on rescaling the entire framework to be transferred to small towns and non-urban environments, such as rural areas and smart villages.

5. Acknowledgements

This research was funded by the Gesellschaft für Forschungsförderung Niederösterreich (GFF NÖ) project GLF21-2-010 “Smart Cities and Digital Twins in Lower Austria”. The financial support by the Gesellschaft für Forschungsförderung Niederösterreich is gratefully acknowledged.

6. References