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Abstract

The growth of scientific papers in the past decades calls for effective claim extraction tools to automatically and accurately

locate key claims from unstructured text. Such claims will benefit content-wise aggregated exploration of scientific knowledge

beyond the metadata level. One challenge of building such a model is how to effectively use limited labeled training data. In

this paper, we compared transfer learning and contrastive learning frameworks in terms of performance, time and training

data size. We found contrastive learning has better performance at a lower cost of data across all models. Our contrastive-

learning-based model ClaimDistiller has the highest performance, boosting the F1 score of the base models by 3–4%, and

achieved an F1=87.45%, improving the state-of-the-art by more than 7% on the same benchmark data previously used for

this task. The same phenomenon is observed on another benchmark dataset, and ClaimDistiller consistently has the best

performance. Qualitative assessment on a small sample of out-of-domain data indicates that the model generalizes well. Our

source codes and datasets can be found here: https://github.com/lamps-lab/sci-claim-distiller.
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1. Introduction
Because of the rapid increase of scientific papers indexed

by digital libraries [1] [2], there is an emergent need

to help readers to efficiently grasp the main ideas of re-

search papers. This can be achieved by development

of algorithms to extract and aggregate key information

from unstructured scholarly text. Existing machine learn-

ing methods have been developed to extract metadata,

such as title, authors, year, venue, e.g., [3], non-textual

content such as figures and tables, e.g., [4], and high-

level semantic information such as keywords, e.g., [5].

However, scientific claims, conveying key findings and

contributions from unstructured text remains challeng-

ing because scientific ideas could be conveyed in a more

complicated way than general text as used in news pa-

pers and Wikipedia articles. Although deep learning has

shown promising results for open domain extractive sum-

marization and key sentences identification, e.g., [6, 7], it

is still challenging to train robust deep learning models

on scientific papers [8] because of the lack of large-scale

training data. Obtaining such training data usually re-

quires domain knowledge, which regular crowdsourcing

workers may not possess. Identifying key claims from

scientific papers can also be time-consuming for domain

experts. In addition, mining claims from scientific papers
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has shown to be an important step to automatically as-

sessing reproducibility in social and behavioral sciences

and other domains, e.g., [9, 10], which is investigated in

DARPA’s Systematizing Confidence in Open Research

and Evidence (SCORE) program [11].

We define a scientific claim as a sentence that provides

the core findings of a scientific paper. One example is

given in Figure 1. Existing datasets with annotated claims

are scarce and not available in all domains. Current

datasets on claim extraction include CoreSC dataset [12]

with 265 articles in physical chemistry and biochemistry.

The Dr. Inventor dataset [13] contains claims extracted

from 40 computer graphics articles. Another dataset used

in a recent paper [14] contains claims extracted from

1,500 scientific abstracts in the biomedical domain. Due

to data scarcity, it is important to develop models that

efficiently use existing data. In a recent paper [14] the

authors introduced transfer learning to perform scientific

claim extraction. In this paper, we explore alternative

ways for this task.

Transfer learning uses the knowledge extracted from

one or more source tasks, which usually have a high

amount of resources, to accomplish a target task, which

usually has a lower amount of resources. Transfer learn-

ing works by pretraining a neural model using data for

the source tasks. The model is retrained by freezing the

weights of a portion of a neural network and learning the

weights of the other portion of the same neural network

[15]. Transfer learning has been adopted in computer

vision (CV) and natural language processing (NLP) tasks,

e.g., [16] [17].

Transfer learning relaxes the i.i.d. (independent and

identically distributed) requirement for training and test-
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ing datasets. To be specific, the classes in source data

does not necessarily need to be the same with target data.

This is usually fullfilled by the extremely large sizes of

source datasets, such as ImageNet-21k dataset with 14.2

million images [18]. Source data used in NLP (Natural

Language Processing) is usually in the magnitude of tens

of Mega bites and even more. Data size is a limit for

claim extraction and as a result transfer learning does

not delivery enough power. In this paper, we introduce

contrastive learning framework which uses significantly

less training data and achieves comparable or better per-

formance.

Self-supervised contrastive learning, a type of self-

supervised representation learning, efficiently leverages

limited training data and has demonstrated promising

results in multiple CV and NLP tasks, e.g., [19, 20]. This

method puts similar samples close to each other while

pushing ‘negative’ samples far apart in the feature space

[21]. For example, in image classification, data can be

augmented by cutting and rotation. We can adjust the

loss function and make the augmented samples from the

same image close to each other and augmented samples

from different images far away. In this way, the model

can learn the features without looking at labels. The

drawback of self-supervised contrastive learning is that

the correlation of features between images belonging

to the same class is ignored. This could be mitigated

by leveraging label information, which is the supervised
contrastive learning [22].

In this paper, we compared transfer learning and su-

pervised contrastive learning frameworks in terms of

performance, time and training data size. We found con-

trastive learning has better performance at a lower cost

of data across all models on both datasets. We propose a

contrastive-learning-based model ClaimDistiller, the

backbone of which is a recurrent neural model with su-

pervised contrastive learning. We demonstrate that the

supervised contrastive learning mechanism improves the

model performance by a significant margin with less

training samples and training time.

Our best model achieves F1=87.45% when trained and

tested on SciCE. We further trained the model on another

benchmark dataset SciARK, and contrastive learning

methods obtained better performance across all models

than transfer learning. ClaimDistiller consistently out-

performs all other models.

The contributions of the paper are as follows:

1. We proposed using supervised contrastive learn-

ing for scientific claim extraction. The results

show that SCL achieves a comparable or better

performance than transfer learning with signifi-

cantly less training data and training time. The

best model achieves an F1=87.45% on the SciCE

dataset.

2. We compared 10 commonly used methods of text

augmentation for training SCL in the context of

scientific claim extraction. All methods exhibit a

marginal effect on the model performance.

3. Our best model was trained and evaluated on a

standard benchmark in the biomedical domain.

The model exhibited reasonably well generaliz-

ability when it is tested in the computer science

domain.

2. Related Work
Scientific claim extraction is closely related to extrac-

tive document summarization and argumentation min-

ing, which are more explored in literature. The goal of

extractive document summarization is to extract text that

is much shorter than the original documents and deliver

the main idea of the given documents [23]. A survey on

extractive document summarization for scientific papers
can be found in [24]. The text output by extractive docu-

ment summarization may contain several key sentences

that provide a high-level description of the original text.

These sentences may not necessarily describe the core

findings. Therefore, the methods cannot directly be used

for extracting scientific claims.

Argument mining automatically extract the structure

of inference and reasoning presented in natural language

text [25]. In argument mining, premises were extracted

from news [26], social media [27], scientific article [28],

and Wikipedia [29]. Existing argument mining methods

include heuristic methods [30, 31] and classical machine

learning methods [32]. Recently, deep learning meth-

ods, including weak supervision and transfer learning

mechanisms, have been proposed [33].

There are limited publications on scientific claim ex-

traction. Dernoncourt et al. [34] developed a scientific

discourse dataset PubMed-RCT, in which sentences

were labeled into five classes, namely, background, intro-

duction, method, result, and conclusion. However, claims

were not explicitly labeled in this dataset. Recently, a

human-annotated scientific claim extraction dataset in

biomedical domains was published [14]. Existing meth-

ods used for scientific claim extraction include rule-based

and deep learning methods. Rule-based methods were

used to extract claims from scientific papers in Jansen

et al. [30]. Achakulvisut et al. [14] proposed a model

consisting of a bidirectional long short-term memory

(BiLSTM) network stacked with a conditional random

field (CRF) model trained in a transfer learning frame-

work. They trained their model on the PubMed-RCT
dataset and then fine-tuned the model on their in-house

SciCE dataset.
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Table 1
A comparison of performances with different data augmentation methods.

Dataset Labels Size * Domain Utility ***

SciCE Claim, Non-claim 11702 Biomedical C-pre, C-tune, T-tune
SciARK Claim, Evidence, Non-claim 9055 SDG ** C-pre, C-tune, T-tune
Pubmed Objective, Introduction, Method, Result, Conclusion 2.3 million Biomedical T-pre

* Measured in number of sentences.
** Six SDG (Sustainable Development Goals) domains set by the United Nations (UN).
*** "C" means contrastive learning, "T" means transfer learning, "pre" means pre-training, "tune" means fine-tuning.

Title:  Calpain-mediated ABCA1 degradation: post-
translational regulation of ABCA1 for HDL biogenesis

Claim sentence:  Pharmacological inhibition of the 
calpain-mediated ABCA1 degradation results in the 
increase of the ABCA1 activity and HDL biogenesis in vitro 
and in vivo, and potentially suppresses atherogenesis.

Non-claim sentence:  This article is part of a Special 
Issue entitled Advances in High Density Lipoprotein 
Formation and Metabolism: A Tribute to John F. Oram 
(1945-2010).

Figure 1: An example of claim extraction dataset.

3. Data
The claims to be extracted should be absolute, indepen-

dent, core findings of the paper. A conclusion may not

necessarily be a claim, but a claim is highly likely to be a

conclusion. Claims may appear in the abstracts and the

body text, but in our research task, we focus on extract-

ing claims from abstracts, assuming that authors should

put the core findings of the paper in the abstracts.

The data used in this paper includes three corpora. The

first corpus was built by Achakulvisut et al. [14], which

is the largest dataset so far for scientific claim extraction.

For convenience, we call it the scientific claim extraction

(SciCE) dataset.

Specifically, the dataset labels three types of claims:

Type 1: A statement that declares something is better;

Type 2: A statement that proposes something new;

Type 3: A statement that describes a new finding or a

new cause-effect relationship.

The corpus contains 1,500 scientific abstracts in the

biomedical domain. Each sentence in the abstracts was

labeled by domain experts into two categories, namely,

claim and non-claim. An example of a claim sentence and

a non-claim sentence, in an abstract, is shown in Figure 1.

Each abstract contains 5 to 10 sentences (Figure 2). One

abstract may contain more than one claim (Figure 3). The

majority of the abstracts contain 1–2 claims and about

Figure 2: Distribution of the number of sentences in an ab-
stract in the claim extraction dataset (SciCE). An abstract has
at least 5 sentences, and at most 10 sentences.

Figure 3: Distribution of the number of claims in an abstract
in the claim extraction dataset (SciCE). One abstract can have
multiple claims and the maximum number of claims is 6. Most
frequently there are 2 claims in one abstract.

half of the dataset contains only 1 claim in an abstract.

The dataset contains in total 2276 claims and 9426 non-

claims. For an even comparison, we adopt the split of the

original dataset in which the numbers in training, test,

and validation samples are 750, 375, and 375, respectively.

The second corpus is the Pubmed-RCT dataset [34],

designed for the discourse prediction task, which was to

predict the discourse types for a sequence of sentences
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in one abstract. In our paper, it is used as the source
dataset for transfer learning. Pubmed-RCT is a larger

dataset consisting of 20,000 abstracts, including 2.3 mil-

lion sentences selected from the MEDLINE/PubMed Base-

line Database published in 2016. The abstracts are in

biomedical and life sciences domains, and particularly

in randomized controlled trials (RCTs). The discourse

type for each sentence is one of the five classes, Objective,

Introduction, Method, Result, and Conclusion. The Method
and Result classes contain one-third of all labeled sen-

tences, respectively. The remaining one-third contains

sentences labeled as the other three classes. The number

of sentences in an abstract is between 3 and 51, with an

average of 11.6. This dataset will be used for pre-training

in transfer learning.

A third dataset SciARK was introduced in a recent

work [35]. It is a relatively small dataset composed of

abstracts from 689 academic papers with 9055 sentences.

The number of abstracts in training, testing, and valida-

tion samples are 350, 269, and 70, respectively, as split

by the authors. Each sentence is annotated as Claim,

Evidence, or Nonetype. Unlike SciCE and Pubmed, this

dataset is multidisciplinary with abstracts of scientific

publications related to a broad spectrum of Sustainable

Development Goals (SDG) domains. When using the

dataset, we merge the "Evidence" and "Nonetype" as "non-

claim" and treat it as a binary-class dataset (claim vs.

non-claim).

4. Proposed Framework:
ClaimDistiller

We formulate the claim extraction task as a classification

problem on a sequence of sentences, where the model pre-

dicts a class label claim or non-claim for each sentence.

In regular classification models, text is represented in

the form of vectors and training a good representation

is essential for classification. We improve the models

by adopting supervised contrastive learning to generate

better representations. We propose a framework called

ClaimDistiller for extracting scientific claims from ab-

stracts.

4.1. Supervised Contrastive Learning
Self-supervised contrastive learning [20] methods can be

used to generate representations for non-labeled data. It

treats each sample in the dataset as a class and compares

them pairwise after data augmentation to obtain “appar-

ent similarities”, and further generates representations

for each sample. Supervised contrastive learning [22]

methods introduce this framework for labeled data. The

key idea is to train a representation that pulls together

the same class while simultaneously pushing apart dif-

ferent classes in the embedding space. This step helps to

create more accurate embeddings and thus subsequent

classification based on it can achieve better performance

than regular supervised learning.

In self-supervised contrastive learning each sample

is considered a class, while in supervised contrastive

learning each label is considered a class. As a result, in

self-supervised contrastive learning the training process

requires 2𝑁 augmented samples for the 𝑁 samples in

training data, but in supervised contrastive learning, the

model could be trained by either 𝑁 or 2𝑁 augmented

samples. In our task we use supervised contrastive learn-

ing to train the model. We tried both 𝑁 and 2𝑁 aug-

mented samples. The Supervised Contrastive Loss func-

tion is defined as:

𝑆𝐶𝐿 =
∑︁
𝑖∈𝐼

−1

|𝐶(𝑖)|
∑︁

𝑐∈𝐶(𝑖)

log
exp(𝑧𝑖 * 𝑧𝑐/𝜏)∑︀

𝑎∈𝐴(𝑖) exp(𝑧𝑖 * 𝑧𝑎/𝜏)
(1)

Here 𝑖 is the index of an arbitrary sample in the aug-

mented dataset 𝐼 . 𝐶(𝑖) is the set of samples in the same

class with 𝑖 except sample 𝑖. 𝐴(𝑖) is the set of samples

in the augmented dataset except sample 𝑖. 𝑧𝑖, 𝑧𝑐 and

𝑧𝑎 stand for the representations of the anchor, positive,

and negative samples respectively. 𝜏 is the temperature

parameter, which adjusts the distance of different classes

in the embedding space.

4.2. Framework Architecture
Our proposed framework is based on supervised con-

trastive learning. The architecture of the framework is

shown in Figure 4. The SCL can be implemented in two

stages. In the first stage, we augment each labeled sen-

tence into two sentences with similar semantics. This

augmented dataset is fed into the encoder and supports

the Stage 1 training. The encoder along with the pro-

jection head, which is composed of several dense layers,

minimizes the supervised contrastive loss to obtain the

optimal embeddings in order to group positive samples

together and push negative samples far away. In Stage 2,

we keep the encoder and freeze the weights in its dense

layers, and add two more dense layers for classification.

The classifier is trained to minimize the cross-entropy

loss function.

4.3. Data Augmentation
Data augmentation is an essential part in contrastive

learning methods, which creates the dataset used for

pre-training by sentences with similar semantics. We

investigate five types of methods and their variants to

augment text given a labeled sentence.
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Encoder

Dense
Relu

Projection Head

Classifier

WC-BiLSTM
Dense
Dense

Classification
Results

Original Sentence

Data Augmentation

DenseJohn is going to town
Joe is walking to town

Mary is running to town

Supervised Contrastive Loss

CrossEntropyLoss

Freezing 
Encoder 
Layers

WC-BiLSTM

   First
   Stage
Learning

Second
Stage
Learning

Figure 4: Architecture of our proposed framework: ClaimDistiller. The encoder can be customized.

1. Round Trip Translation (RTT) [36]. This

method first translates the sentence from English

to French and then translates it back to English.

Translation is based on Google translation ser-

vices as well as Amazon translate [36].

2. Wordnet Synonym Replacement [36]. This

method replaces words with their synonyms in

the sentence. Replaceable words such as verbs,

nouns are selected from a sentence using a part-

of-speech tagger. Then a number of words are

selected out of them following a Geometric dis-

tribution and replaced by their synonyms, which

are given by a synonym library provided by Word-

Net.

3. EDA (EasyData Augmentation) SynonymRe-
placement [37]. Randomly pick a word (not stop

words) from the sentence and then replace the

word with one of its synonyms chosen at random.

4. EDARandomDeletion [37]. Randomly remove

any word in the sentence with a probability you

can specify. We use the default probability value

0.2.

5. EDA Random Insertion [37]. Find a random

synonym of a random word (not a stop word) in

the sentence and then insert the synonym into

any position in the sentence randomly.

We further generate augmented data by two data aug-

mentation methods to obtain a bigger dataset for pre-

training. A comparison of the results will be given in

Section 7.

5. Experiment Setups

5.1. Base Models
As mentioned above, the first stage is to encode the in-

put sentence into a vector. We experiment three types

of encoders each having three settings of the original

encoder, the encoder trained with transfer learning and

the encoder trained on SCL.

1. CNN-1D. Similar to regular CNN used in fea-

ture extraction from 2-dimensional images, 1-

dimensional CNN has been used for extracting

features from word sequences, e.g., [38]. This

method works by sliding a window with a fix-

width over a sequence and convolving features of

tokens covered by the window [39]. An average

pooling was used to aggregate features from indi-

vidual tokens. Similar to a 2D-CNN, the 1D CNN

can be used for extracting patterns from local 1D

patches (aka sub-sequences) from sequences. Af-

ter each word-level token is converted to initial

vectors, 1D convolutional layers with the convo-

lutional kernels of size 𝑤 were used to extract the

patterns (Figure 6). These layers can recognize

patterns in an input sequence. We used a 2-layer

1D CNN, which is flattened at the end before the

presentation is fed to a dense fully-connected

layer for classification.

2. USE-dense. We adopted the pre-trained Univer-

sal Sentence Encoder (USE) [40] to encode claim

text into dense 512-dimensional vectors. The ini-

tial embeddings produced by USE were fine-tuned

on the SciCE corpus, after which the sentences

69



were encoded to dense feature vectors used by

the fully-connected layer for classification.

3. WC-BiLSTM (Word and Character embed-
ding Bidirectional Long Short-Term Mem-
ory). One drawback of applying pre-trained word

embedding is that unseen words have to be en-

coded as a default vector in the prediction time.

The representations of these words could only be

inferred by surrounding words. Word prefixes

and suffixes often contain semantic information.

Therefore, we combine pre-trained Word2Vec em-

bedding [41] with character embedding [42] to

encode unseen words. The combined embedding

is fed to bidirectional long short-term memory

(BiLSTM) layers to extract patterns from claim

sentences (Figure 7). Finally, the representations

were passed to a fully-connected layer for classi-

fication.

5.2. Experiments
To evaluate the robustness of the proposed framework,

we investigate the base models in different training frame-

works: only the base model, transfer learning, and super-

vised contrastive learning. Figure 5 shows a comparison

of the three different training frameworks. ‘Network’ in

this figure can be any of the base models. The training

frameworks are as follows:

1. Trained from Scratch. In this setting, the neu-

ral classifier is trained directly using the SciCE

corpus with only the base models, namely CNN-

1D, USE-Dense, and WC-BiLSTM, described in

the previous subsection.

2. Transfer Learning. In this setting, the neural

classifier is firstly pre-trained using the PubMed-

RCT corpus and then fine-tuned on the SciCE cor-

pus. During the fine-tuning stage, we freeze the

weights of all layers except the fully-connected

classification layer. Then we replaced that fully-

connected layer with a new layer with classes in

the target dataset.

3. Supervised Contrastive Learning. As dis-

cussed in Section 4, in supervised contrastive

learning the neural network is firstly pre-trained

with augmented training data from the SciCE cor-

pus and then fine-tuned on the original SciCE

data. Note that in this setting, only SciCE is used,

which is a dataset much smaller than the PubMed-

RCT dataset.

As a result, we have in total 9 experiment specifica-

tions: 3 different frameworks for each base model. In

Network 

Training Claim

Non-claim

Train with base models

SciCE

Dataset

Pubmed

Dataset

SciCE

Dataset

Claim

Non-claimPre-train

Network

Network

Fine-tuning

Train with contrastive learning

SciCE

Dataset

Claim

Non-claim
Network

Freeze Embb-layer 

Fine-tuning

Data Augmentation

Train with transfer learning

SciCE

Dataset

Figure 5: Comparing training from scratch, transfer learning
and supervised contrastive learning .

addition, we include the following two experiments from

previous academic papers as baselines:

1. Heuristic Method. This baseline is adopted

from Sateli & Witte [31]. This method used

gazetteering, deictic phrases and hand-crafted

rules to match against the text. The sentence con-

taining the deictic phrase must be a statement in

form of a factual implication, and have a compar-

ative voice or asserts a property of the author’s

contribution, such as novelty or performance.

2. CRF-based Transfer Learning. This baseline is

adopted from Achakulvisut et al. [14], in which

transfer learning was applied on a conditional

random field (CRF) model. This is the state-of-

the-art to our best knowledge. This method treats

claim extraction as a sequence tagging task and

uses CRF to capture the dependencies of the label

of the current sentence to the features and labels

of neighbor sentences.

70



Window Size = 5
Average Polling

Output Features

Initial sequence

Figure 6: CNN-1D Working flows.

Word

Embedding

Sentences

Character

Embedding

Concatenate

Bi-LSTM

Classification Layer

Claims

or

Non-claims

Figure 7: The architecture of the WC-BiLSTM base model.

6. Evaluation

6.1. Evaluation Metrics
The proposed methods and baselines are evaluated us-

ing the standard precision, recall, and F1 scores, defined

below.

𝑃 =
𝑁TP

𝑁TP +𝑁FP
, 𝑅 =

𝑁TP

𝑁TP +𝑁FN
, 𝐹1 =

2𝑃𝑅

𝑃 +𝑅
(2)

In Eq.( 2), 𝑃 and 𝑅 stand for precision and recall, respec-

tively. 𝑁TP is the number of predicted claims that are

true. 𝑁FP is the number of predicted claims that are false.

𝑁FN is the number of predicted non-claims that are false.

𝐹1 is the harmonic mean of 𝑃 and 𝑅.

In addition, we also compare the training time. The

training time was measured as the time elapsed between

when the program started taking inputs (including pre-

training) and when the model stopped training after cer-

tain numbers of epochs.

6.2. Experiment Details
All the experiments were performed on a single computer

with a 4 physical core CPU, 16GB RAM, and Solid State

Disks and an Nvidia V100 GPU.

When working on the CNN-1D model, the window

size 𝑤 = 5. Because the convolution is performed on

the word level, we truncated sentences longer than 120

words and padded sentences shorter than 120 words.

When training the WC-BiLSTM model, the learning

rate was set to 0.001, the batch size was set to 256, and

the dropout rate was 0.5. Each encoder model and its

variants were trained for a maximum of 50 epochs before

which the loss function of the validation data reached the

minimum. Early stopping was applied to avoid overfit-

ting. We found that at this stage, the loss functions have

asymptotically converged to the minimum.

6.3. Results
The results of the experiments are shown in Table 2.

The first column shows the evaluation results of models

trained on SciCE. The second column shows the training

time. The third column shows the evaluation results of

models trained on SciARK. The training time on SciARK
is shown in column 4. In column 5 we compared the

training data size for all scenarios.

As seen in Table 2, Deep learning based models achiev-

ing much better performance than rule-based models

suggests that the semantic features of scientific claims

are complicated and are better represented by neural

models.

In general, transfer learning based models achieve

better performance than the corresponding original en-

coders by ∆ F1=0.74–3.18. The efficacy of transfer learn-

ing comes from source data used for pre-training. The

discourse information in the PubMed-RCT corpus used

here is relevant and helps improve the performance.

The comparison of transfer learning and contrastive

learning is performed on two datasets: SciCE and

SciARK. Contrastive learning achieves better perfor-

mance than transfer learning consistently across all mod-

els. With SciCE, SCL beats transfer learning by ∆
F1=0.82 – 2.72% for the SciCE dataset and ∆ F1=1.32–

1.72% for the SciARK dataset. The only exception is that

CNN-1D-contrastive underperformed CNN-1D-transfer

by 0.52%. Therefore, SCL in general achieves a compara-

ble or better performance than transfer learning.

Contrastive-learning-based model ClaimDis-

tiller has the best performance across all metrics

compared with other models, achieving F1=87.45%,

precision=87.08%, and recall=87.83%. With SciARK,

ClaimDistiller has the best performance with

F1=88.93%, precision=90.02%, and recall=89.47%.

The training time needed for each model varies. In

general, transfer learning needs significantly more time

for training than supervised contrastive learning. In the

last column, we see a clear comparison of training data

size for contrastive learning and transfer learning. Com-

paring the training data size, contrastive learning uses

less than 6000 sentences while transfer learning uses 2

million sentences for pre-training in order to achieve the

performance reported in Table 1.
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Table 2
A comparison of models on the scientific claim extraction task. Base models are trained from scratch. The model with the best
performance is highlighted in bold.

Model Names SciCE (2933) 2 Time 3 SciARK (3558) 2 Time 3 Data Size 4

P % R % F1 % (sec) P % R % F1 % (sec) (training)

Baseline Models
Rule-based [31]1 31.50 32.20 31.90 – – – – – –
Transfer CRF [14]1 86.60 72.70 79.00 – – – – – –

Base Models
CNN-1D 83.43 83.73 83.57 12 75.42 86.84 80.72 9 SciCE: 5823
USE-Dense 82.42 83.73 83.06 15 85.74 87.99 86.85 11 SciARK: 4768
WC-BiLSTM 83.35 84.65 83.99 150 86.66 87.83 87.24 38

Transfer Learning
CNN-1D-transfer 84.45 85.74 85.09 4502 85.57 86.38 85.97 1388 pre: 2 million
USE-Dense-transfer 85.81 86.71 86.24 12735 87.05 88.32 87.68 2878 tune: 5823 (SciCE)
WC-BiLSTM-transfer 84.87 84.59 84.73 49324 87.61 88.70 88.15 16245 tune: 4768 (SciARK)

Contrastive Learning
CNN-1D-contrastive 85.80 86.49 86.14 108 84.86 86.05 85.45 48 SciCE: 5823
USE-Dense-contrastive 86.84 87.28 87.06 11823 89.06 89.74 89.40 3489 SciARK: 4768
ClaimDistiller5 87.08 87.83 87.45 15001 88.93 90.02 89.47 7201

1 Quoted from reference because they used the same test data.
2 Testing data size is in the parentheses. Measured by number of sentences.
3 Training time including both pre-training and fine-tuning.
4 Measured by number of sentences in training dataset.
5 WC-BiLSTM-contrastive.

7. Discussion

7.1. Data Augmentation Analysis
As discussed in Section 4, we tried several methods of text

augmentation. Here we show the experimental results

obtained with the best model WC-BiLSTM-contrastive

model in Table 3. The results show that various types of

text augmentation methods have marginal effect on the

classification performance of the SCL base model, with

the range of F1 going from 86.11% to 87.45%. Wordnet

synonym replacement achieves the best performance

while random deletion is the worst. We choose to use the

best one "Wordnet synonym Replacement" as the data

augmentation method.

7.2. Error Analysis
In this section, we perform error analysis focusing on

the best model: WC-BiLSTM-contrastive. Out of the 375

abstracts in testing set of SciCE, this model correctly

predicts all the claims and non-claims in 125 abstracts.

As shown in Figure 8, in the remaining 250 abstracts, the

majority of them have 1–2 wrongly predicted sentences,

with the maximum prediction errors of 4 in a single ab-

stract. As shown in Figure 9, the error rates are all below

Table 3
A comparison of performances with different data augmenta-
tion methods.

DA Methods P % R % F1 %

EDA Random Deletion 85.67 86.56 86.11
EDA Replacement 86.08 86.94 86.50
RTT 86.28 86.90 86.59
Original Data 86.59 87.38 86.98
EDA Random Insertion 86.85 87.62 87.23
WordNet 87.08 87.83 87.45
WordNet + RTT 86.42 87.11 86.76
WordNet + Insertion 86.88 87.55 87.21
WordNet + Deletion 86.25 86.36 86.30
WordNet + Replacement 86.51 87.35 86.92

0.5 and with an average of 0.13.

We demonstrate two examples containing typical er-

rors in the prediction results for case studies (Figure 10).

The ground truth claims are highlighted in blue. Green

labels mean the sentences are non-claims and red labels

mean sentences are claims. Labels with red frames indi-

cate wrong predictions. In the first example, the model

is able to identify all the claims, but it mistakenly recog-

nizes two sentences as claims. In the second example,
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Figure 8: The distribution of the number of wrong predictions
per abstract in the testing dataset of SciCE. In the abstracts
where there are wrong predictions, the majority of them have
1 or 2 wrongly predicted sentences.

there should be two claims but the model only identified

one of them.

Example 1 is challenging because the two false posi-

tives look like claims but when they are read together

with the first sentence, it is clear that the second sentence

(starting with “The discussion emphasizes”) describes

what the authors have done in the paper and the third

sentence (starting with “A fundamental need”) describes

a background, which is the motivation of the research.

Example 2 contains a false negative. It is not straight-

forward to determine why the sentence starting with

“Results indicated that” was misclassified to a non-claim

because the leading pattern clearly indicates the sentence

conveys key findings. The error analyses indicate that

although the recurrent model attempted to incorporate

context information, it may still miss the nuances of se-

mantics. Fine-tuning the hyperparameters may help, but

a more sophisticated and robust model is needed to cap-

ture the nuances. One method is to combine latent and

rule-based features. Another possible method is to lever-

age the "knowledge" encoded in large language models

(LLMs), e.g., GPT 3, or using the LLM-adapter method to

train an adapter for this task.

7.3. Domain Adaptability
The SciCE corpus is in the biomedical domain. To test

whether the model performs well in a different domain,

we applied the best model (WC-BiLSTM-contrastive) to

classify sentences in a random selection of 30 abstracts

in computer science papers. Out of the 195 sentences in

this dataset, 60 sentences were predicted as claims. By

visually examining these predicted claims, 50 of them are

consistent with the definition of claims [14]. Examples of

the successfully predicted claims are given in Figure 11.

This post-hoc evaluation result indicates that the model’s

precision for computer science abstracts is roughly con-

sistent with biomedical domains with (P ≈ 83.3%), im-

Figure 9: Distribution of error rate in the testing dataset of
SciCE. The error rate is defined as wrongly-predicted sen-
tences divided by the total number of sentences in an abstract.
In most cases, the error rate is below 0.2.

Prediction results on abstract 1:

Grounded in a socio-ecological framework, we describe salient health care system and policy factors 
that influence engagement in human immunodeficiency virus (HIV) clinical care.     Non-claim

The discussion emphasizes successful programs and models of service delivery and highlights the 
limitations of current, fragmented health care system components in supporting effective, efficient, and 
sustained patient engagement across a continuum of care.        Claim

A fundamental need exists for improved synergies between funding and service agencies that provide 
HIV testing, prevention, treatment, and supportive services.        Claim

We propose a feedback loop whereby actionable, patient-level surveillance of HIV testing and 
engagement in care activities inform educational outreach and resource allocation to support integrated 
\"testing and linkage to care plus\" service delivery.           Claim

Ongoing surveillance of programmatic performance in achieving defined benchmarks for linkage of 
patients who have newly diagnosed HIV infection and retention of those patients in care is imperative 
to iteratively inform further educational efforts, resource allocation, and refinement of service delivery.
                                                                                                                                      Claim

Prediction results on abstract 2:

"Bovine viral diarrhea virus (BVDV) is an emerging pathogen in alpacas and many questions still 
persist regarding disease mechanisms and control strategies."      Non-claim

"The purpose of this study was to evaluate a commercial BVDV vaccine for safety and efficacy in 
alpacas."      Non-claim

"Five nonpregnant alpacas were vaccinated with a modified-live BVDV vaccine and challenged 25 
days post-immunization by nasal and ocular inoculation with a BVDV Type 1b strain isolated from a 
confirmed BVDV persistently infected alpaca."      Non-claim

"Two nonpregnant alpacas served as non-vaccinated controls and were similarly challenged."
                                                                                                                                Non-claim

"Results indicated that BVDV virus could not be detected from the vaccinated alpacas but was 
detected in the unvaccinated alpacas."      Non-claim

"Results suggest that administration of modified-live BVDV vaccine protected the alpacas in this 
study from experimental challenge and no adverse effects from the vaccine were observed."
                                                                                                                           Claim

Figure 10: Two examples of errors in the prediction results in
the test set of SciCE. The ground truth claims are highlighted
in blue. Green labels mean the sentences are non-claims and
red labels mean sentences are claims. Labels with red frames
indicate wrong predictions.

plying that claims in these two different domains are

usually written with similar language patterns. We also

observed that the model tends to omit claims, indicating

that a more robust domain adaptation may be needed to

improve the recall.
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We demonstrate that scaling up language models greatly improves task-
agnostic, few-shot performance, sometimes even becoming competitive 
with prior state-of-the-art fine-tuning approaches. 

These results highlight the importance of previously overlooked design 
choices, and raise questions about the source of recently reported 
improvements. 

Moreover, DETR can be easily generalized to produce panoptic 
segmentation in a unified manner. 

We show that it significantly outperforms competitive baselines.

Figure 11: Successful prediction results from papers in Com-
puter Science domain.

7.4. Visualization on SciCE Data
To further qualitatively demonstrate the effect of su-

pervised contrastive learning, we project the 128-

dimensional vectors output by the WC-BiLSTM base

model into a 2-dimensional feature space using tSNE

[43], and then compare it with results in supervised con-

trastive learning. Figure 12 shows that the model with

supervised contrastive learning grouped the same class

altogether, making them more separated in the feature

space.

8. Conclusion
To automatically obtain scientific findings from the ever

increasing volume of scientific papers, an effective and

efficient claim-extracting tool is becoming increasingly

important for information aggregation, summarization,

and retrieval of scientific papers. One bottleneck of this

task is the limitation of annotated training data. The

challenge is how to efficiently use existing limited data.

We propose the ClaimDistiller framework, which uses

supervised contrastive learning on top of existing text

encoders to boost the performance of classification. We

showcased the efficacy of this mechanism on two bench-

mark datasets. Our result establish a new state-of-the-art

on the SciCE dataset, outperforming the existing method

by 7%, which used transfer learning on a BiLSTM-CRF

architecture. We demonstrated that the SCL achieved

comparable or higher F1 scores compared with transfer

learning methods with significantly less training data

and time. Future research will explore hybrid methods

and LLMs to capture nuances of context.
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