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Abstract 
Recombinant innovation is considered a significant driver in generating new ideas, and it has been 
evidenced to have a higher rate of occurrence in scientific papers. Therefore, modeling and measuring 
the combination of scientific knowledge in articles has garnered widespread research interest. This 
paper aims to provide a new perspective to understand and measure the absorption and integration of 
scientific ideas and insights by leveraging knowledge networks. The references and content of the 
articles function as input for knowledge absorption and output for knowledge integration, respectively, 
in which the content refers to the substance or core elements found within the articles. These knowledge 
elements are extracted using KeyBERT, fused and consolidated with string fuzzy match and embedding-
based semantic similarity provided by SciBERT, and labeled as supplied knowledge elements, absorbed 
knowledge elements, and generated knowledge elements. Knowledge networks are then constructed 
using the extracted elements and the cooccurrence of elements. Three types of metrics are developed to 
measure the structure and properties of knowledge networks, including descriptive statistics of nodes, 
degrees, edges, and components, network global structure metrics, and knowledge proximity calculated 
using document embedding. We finally use the key publications of the Nobel prize in physics to perform 
an empirical study. 
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1. Introduction 

Innovation is the result of a combination of knowledge 
[1, 2]. The use of knowledge combination and 
recombination concepts has gained momentum in the 
literature over the past decade. As reviewed by Xiao, 
Makhija and Karim, more than 1,000 articles published 
in top management journals exploited the logic to 
some extent [1]. Since recombinant innovation is 
considered a significant driver in generating new ideas 
and has been evidenced to have a higher rate of 
occurrence in scientific papers [3, 4], it has garnered 
widespread interest to understand and measure the 
combination and integration of scientific knowledge in 
papers. 

Scientific papers are one of the main carriers of 
innovative achievements. Researchers absorb data, 
information and knowledge by referencing the existing 
literature, and subsequently generate innovative ideas 
and insights with knowledge combination and 
integration [3, 5, 6]. The procedure of knowledge 
absorption is encoded by the content of the references 
[7], while the process of knowledge integration can be 
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evaluated by examining the content of the articles 
themselves [8]. The content here refers to the 
substance or core elements of scientific papers. The 
prior literature considers IPC codes [9, 10], keywords 
[11], key phrases [12], MeSH terms [13], topics or 
predefined tags [14] as a proxy for knowledge 
elements. Building on these, the knowledge elements 
in this study refer to the integral and core concepts of 
a scientific article. 

Although ‘content’ is a more direct reflection of 
knowledge absorption and integration, domain 
experts use citation patterns more frequently than 
using the body of knowledge to analyze evolutionary 
trajectories [13, 15-17]. Existing research argues that 
simple citation patterns provide noisy measurements 
of knowledge recombination because citation 
behavior is usually complicated [18-20]. With the 
development of text mining technologies, citation 
patterns that work with rough-grained document 
comprehension, such as article keywords or topics, 
and predefined categorizations, such as IPC codes, 
have been used to investigate the process of 
knowledge absorption [21, 22], yet both rough-
grained topics and explicit taxonomies have 
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limitations in directly indicating fundamental content 
and context. Moreover, recent studies have inspired 
discussions that beyond simple pairwise combinations, 
higher-order network structure is also important for 
understanding research contents and contexts for 
scientific innovations [23]. Thus, further research on 
reflecting knowledge elements and their structures 
thus is still warranted [24].  

This paper aims to provide a new perspective of 
knowledge networks for understanding and 
measuring the absorption and integration of scientific 
ideas and insights. Knowledge elements are extracted 
using KeyBERT, and consolidated with string fuzzy 
match and semantic similarity provided by SciBERT, 
then labeled as supplied knowledge elements, 
absorbed knowledge elements, and generated 
knowledge elements. Knowledge networks are then 
constructed to reflect the structure of labeled 
knowledge elements in the absorption input and 
integration output. Three types of metrics are 
developed to measure the structure and properties of 
scientific knowledge combination in networks, 
including descriptive statistics, network global 
structure metrics, and knowledge proximity. We 
finally use the key publications of the Nobel prize in 
physics to perform an empirical study. 

2. Methodology 

2.1. Framework 

The challenge of measuring the absorption and 
integration of scientific knowledge combination 
requires modeling supplied knowledge elements, 
absorbed knowledge elements, generated knowledge 
elements and their structures. According to the theory 
of recombination, continuous combination and 
reconstruction of knowledge elements in a knowledge 
network led to innovation. We propose a knowledge 
network model to analyze knowledge absorption and 
integration.   

Building on prior literatures, the knowledge 
elements in this study refer to the integral and core 
concepts of a scientific article. The framework of 
knowledge network model is shown in Figure 1. The 
data used to construct the network are scientific 
papers from the Web of Science. One target paper may 
potentially have n references. The title and abstract of 
a target paper are merged as the 'output' of knowledge 
integration, whereas the titles and abstracts of 
references are seen as the 'input' of knowledge 
absorption. Specifically, 𝑛 -gram terms are extracted 
from textual data using KeyBERT as candidate 
knowledge elements. Then they are cleaned with a 
stop word list and filtered using TFIDF values. This 
makes the selected elements capable of reflecting the 
main content of the article well in terms of semantics 
and having importance in statistical terms. 

Furthermore, we finalize 𝐾  knowledge elements 
for the target paper, and 𝐾 × 𝑛  elements for 
corresponding references. These elements are merged 
using string fuzzy match and embedding-based 
semantic similarity provided by SciBERT, to fuse 
knowledge elements with same concept and similar 

semantic meaning that exist in both absorption and 
integration phrases. A network containing all 
knowledge elements from the absorption and 
integration phases can then be constructed, in which 
each node represents a knowledge element, and the 
edges represent the co-occurrence relationships 
between knowledge elements.  There are three types 
of nodes: supplied knowledge elements, absorbed 
knowledge elements, and generated knowledge 
elements. This paper develops three types of metrics 
for measuring knowledge elements and structure of 
knowledge networks, including descriptive statistics 
of nodes, node degrees and edges, network global 
structures metrics, and knowledge proximity 
calculated using document embedding. 

 
Figure 1: The Knowledge Network Model Framework 
for Analyzing Knowledge Absorption and Integration 

2.2. Knowledge Elements 
Extraction with KeyBERT 

The extraction of knowledge elements is the 
foundation for studying knowledge formation 
mechanisms and identifying innovation. Predefined 
taxonomies such as 'WoS Categories' offered by Web of 
Science and rough-grained topics have limitations in 
sculpting the details of knowledge flows. We refine the 
granularity of knowledge elements to 𝑛-gram terms in 
this paper and extract these key elements of 
knowledge using the Python KeyBERT package [25]. 

KeyBERT leverages BERT embeddings to extract 
the keywords most similar to a given document [26]. 
The BERT model Sentence-Transformers is applied to 
obtain vector representation at the document level 
first, then cosine similarity is used to find the top 𝑇 
most similar keywords that best describe the entire 
document. As shown in Figure1, 𝑇 𝑛-gram keywords 
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are extracted with the KeyBERT from merged title and 
abstract of target paper and each referenced article. In 
this research, the length of terms is set as one word and 
two words (𝑛 = 1, 2); and 𝑇 is set to 50 to select the 
top terms that can best deliver the semantic content of 
each document. Then a stop word list is applied to 
clean the selected term list and TFDIF values are 
computed for all these terms to show their statistical 
significance. We finally set 𝐾 = 10, which means that 
most representative and important 10 terms are 
maintained for each document and will be used for 
knowledge network construction. 

2.3. Knowledge Network 
Construction 

According to the theory of knowledge recombination, 
continuous combination and reconstruction of 
knowledge elements in a knowledge network led to 
innovation. In a typical knowledge network, 
𝐺𝐾(𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 , 𝐸) , each node represents an extracted 
knowledge element, and the edges represent the co-
occurrence relationships between knowledge 
elements.  

As shown in Figure 1, the knowledge element 
extraction module extracted a total of 𝐾(𝑛 + 1) 
knowledge elements. These terms are first merged 
using fuzzy string match and semantic similarity 
calculated using SciBERT embedding, in order to fuse 
knowledge elements with the same concept and 
similar semantic meaning in the complete process of 
knowledge absorption and integration. The knowledge 
elements that have been finalized act as the nodes 
within the network, while their co-occurrence in the 
article and references form the edges of the network. 
As shown in Figure 2, these knowledge elements are 
labeled as supplied knowledge elements that are 
provided by references; absorbed knowledge 
elements that exist in both the target paper and its 
references; and generated knowledge elements that 
exist only in the title & abstract. 

 
Figure 2: Schematic Diagram of the Knowledge 
Network 

2.4. Measurement of Knowledge 
Networks 

2.4.1. Descriptive Statistics 

Descriptive statistical metrics are used to measure the 
total number of nodes, edges, and components in the 
knowledge network to analyze the network scale. We 
compute the knowledge absorption efficiency using 
formular (1), in which 𝑉𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  represents 
the number of absorbed knowledge elements and 
𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  represents the total number of unique 
knowledge elements in the network. We also compute 
the knowledge integration efficiency via formular (2), 
in which 𝑉𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 represents the number of 
generated knowledge elements and 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  is the 
total number of unique elements. In addition, we also 
calculate the degree distribution, which is the 
probability distribution of degrees over the knowledge 
network, to measure the complexity of the networks. 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 = 𝑉𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠⁄  (1) 
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑉𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠⁄  (2) 

2.4.2. Global Network Metrics 

The relationships among elements within a network 
are reflected by the network structures. As a result, 
structural characteristics significantly influence future 
interactions of elements. The proposed model 
considers metrics related to macro-structural 
characteristics of the network, including network 
density, average path length, and clustering coefficient 
[27, 28]. 

Network density describes the connectivity of a 
network. It is calculated by dividing the total number 
of connections 𝐸  by the total number of possible 
connections 𝐸𝑀𝑎𝑥 with the same number of nodes, 
which can be computed using formular  𝐸𝑀𝑎𝑥 =
𝑛(𝑛 −  1) 2⁄  [29].When the network density is lower, 
the connections between the knowledge elements are 
sparser, suggesting that the behaviors of elements are 
less influenced by the network structure. 

𝐷 = 𝐸 𝐸𝑀𝑎𝑥⁄  (3) 
Average path length 𝐿  can be calculated as the 

average length of the shortest path between any two 
nodes, as shown in (4), where the distance between 
node 𝑖 and node 𝑗, 𝑑𝑖𝑗 , represents the total number of 

links connecting the shortest path between the two 
nodes. The value of N denotes the total number of 
nodes in the network. It helps distinguish negotiable 
networks from comparatively inefficient ones.  

𝐿 =
2

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗

𝑖≠𝑗

 
(4) 

The global clustering coefficient is calculated via 
formular (5), in which 𝐶  stands for local clustering 
coefficient, and  𝐶𝑖 = 2𝐸𝑖 𝑘𝑖(𝑘𝑖  −  1)⁄ , and 𝐸𝑖  
represents the number of edges for vertex i , and ki 
indicates the degree of vertex 𝑖  [30]. A higher 
clustering coefficient is an indication of a small world. 

𝐶 =
∑ 𝐶𝑖𝑖

𝑛
 

(5) 

2.4.3. Knowledge Proximity  

The cosine distance of embedding-based vectors 
derived from scientific articles and patents can be used 
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to quantify the proximity of knowledge [31]. 
Embedding-based approaches avoid creating high-
dimensional sparse vectors in mapping massive 
textual data, thus having great potential for feature 
extraction and knowledge representation. We apply 
doc2vec to map documents into fixed-length numeric 
vectors, translate latent semantics into low-
dimensional dense space [32, 33], and measure the 
proximity of knowledge of the target article and its 
references. The knowledge proximity metric shows 
the semantic distance between the content of the 
references and the target paper. The greater the 
semantic distance, the larger the changes in the 
integrated content after the absorption phrase. 

3. Empirical study 

In this paper, we choose the key publications of Nobel 
prize in physics1. Only papers published before 2004 
were included. Initially, we collected 179 prize 
winning papers. In order to analyze the knowledge 
absorption and integration using content of 
publications, we only keep papers that have three or 
more references, and the language of writing is limited 
to English. We finalize 124 Nobel prize papers in 
physics as the dataset for empirical study. 

3.1. Descriptive Statistics of 
Knowledge Networks of Nobel Prize-
Winning Papers 

After generating the corresponding knowledge 
network using the model proposed in this paper, the 
124 Nobel Prize-winning papers have an average of 
31.85 supplied knowledge elements, 5.54 absorbed 
knowledge elements and 2.64 generated knowledge 
elements. There are 120 connected knowledge 
networks and the other 4 are unconnected ones. The 
average knowledge absorption efficiency is 0.14, and 
the average knowledge integration efficiency is 0.09.  

Figure 3 (a) depicts a representative connected 
knowledge network, which is constructed based on the 
data of the article identified as WOS-
000201553700001. All knowledge elements can be 
reached by a single random walk within the knowledge 
network. Figure 3 (b) illustrates an unconnected 
knowledge network, created using data from the 
article identified as WOS-000201591300009. Supplied 
knowledge elements are marked in deep blue, 
absorbed knowledge elements are highlighted in light 
blue and generated knowledge elements are colored in 
green. 

We then compute the degree distribution of each 
knowledge network to measure their complexity. To 
summarize the degree distribution in the dataset, we 
illustrate the average node degree distribution in 
Figure 4. The distribution is right-skewed, showing 
majority of the node degree values are concentrated in 
the range of 9 to 14, and some of the nodes have even 
higher degree values. There is no isolated vertex nor 
pendant vertex in the knowledge networks. 

 
1 https://www.nobelprize.org/prizes/ 

 
(a) 

 
(b) 

Figure 3: (a) One Example of a Connected Knowledge 
Network; (b) One Example of an Unconnected 
Knowledge Network 

 
Figure 4: Average Node Degree Distribution for 124 
Nobel Prize-Winning Papers 

3.2. Global Network Metrics of 
Knowledge Networks of Nobel Prize-
Winning Papers 

To measure the structural characteristics of 
knowledge networks, we calculate the density 
distribution for all the papers and present the result in 
Figure 5. As this metric is measured on a scale of 0 to 1, 
lower values indicate knowledge networks with fewer 
relationships and higher values represent knowledge 
networks with more relationships. A value closer to 0 
illustrates a sparser network with fewer connections, 
while a value closer to 1 indicates a denser network 
with stronger connections between nodes. Figure 5 

49



also shows a right-skewed distribution, which means 
that the majority of the knowledge networks are 
sparse ones. There is still a lot of potential to have 
more connections in knowledge networks. 

 
Figure 5: Density Distribution for 124 Nobel Prize-
Winning Papers 

The average shortest path length distribution and 
average clustering coefficient distribution are then 
computed and shown in Figure 6 and Figure 7 
correspondingly. These networks demonstrate strong 
small-world properties, characterized by a high 
clustering coefficient and a short average path length. 

 
Figure 6: Average Shortest Path Length Distribution 

 
Figure 7: Average Clustering Coefficient Distribution 

In addition, to evaluate the knowledge proximity of 
absorption and integration phrase of the knowledge 
combination in these papers. We then compute cosine 
distance of 150-dimension embedding-based vectors 
of each target paper and their references. These 
vectors are generated using doc2vec. The average 
semantic similarity is 0.80. 

4. Conclusion, Limitations and 
Future Work 

In this paper, we explore a new perspective on 
modeling knowledge absorption and integration with 
knowledge networks. The references and content of 
the articles function as input to knowledge absorption 
and output to knowledge integration, respectively. 
Although this paper provides heuristic research that 
can potentially be used to model and measure the 
process and result of knowledge combination, it has 
several limitations that need to be explored in future 
research: First and foremost, (1) at this stage, this 
study has not established a control group for the 
experimental group to further investigate whether the 
indicators provided by the model can effectively reflect 
the effects of knowledge integration and innovation; in 
addition, (2) the number of references indirectly 
affects the size of the current knowledge network, and 
this influence needs to be minimized by further 
adjusting the network's nodes and edges; (3) there are 
limitations in constructing network edges solely based 
on term co-occurrence relationships; (4) more metrics 
need to be design to measure the efficiency and 
structure of knowledge absorption and integration. 

In future research, a control group that can be well 
matched with Nobel Prize-winning papers needs to be 
established. We will address the above concerns in 
future research so as to keep improving the 
methodology in representing and analyzing the 
complex system of knowledge combination and 
recombinant innovation. 
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