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Abstract
Join queries over multiple tables with many-to-many relationships (e.g., in graph analytics) can produce a huge output that is infeasible to compute. However,

users may have particular preferences over the answers in the output, and may be interested in accessing only a small subset according to that ranking;

either to retrieve the most important answers or the quantiles for a statistics summary. The thesis of this proposal is that for many such queries, access

patterns, and ranking functions over the answers, ranked access can be performed efficiently, without first computing the output of the join. This is captured

theoretically by non-trivial complexity guarantees and shown in practice with significant performance improvements over typical implementations in state-

of-the-art database management systems (DBMSs) that sort the join output. We have so far given algorithms and complexity guarantees for the problems

of ranked enumeration, direct access, and quantiles over equi-joins, as well as joins with complex inequality predicates. To complete the picture, we plan to

extend our results to support more expressive queries, distributed computation, and stronger complexity guarantees toward instance-optimality. Besides

addressing fundamental questions regarding the limits of query processing, this work opens up unexplored possibilities for the design of DBMSs. We clearly

demonstrate how existing systems fall short in handling ranking over joins efficiently, with our algorithms outperforming them by orders of magnitude.

1. Problem Focus
Join Queries. Joins are fundamental in data-processing

systems, as they enable the composition of data from mul-

tiple sources. They are also notoriously critical for per-

formance, as they can produce huge intermediate or final
results. This is especially true when dealing with graph

data [1], but can also occur with traditional relational

data if many-to-many relationships exist across tables

or non-equi-join conditions are used. A breakthrough

result in our understanding of join processing was that

the worst-case complexity of traditional (binary) join

implementations is suboptimal [2], which led to a num-

ber of Worst-Case Optimal Join (WCOJ) algorithms that

fill this gap [3, 4]. Besides, work on enumeration [5, 6]

has focused on returning a stream of answers as fast as

possible even if the full output is too large to compute.

These efforts toward strong worst-case guarantees have

not only created excitement about their theoretical value,

but are also aligned with the pervasive goal of database

systems to ensure predictable performance for complex

queries or skewed data.

Ranking Join Answers. Users may prefer some join
answers over others based on their importance or rele-

vance. For instance, higher importance may be assigned

to newer (time) or more reliable (quality) data. We formal-

ize this by a ranking function that establishes a total or-

der over the answers. A common example is SUM where

database tuples are assigned weights and the weight of a

query answer is the sum of weights of the contributing

tuples. Sorting the answers is clearly expensive; even

if we were to compute the join efficiently, all join an-

swers must be produced to be sorted. For a database of
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𝑛 tuples and ℓ relations, the join output size is 𝒪(𝑛ℓ).1

The question we ask is whether we can retrieve a few

select answers (according to the ranking) without mate-
rializing and sorting the entire output, or in other words,

whether we can “push” the ranking deeper into joins.

This turns out to be not as simple as reordering the two

operations. For example, the top-10 tuples from each

joining relation do not necessarily produce the top-10

join answers, and may not even join at all. Achieving our

goal requires novel algorithms where joining and ranking

are interleaved.

Example 1. To study bird interactions, an ornitholo-
gist uses a bird observation dataset B(Species, Family,
Cnt, Latitude, Longitude) and wants to extract pairs of
observations for birds of different species that have been
spotted in the same region. Pairs with the greatest com-
bined number of birds (Cnt) should also appear first:

SELECT *, B1.Cnt + B2.Cnt as Weight
FROM B B1, B B2
WHERE B1.Species <> B2.Species
AND ABS(B1.Latitude - B2.Latitude) < 1
AND ABS(B1.Longitude - B2.Longitude) < 1

ORDER BY Weight DESC

This query contains inequality (<) and non-equality
(<>) predicates and its answers are ranked by SUM.
The output size is Ω(𝑛2) in the worst case, thus, regard-
less of the join implementation, sorting will take time
Ω(𝑛2 log𝑛). Yet, our new algorithms can retrieve the
top-10 answers or even the median answer asymptoti-
cally faster, in time 𝒪(𝑛polylog𝑛).

1

Tighter bounds exist if we take the structure of the query into account [2], but we

prefer to keep things simple here.
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1.1. Ranked Access Patterns
We consider a few different ways that a user may want

to access the ranked result of a join query.

Top-𝑘. The top-𝑘 paradigm asks for the the first 𝑘
ranked answers for a given 𝑘, which is typically consid-

ered to be a relatively small constant. Since the value of

𝑘 is known, it can be exploited for pruning.

Ranked Enumeration. Ranked enumeration asks for

the answers to be returned in order, one-by-one until all

of them are returned or the user stops the procedure. It

generalizes top-𝑘 because the value of 𝑘 is flexible and

not fixed in advance. For this reason, we introduced the

term “any-k” for this paradigm. This functionality can

be useful for exploratory analysis tasks, where setting 𝑘
without first seeing some answers is difficult. The goal is

to provide complexity guarantees for every possible value
of 𝑘. We denote by TT(𝑘) the time required up to the 𝑘th

answer, which should be as small as possible no matter

if 𝑘 is small or equal to the join output size.

Direct Access. A more general access pattern is di-
rect access, where the indexes requested from the sorted

array of answers do not need to be consecutive integers

that start from 0 as in ranked enumeration, but can be

arbitrary (e.g., all 𝑞-quantiles). The goal is to build a data

structure that can support all these accesses efficiently.

Quantiles. Quantile queries (or a variant called “selec-

tion”
2

ask for only one access, such as the median answer.

Compared to direct access, we are not required to han-

dle multiple accesses and no data structure for future

accesses needs to be constructed.

1.2. Contrast to Prior Top-𝑘 Joins
A well-known algorithm for top-𝑘 joins is the instance-

optimal Threshold Algorithm by Fagin et al. [7]. However,

it only works for a restricted class of 1-to-1 joins. Follow-

up work extended the algorithm to more general joins [8,

9] but under a “middleware” cost model where cost is

measured in terms of distinct tuples accessed, while join
cost is not taken into account [10]. This is in contrast

to the line of work on WCOJ or enumeration, which

focuses on the RAM model of computation where the

primary concern is to avoid unnecessary joins and large

intermediate results. Our work aims to bridge this gap

by adopting the RAM model.

2. Highlights of Current Results

2.1. Any-𝑘 Algorithms for Equi-joins
For acyclic equi-joins, where join predicates are restricted

to equalities and relations can be organized in a join tree,

2

The two problems differ in whether a percentage or an absolute index is given as

the input.

we designed any-𝑘 algorithms [11] for SUM with strong

guarantees: If the query size is constant, we were able to

achieve TT(𝑘) = 𝒪(𝑛+ 𝑘 log 𝑘) for an input database

of 𝑛 tuples. This is optimal since it takes Ω(𝑛) to read

the database and Ω(𝑘 log 𝑘) to return 𝑘 answers sorted.

Remarkably, the user starts seeing the top answers after

only linear time, even if the join output is much larger.

For the case where query size is non-constant, we pro-

posed an algorithm [12] that achieves the best-known

complexity.
3

Surprisingly, it is asymptotically faster than

(generic, comparison-based) sorting for returning the en-

tire output. This is possible because the query answers

are not independent, but have a shared structure that the

algorithm exploits. Our algorithm does not only apply

to joins, but also to ranked enumeration of source-target

paths in a DAG, and even more generally, to any problem

solvable by Dynamic Programming. Beyond SUM, other

ranking functions are supported if they satisfy appropri-

ate monotonicity properties [12].

Figure 1a illustrates the advantage of any-𝑘 over the

approach of current DBMSs which follow the “JoinFirst”

approach of applying ranking after the join. The query

in this experiment is a join of 4 relations in a chain over

uniform synthetic data. Each relation contains 104 tuples

and each join value appears 10 times on expectation.

2.2. Inequality Predicates
While our initial work focused on equality conditions, we

then extended it to more general join conditions [14]. For

acyclic joins with any conjunctions or disjunctions of in-

equality predicates between adjacent relations in the join

tree, any-𝑘 is possible with TT(𝑘) = 𝒪(𝑛polylog𝑛+
𝑘 log 𝑘), i.e., within a polylogarithmic factor of the equi-

join guarantee. The key insight is a “factorized” repre-

sentation of the output which essentially reduces the

inequality-join to an equi-join over (polylogarithmically)

larger relations.

Our result is quite surprising, given that existing

DBMSs struggle to handle complex join predicates like

those in Example 1 even without the ranking. Our al-

gorithms handle both simultaneously and outperform

DBMSs by orders of magnitude. Figure 1b illustrates this

in terms of the time to find the top-1000 answers for a

path query on the RedditTitles [15] temporal graph.

The 572𝑘 edges in the dataset represent posts from a

source community to a target community identified by

a hyperlink in the post title. The query returns paths of

length ℓ with increasing timestamps, decreasing senti-

ment (i.e., a sign of negative emotion propagation), and

ordered by the SUM of readability scores.

3

This algorithm (anyK-part+) asymptotically dominates other algorithms like

anyK-rec, which was also proposed by Deep and Koutris [13] concurrently with

our initial work [11].
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(a) The “JoinFirst” approach of sorting all answers needs 5.9 sec for the top answer and 6.6

sec for the last. In contrast, our any-𝑘 takes 0.02 sec for the top answer (hence more than

200 times faster) and 4.9 sec for the last with a variant called “Anyk-Rec”. So we get not

only the first answer faster, but all answers faster. All existing DBMSs we tried, such as

PostgreSQL (PSQL) here, follow an approach similar to “JoinFirst” and are outperformed.
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(b) For a path query with 2 inequality predicates on the RedditTitles dataset,

our approach performs significantly better than PostgreSQL (PSQL) and a

commercial system optimized for in-memory computation (System X). Our

own in-memory “JoinFirst” approach runs out of memory (OOM) when the

path length ℓ is more than 2.

Figure 1: Any-𝑘 experimental results.

2.3. Dichotomy Theorems
For both direct access and quantile queries under

SUM, we precisely characterized the (self-join-free
4

) join

queries that can be handled efficiently, and gave algo-

rithms for those cases [17]. We consider 𝒪(𝑛polylog𝑛)
time as efficient, since it is close to the database size 𝑛
and independent of the join output size. We showed that,

under certain hardness assumptions in fine-grained com-

plexity, constructing a data structure for direct access

is possible only for trivial cases. By relaxing the task to

that of quantiles where only one access is required, then

any binary join can be handled efficiently. For all other

acyclic queries, which are provably hard, we showed

that efficient (deterministic) approximation of quantiles

is possible [18].

2.4. Projections
Our results also cover join queries with projections, for-

malized by conjunctive queries. For ranked enumeration,

we extended [12] a dichotomy of Bagan et al. [5] that was

developed for unranked enumeration
5

, showing that the

class of queries that can be handled efficiently (i.e., with

TT(𝑘) = 𝒪(𝑛+ 𝑘) ignoring logarithmic factors) is pre-

cisely the same; it is those queries that are “free-connex”,

a certain restriction on the allowed projections. Thus,

the additional requirement of an ordered output does

not change the tractability landscape and only costs a

logarithmic factor. We note that follow-up work by Deep

et al. [19] has considered more expensive time guaran-

tees for queries beyond the free-connex class, in terms of

preprocessing and delay between answers.
6

Conjunctive

4

This restriction is common in hardness results in this area [16].

5

Again, this is under certain hardness hypotheses and for queries without self-joins.

6

We have argued that preprocessing and delay are less practically relevant than

TT(𝑘) as measures of success for enumeration. [20]

queries are also considered in our study of direct access

and selection [17].

3. Future Directions

3.1. Supported Queries
We have demonstrated how existing systems are lacking

in terms of support for join queries with ranking, by fo-

cusing mainly on conjunctive queries. A major next step

is to extend our study to more expressive queries, such

as those with recursion [21] or other types of operators.

For the supported ranking functions, while we have

algorithms for some of the most common cases, we are

lacking in terms of hardness results for others. Can the

functions that are outside of our tractable classes (e.g., us-

ing MEDIAN as a weight aggregation function) be proven

to be intractable? Or are there still cases potentially use-

ful in practice that remain unexplored?

3.2. Distributed Computation
Our algorithms assume an in-memory computation

model. To make them more useful for big-data processing,

we aim to explore techniques to distribute computation

to many machines. Popular practical frameworks for

this task include Hadoop MapReduce or Spark which

partition computationally intensive tasks into smaller,

independent tasks to be executed in parallel. On the the-

oretical side, the MPC model has been used to analyze

distributed joins [22]. An intriguing question is whether

the the distributed computation setting requires new al-

gorithms and techniques that are fundamentally different

than the sequential case.



3.3. Toward Instance Optimality
The guarantees we have explored so far are concerned

with worst-case time and space complexity, and it is open

whether stronger guarantees are possible. As aforemen-

tioned, the Threshold Algorithm [7] is instance-optimal

in the middleware model, a very strong guarantee which

partly led to the 2014 Gödel Prize for Fagin, Lotem, and

Naor. In addition to the simpler join model, instance-

optimality crucially relies on the assumption that input

relations are given sorted. This assumption makes it pos-

sible to retrieve the top-𝑘 tuples without even reading

the entire input. In contrast, our algorithms (and other

WCOJ) unavoidably have Ω(𝑛) as a lower bound since

the winning tuples could be anywhere in the input. Thus,

an open question is whether stronger guarantees are

possible under this assumption in the RAM model.
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