
Automated Database Schema Evolution in Microservices
Maxime André

Supervised by Prof. Anthony Cleve and Prof. Etienne Rivière
Namur Digital Institute, Computer Science Faculty, University of Namur, Rue Grandgagnage 21, 5000 Namur, Belgium

Abstract
Microservices architecture has emerged as a dominant model for designing cloud-based applications. In this architecture,
modular and heterogeneous services, independently deployed and sometimes geo-distributed, dynamically scale and interact
with each other to respond to user requests. Typically, each service has its own database(s) and shares information throughAPIs
calls. Facilitating software evolution is one of the main motivations for adopting a microservices architecture. Paradoxically,
from a database point of view, recent surveys reveal that database schema evolution remains among the most pressing data
management challenges for microservices architecture developers. While there are many tools available in the literature
for supporting the evolution of microservices architecture, none of them is specifically designed to address the problem of
database schema evolution. To tackle this challenge, the primary objective of this PhD thesis is to provide developers with
a set of effective and efficient tools for automatically supporting database schema evolution in microservices architecture,
thereby reducing their burden in cloud-based applications evolution.

Keywords
microservice, database schema, automated evolution

1. Introduction
Over the past few years, microservices architectures have
gained significant popularity among developers and in-
dustry leaders such as Netflix, Google, and Amazon, who
leverage this architectural style to design cloud-based
applications [1, 2, 3].

A microservices architecture is defined by several key
properties. Modularity is the most commonly cited.
Within this architectural style, microservices are or-
ganized as a collection of small, loosely coupled ser-
vices, with each service managing its own responsibil-
ities and data, thus respecting separation of concerns
[4, 5, 6, 3, 7, 1, 8]. Another property is the use of het-
erogeneous technologies. Specifically, each microservice
may be developed using a diverse set of polyglot and
hybrid technologies, including persistence technologies
such as relational and NoSQL databases. Each microser-
vice is technologically independent and manages its own
codebase and database(s) [5, 8, 3, 6, 7, 9, 2]. Further-
more, microservices should respect deployability prop-
erty. They are often deployed on public or private cloud
infrastructures, accompanied by mechanisms such as
autoscaling and geographic distribution. Each microser-
vice and its database(s) can be rapidly and independently
redeployed [10, 6, 7, 11]. Due to modularity property,

VLDB 2023 PhD Workshop, co-located with the 49th International
Conference on Very Large Data Bases (VLDB 2023), August 28, 2023,
Vancouver, Canada
Envelope-Open maxime.andre@unamur.be (M. André)
GLOBE https://researchportal.unamur.be/fr/persons/maxime-andre
(M. André)
Orcid 0009-0002-1241-8319 (M. André)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

microservices architecture can, on demand, quickly and
dynamically scale up and down (autoscaling), without
dependency constraints, following pay-as-you-go princi-
ple to maintain high availability [10, 5, 6, 3, 11, 12, 13, 1].
For performance reasons, cloud infrastructures are of-
ten geographically distributed across multiple regions
worldwide, enabling microservices architecture to lever-
age data partitioning or replication and decentralized
processing [10, 6, 9, 5]. Microservices architecture is
also renowned for its ability to facilitate collaboration
between microservices. This is achieved by exploiting
existing lightweight communication protocols strengths,
allowing for synchronous or asynchronous exchange
of messages and data between microservices via API
endpoints that conform to predefined contracts. There
are even established patterns for structuring service-to-
service calls [4, 5, 8, 6, 3, 13, 1, 9]. Additionally, automa-
tion of microservices architecture through DevOps and
CI/CD approaches and tools is often claimed as useful at
any stage of the project. This property is often associated
with deployability property [4, 8, 6, 12, 9]. Finally, evolv-
ability of microservice is a common reason motivating
behind its developers adoption. Thanks to modularity,
heterogeneity, deployability, and decoupled collaboration
properties, combined with automated support tools, Dev-
Ops, and CI/CD methodologies, developers can quickly
evolve and maintain microservices and databases by de-
taching from certain constraints [4, 6, 3, 11, 1, 2].

Despite evolutivity property promises, microservices
developers continue to face several issues, particularly in
regards to database management. Recent surveys reveal
that database schema evolution remains one of the most
pressing data management challenges for microservices
architecture developers [5].

mailto:maxime.andre@unamur.be
https://researchportal.unamur.be/fr/persons/maxime-andre
https://orcid.org/0009-0002-1241-8319
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Indeed, practitioners often lack resources to assist
them in microservices evolution [8], especially in re-
gards to their databases. Developers have a real need
of support tools able to understand, explicit, ensure, vi-
sualize and monitor, over time, databases, schemas, data,
transactions, and constraints [6, 10, 9]. Particularly, it
concerns data replication, implicit constraints such as
implicit foreign keys, message structure and database
schema change propagation distributed across several
microservices [5, 6]. In that context, dealing with CAP
theorem [9] and ensuring ACID is a true challenge [8].
This is even more significant considering that modern
systems employ hybrid databases composed of heteroge-
neous database technologies, including NoSQL, particu-
larly known for their absence of fully explicit schemas
where consistency is usually delegated to client programs.
This complexifies modeling and evolution of database
schemas, thereby further justifying the need for support
tools [14, 15]. Moreover, even if DevOps gains in popu-
larity, less attention is given to automation of database
schema evolution [16]. While microservices are often
associated with quick and frequent releases, there is a
potential risk of microservices dependencies breaking
when introducing a change [6]. This is particularly true
when modifications involve substantial database schema
changes leading to an expensive cost and even a total
downtime [16, 17]. Practitioners are directly affected by
those problems while spending precious time in manual
operations [9].

In that way, this research aims to answer this main
research question: RQ. How to automate database
schema evolution in microservices architecture
to reduce developers burden? The following sub-
research questions structure the work in more details.
The first four (■) will be the focus of this thesis. Ac-
cessorily, the last two (□), to be further refined, will be
addressed collectively through collaborative work by the
RAINDROP project researchers.

■ SRQ1. [Reverse engineering]: How to automate
reverse engineering of a cross-microservices database
schema?

■ SRQ2. [Modeling]: How to model a cross-
microservices database schema?

■ SRQ3. [Generation]: How to automate generation
of artefacts according to a cross-microservice database
schema?

■ SRQ4. [Evolution]: How to automate evolution of
a cross-microservice database schema while propagat-
ing changes?

□ SRQ5. [Visualization]: How to visualize a cross-
microservice database schema?

□ SRQ6. [Monitoring]: How tomonitor microservices
architecture databases to prepare potential evolution
of its schema?

2. Related work
To prepare that research, works related to microservices
and databases evolution have been reviewed. Even if
they do not focus on both microservices and databases
together, they represent good inspiration for reverse en-
gineering, modeling, generation, evolution, visualization,
and monitoring of microservice databases.

Reverse engineering. Reverse engineering of mi-
croservices aims to recover a comprehensive holistic view
of an existing system. Various approaches exist for that
purpose. Some authors exploit the version history by
mining software repositories to identify changes help-
ing to understand the current version [3, 18]. Others
use techniques of static and dynamic analysis. In an of-
fline and white-box approach, static analysis analyzes the
source code and API contract specifications. In a runtime
and black-box approach, dynamic analysis inspects logs,
deployment platform metrics, and any other traces. Both
approaches are implemented in tools like MICROLYZE,
MicroART, Zipkin, etc. [7, 11, 19, 1, 20, 21]. Techniques
and tools operate either at software or at infrastructure
level [13]. These approaches primarily examine microser-
vices architecture but lack of persistence perspective in
a distributed and heterogeneous context.

Modeling. Modeling in the context of microservices
can serve for representing reverse engineering output or
simply for designing a new architecture. Additionally to
traditional models such as UML, Archimate, and BPMN
[19], others are specifically dedicated to microservices.
Some propose to combine information from different
system layers such as instance, architectural and infras-
tructure layers [3] or service, infrastructure and interac-
tion layers [13]. Other focuses on distinction between
abstract types of components and their concrete deploy-
ment instance configurations [12]. Certain models lead
to the creation of Domain Specific Language (DSL) [1]. In
the same way, creating a modeling language specifically
for databases schemas is also studied. For instance, a DSL
exists for specifying hybrid polystores schemas [22] and
another for abstracting database schema changes coupled
to the program code [23]. Finally, in a meta-modeling
approach, some research investigates how to design well
a modeling language in the context of cloud architecture
[24]. Despite interesting directions, no work considers
modeling distributed and heterogeneous microservices
and databases jointly.

Generation. Accordingly to modeling, DSLs offer ca-
pabilities like code generation [24]. For instance, a mod-
eling language representing hybrid polystores schemas
plans an extension able to generate data manipulation
APIs [22]. Again, no work is specifically dedicated to
microservice database artefact generation in a heteroge-
neous and distributed context.



Evolution. Some evolution approaches suggest
reusing a model as a starting point for evaluating changes
impact between a current and a future version [3]. Retro-
spectively and with support of reverse engineering, infor-
mation recovered is used for understanding architectural
changes. Combining modeling and reverse engineer-
ing approaches help for decisions making (e.g., splitting
or merging microservices). Recovered indicators (e.g.,
size of a microservice, number of interfaces, coupling
index) take part in problem identification and change
impact evaluation [13]. Knowing that evolving microser-
vices also means evolving their database(s), it is clear that
those techniques are relevant in the context of distributed
and heterogeneous microservice database schema evo-
lution. However, no work currently put together these
approaches and tools despite the need [16, 17].

Visualization. Many visualizations exist for repre-
senting graphically microservices architecture. The most
popular take the form of graphs highlighting specifically
the interdependencies [11, 25]. Depending on tools, vari-
ous visualizations are considered such as metaphor-based
visualization, 3D visualization, and virtual or augmented
reality visualizations. Visualization is closely linked to
modeling, sometimes being its graphical representation.
Hence, some switch between different views and combi-
nation of them like architectural, process, or data views
among many others depending on the targeted abstract
level [19, 21]. Unfortunately, these views stop at the mi-
croservices level and do not go into the details of their
distributed and heterogeneous databases. Visualizations
of databases exist but none are specifically applied to
microservices databases [26].

Monitoring. Microservices monitoring aims to col-
lect real-time data (e.g., runtime metrics) for following up
system behaviour. Even if tools and practices appear like
reverse engineering, specifically for dynamic analysis,
the approach is more centred on the instant. Goals are
mainly focused on microservice current state checking
and changes detection rather than documentation recov-
ery. Monitoring is essential for preparing any evolution
while making decision based on data collected. Those
tasks are usually ensured by tools such as OpenTelemetry,
Kiali, Zipkin, Jaeger, Prometheus [11, 19, 21]. Regrettably,
analyses often ignore the database perspective. There
is a need for tools to monitor microservices messages
transit through the entire distributed and heterogeneous
architecture, from API endpoints to inside the database.

3. Research direction
This PhD study aims to address weaknesses evoked in
the related work by designing and developing support
tools for microservices database schema evolution.

Modeling

Generation

Evolution

Visualization

Monitoring

Reverse engineering
Microservices architecture Reverse engineering

report

Sources Runtime
data

Microservices data
meta schema

Generated code

Evolution
recommendations

Evoluted system
visualization

Monitoring report

Figure 1: Example of an evolution process supported by envi-
sioned tools.

Figure 1 illustrates an example of evolution process
involving all support tools (that could be used indepen-
dently without any order constraints).

Reverse engineering. The reverse engineering tool
will help developers to analyze a given heterogeneous
and distributed microservices architecture (sources and
runtime data) under a data-oriented vision (e.g., concepts,
associations, constraints, database accesses, data loca-
tions, etc.) to produce a report as a basis for the microser-
vices data meta schema. The scientific result will be an
algorithm based on static and dynamic analyses.

Modeling. The modeling tool will help developers to
model a microservices architecture, its components and
its (cross-)constraints, new or existing, to produce or edit
a microservices data meta schema. The scientific output
will be a DSL defining microservice data meta schemas
and evolution operators.

Generation. The generation tool will help develop-
ers to generate, based on the microservices data meta
schema, useful generated code for microservices database
(e.g., database creation script, additional code for cross
implicit constraints, etc.). The scientific output will be
an algorithm able to generate those artefacts.



Evolution. The evolution tool will help developers to
evolve a cross microservices database schema based on
the microservices data meta schema. This process will
try to generate, based on evolution operators, what-if
scenarios and smells detected, recommendations (e.g., im-
plicit constraint materialization, databases split, unused
data structure deletion, etc.) responding to developers
goals (e.g. consistency, performance, code quality, etc.).
The scientific output will be an algorithm able to produce
those recommendations and integration in CI/CD tools.

Visualization. The visualization tool will help devel-
opers to provide visualizations of the current or evolved
microservices data meta schema and its details (e.g., im-
plicit constraints, metrics, changes impact, etc.). The
scientific output will be several graphical models cus-
tomizable on purpose.

Monitoring. The monitoring tool will help develop-
ers in real-time microservice architecture monitoring
while producing a runtime data report (e.g., message ex-
changes, microservices states, critical paths in calls, etc.)
specifically related to the microservices data meta schema.
The scientific output will be several interactive graphical
models and monitoring algorithms.

As highlighted, the backbone of this contribution is the
microservices data meta schema. This representation will
model all data-related aspects in a microservice architec-
ture. It will contribute in the whole evolution process of
microservices database schema through proposed tools
and across intermediary artefacts.

4. Conclusion
In summary, this PhD thesis aims to address challenges
related to automated database schema evolution in mi-
croservices architecture. The research aims to provide
supporting tools reducing developers burden. Specifi-
cally, the research will focus on automatic reverse engi-
neering, modeling, generation, evolution, visualization,
andmonitoring of database schema inmicroservices. The
reverse engineering tool is currently under development
with focus on static analysis of JS REST APIs and NoSQL
databases.

Acknowledgments
This PhD project is part of the RAINDROP project study-
ing cross-stack adaptations for the edgification of mi-
croservices. The project is supported by the subsidy ARC
funded by the Wallonia-Brussels Federation (Belgium).

References
[1] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, A. Di Salle,

Towards recovering the software architecture of microservice-based systems,

in: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), 2017.

[2] L. P. Tizzei, L. Azevedo, E. Soares, R. Thiago, R. Costa, On the maintenance of
a scientific application based on microservices: an experience report, in: 2020
IEEE International Conference on Web Services (ICWS), 2020, pp. 102–109.

[3] A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa, I. Beschast-
nikh, J. Rubin, Supporting microservice evolution, in: 2017 IEEE international
conference on software maintenance and evolution (ICSME), IEEE, 2017, pp.
539–543.

[4] J. Lewis, M. Fowler, Microservices: a definition of this new architectural term,
MartinFowler. com 25 (2014) 12.

[5] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, M. Kalinowski, Data management in
microservices: State of the practice, challenges, and research directions, Proc.
VLDB Endow. 14 (2021) 3348–3361.

[6] H. Chawla, H. Kathuria, H. Chawla, H. Kathuria, Evolution of microservices
architecture, Building Microservices Applications on Microsoft Azure: De-
signing, Developing, Deploying, and Monitoring (2019) 1–20.

[7] A. Bakhtin, A. Al Maruf, T. Cerny, D. Taibi, Survey on tools and techniques
detecting microservice api patterns, in: 2022 IEEE International Conference
on Services Computing (SCC), IEEE, 2022, pp. 31–38.

[8] R. M. Munaf, J. Ahmed, F. Khakwani, T. Rana, Microservices architecture:
Challenges and proposed conceptual design, in: 2019 International Confer-
ence on Communication Technologies (ComTech), IEEE, 2019, pp. 82–87.

[9] X. Zhou, S. Li, L. Cao, H. Zhang, Z. Jia, C. Zhong, Z. Shan, M. A. Babar, Re-
visiting the practices and pains of microservice architecture in reality: An
industrial inquiry, Journal of Systems and Software 195 (2023) 111521.

[10] D. Abadi, A. Ailamaki, D. Andersen, P. Bailis, M. Balazinska, P. A. Bernstein,
P. Boncz, S. Chaudhuri, A. Cheung, A. Doan, et al., The seattle report on
database research, Communications of the ACM 65 (2022) 72–79.

[11] V. Bushong, A. S. Abdelfattah, A. A. Maruf, D. Das, A. Lehman, E. Jaroszewski,
M. Coffey, T. Cerny, K. Frajtak, P. Tisnovsky, et al., On microservice analysis
and architecture evolution: A systematic mapping study, Applied Sciences 11
(2021) 7856.

[12] Y. Wang, D. Conan, S. Chabridon, K. Bojnourdi, J. Ma, Runtime models and
evolution graphs for the version management of microservice architectures,
in: 2021 28th Asia-Pacific Software Engineering Conference (APSEC), IEEE,
2021, pp. 536–541.

[13] B. Mayer, R. Weinreich, An approach to extract the architecture of
microservice-based software systems, in: 2018 IEEE symposium on service-
oriented system engineering (SOSE), IEEE, 2018, pp. 21–30.

[14] P. Benats, M. Gobert, L. Meurice, C. Nagy, A. Cleve, An empirical study of
(multi-) database models in open-source projects, in: Conceptual Modeling:
40th International Conference, ER 2021, Virtual Event, October 18–21, 2021,
Proceedings 40, Springer, 2021, pp. 87–101.

[15] M. Gobert, L.Meurice, A. Cleve, Hydra: A framework formodeling, manipulat-
ing and evolving hybrid polystores, in: 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2022, pp. 652–656.

[16] M. De Jong, A. Van Deursen, Continuous deployment and schema evolution
in sql databases, in: 2015 IEEE/ACM 3rd International Workshop on Release
Engineering, IEEE, 2015, pp. 16–19.

[17] A. Maule, W. Emmerich, D. S. Rosenblum, Impact analysis of database schema
changes, in: Proceedings of the 30th international conference on Software
engineering, 2008, pp. 451–460.

[18] D. A. d’Aragona, L. Pascarella, A. Janes, V. Lenarduzzi, D. Taibi, Microservice
logical coupling: A preliminary validation, in: 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C), IEEE, 2023, pp.
81–85.

[19] T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, D. Taibi, Microser-
vice architecture reconstruction and visualization techniques: A review, in:
2022 IEEE International Conference on Service-Oriented System Engineering
(SOSE), IEEE, 2022, pp. 39–48.

[20] T. Cerny, D. Taibi, Static analysis tools in the era of cloud-native systems
(2022).

[21] M. E. Gortney, P. E. Harris, T. Cerny, A. Al Maruf, M. Bures, D. Taibi, P. Tis-
novsky, Visualizing microservice architecture in the dynamic perspective: A
systematic mapping study, IEEE Access (2022).

[22] M. Gobert, L. Meurice, A. Cleve, Conceptual modeling of hybrid polystores, in:
Conceptual Modeling: 40th International Conference, ER 2021, Virtual Event,
October 18–21, 2021, Proceedings 40, Springer International Publishing, 2021,
pp. 113–122.

[23] S. Scherzinger, W. Mauerer, H. Kondylakis, Debinelle: Semantic patches for
coupled database-application evolution, in: 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), IEEE, 2021, pp. 2697–2700.

[24] A. Alidra, H. Bruneliere, T. Ledoux, A feature-based survey of fog modeling
languages, Future Generation Computer Systems (2022).

[25] G. Parker, S. Kim, A. Al Maruf, T. Cerny, K. Frajtak, P. Tisnovsky, D. Taibi,
Visualizing anti-patterns in microservices at runtime: A systematic mapping
study, IEEE Access (2023).

[26] L. Meurice, A. Cleve, Dahlia 2.0: A visual analyzer of database usage in dy-
namic and heterogeneous systems, in: 2016 IEEE Working Conference on
Software Visualization (VISSOFT), 2016, pp. 76–80.


	1 Introduction
	2 Related work
	3 Research direction
	4 Conclusion

